MILLIMETER WAVE SPECTROSCOPY OF THE GROUND, FIRST AND SECOND EXCITED TORSIONAL STATES OF ACETONE

PACS numbers: 33.15.-e, 33.20.-tPurpose: spectrum investigation of the lowest three torsional states of acetone (CH3COCH3 ) within the frequency ranges 34–150 and 480–620 GHz. Design/methodology/approach: New measurements were carried out using the automated millimeter wave spectrometer in the Insit...

Повний опис

Збережено в:
Бібліографічні деталі
Видавець:Видавничий дім «Академперіодика»
Дата:2016
Автори: Armieieva, I. A., Ilyushin, V. V., Alekseev, E. A., Dorovskaya, O. A., Margulès, L., Motiyenko, R. A.
Формат: Стаття
Мова:English
Опубліковано: Видавничий дім «Академперіодика» 2016
Теми:
Онлайн доступ:http://rpra-journal.org.ua/index.php/ra/article/view/1232
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!

Репозиторії

Radio physics and radio astronomy
id oai:ri.kharkov.ua:article-1232
record_format ojs
institution Radio physics and radio astronomy
collection OJS
language English
topic acetone
millimeter wave spectrum
methyl top internal rotation
ацетон
миллиметровый спектр
внутреннее вращение метильной группы
ацетон
міліметровий спектр
внутрішнє обертання метильної групи
spellingShingle acetone
millimeter wave spectrum
methyl top internal rotation
ацетон
миллиметровый спектр
внутреннее вращение метильной группы
ацетон
міліметровий спектр
внутрішнє обертання метильної групи
Armieieva, I. A.
Ilyushin, V. V.
Alekseev, E. A.
Dorovskaya, O. A.
Margulès, L.
Motiyenko, R. A.
MILLIMETER WAVE SPECTROSCOPY OF THE GROUND, FIRST AND SECOND EXCITED TORSIONAL STATES OF ACETONE
topic_facet acetone
millimeter wave spectrum
methyl top internal rotation
ацетон
миллиметровый спектр
внутреннее вращение метильной группы
ацетон
міліметровий спектр
внутрішнє обертання метильної групи
format Article
author Armieieva, I. A.
Ilyushin, V. V.
Alekseev, E. A.
Dorovskaya, O. A.
Margulès, L.
Motiyenko, R. A.
author_facet Armieieva, I. A.
Ilyushin, V. V.
Alekseev, E. A.
Dorovskaya, O. A.
Margulès, L.
Motiyenko, R. A.
author_sort Armieieva, I. A.
title MILLIMETER WAVE SPECTROSCOPY OF THE GROUND, FIRST AND SECOND EXCITED TORSIONAL STATES OF ACETONE
title_short MILLIMETER WAVE SPECTROSCOPY OF THE GROUND, FIRST AND SECOND EXCITED TORSIONAL STATES OF ACETONE
title_full MILLIMETER WAVE SPECTROSCOPY OF THE GROUND, FIRST AND SECOND EXCITED TORSIONAL STATES OF ACETONE
title_fullStr MILLIMETER WAVE SPECTROSCOPY OF THE GROUND, FIRST AND SECOND EXCITED TORSIONAL STATES OF ACETONE
title_full_unstemmed MILLIMETER WAVE SPECTROSCOPY OF THE GROUND, FIRST AND SECOND EXCITED TORSIONAL STATES OF ACETONE
title_sort millimeter wave spectroscopy of the ground, first and second excited torsional states of acetone
title_alt СПЕКТРОСКОПИЯ ОСНОВНОГО, ПЕРВОГО И ВТОРОГО ВОЗБУЖДЕННЫХ ТОРСИОННЫХ СОСТОЯНИЙ АЦЕТОНА В МИЛЛИМЕТРОВОМ ДИАПАЗОНЕ ДЛИН ВОЛН
СПЕКТРОСКОПІЯ ОСНОВНОГО, ПЕРШОГО ТА ДРУГОГО ЗБУДЖЕНИХ ТОРСІЙНИХ СТАНІВ АЦЕТОНУ У МІЛІМЕТРОВОМУ ДІАПАЗОНІ ДОВЖИН ХВИЛЬ
description PACS numbers: 33.15.-e, 33.20.-tPurpose: spectrum investigation of the lowest three torsional states of acetone (CH3COCH3 ) within the frequency ranges 34–150 and 480–620 GHz. Design/methodology/approach: New measurements were carried out using the automated millimeter wave spectrometer in the Insitute of Radio Asronomy of NASU (Kharkiv, Ukraine) and the submillimeter-wave spectrometer of PhLAM (Lille, France). The results of new measurements were fitted using a recently developed model for the molecules with two equivalent methyl rotors and C2v symmetry at equilibrium PAM_C2v_2tops program).Findings: Analysis of the acetone molecule spectrum was carried out using the new measurements for torsion–rotation transitions in the millimeter wave range belonging to the ground, first and second excited torsional states, as well as previously published data. In addition, we performed more accurate measurements of a number of previously published lines which posed some problems for previous analysis using the same model.Conclusions: The remeasurements have shown that the problems existed with spectrum description were caused by underestimated experimental error of the previously published data. The final fit uses 99 parameters to give an overall weighted root-meansquare deviation of 0.78 for the dataset consisting of 6233, 4868, and 4364 transitions with J up to 60 and Ka up to 35, belonging, respectively, to the ground, first, and second excited torsional states of the acetone molecule.Key words: acetone, millimeter wave spectrum, methyl top internal rotationManuscript submitted 11.11.2015Radio phys. radio astron. 2016, 21(1): 37-47REFERENCES1. COMBES, F., GERIN, M., WOOTEN, A., WLODARCZAK, G., CLAUSSET, F. and ENCRENAZ, P. J., 1987. Acetone in interstellar space. Astron. Astrophys. vol. 180, no. 1-2, pp. 13–16. 2. SNYDER, L. E., LOVAS, F. J., MEHRINGER, D. M., MIAO, N. Y., KUAN, Y.-J., HOLLIS, J. M. and JEWELL, P. R., 2002. Confirmation of interstellar acetone. Astrophys. J. vol. 578, no. 1, pp. 245–255. DOI: https://doi.org/10.1086/342273 3. FRIEDEL, D. N., SNYDER, L. E., REMIJAN, A. J. and TURNER, B. E., 2005. Detection of interstellar acetone toward the Orion-KL hot core. Astrophys. J. vol. 632, no. 1. pp. L95–L98. DOI: https://doi.org/10.1086/497986 4. SWALEN, J. D. and COSTAIN, C. C., 1959. Internal rotation in molecules with two internal rotors: microwave spectrum of acetone. J. Chem. Phys. vol. 31, pp. 1562–1574. DOI: https://doi.org/10.1063/1.1730653 5. NELSON, R. and PIERCE, L., 1965. Microwave spectrum, structure, and barrier to internal rotation of acetone. J. Mol. Spectrosc. vol. 18, is. 3, pp. 344–352. DOI: https://doi.org/10.1016/0022-2852(65)90144-X 6. VACHERAND, J. M., VAN EIJCK, B. P., BURIE J. and DEMAISON, J., 1986. The rotational spectrum of acetone: internal rotation and centrifugal distortion analysis. J. Mol. Spectrosc. vol. 118, is. 2, pp. 355–362. DOI: https://doi.org/10.1016/0022-2852(86)90175-X 7. OLDAG, F. and SUTTER, D. H., 1992. The rotational zeeman effect in acetone, its g-tensor, its magnetic susceptibility anisotropies and its molecular electric quadrupole moment tensor; a high resolution microwave fourier transform study. Z. Naturforch. A. vol. 47, is. 3, pp. 527–532. DOI: https://doi.org/10.1515/zna-1992-0315 8. GRONER, P., ALBERT, S., HERBST, E., DE LUCIA, F. C., LOVAS, F. J., DROUIN, B. J. and PEARSON, J. C., 2002. Acetone: laboratory assignments and predictions through 620 GHz for the vibrational-torsional ground state. Astrophys. J. Suppl. Ser. vol. 142, no. 1, pp. 145–151. DOI: https://doi.org/10.1086/341221 9. GRONER, P., HERBST, E., DE LUCIA, F. C., DROUIN, J. and MÄDER, H., 2006. Rotational spectrum of acetone, СН3COСН3, in the first torsional excites state. J. Mol. Struct. vol. 795, is 1-3, pp. 173–178. DOI: https://doi.org/10.1016/j.molstruc.2006.02.028 10. GRONER, P., MEDVEDEV, I. R., DE LUCIA, F. C. and DROUIN, J., 2008. Rotational spectrum of acetone, СН3COСН3, in the v17 torsional excites state. J. Mol. Spectrosc. vol. 251, is. 1-2, pp. 180–184. DOI: https://doi.org/10.1016/j.jms.2008.02.018 11. GRONER, P., 1992. Large-amplitude motion tunneling parameters in effective rotational Hamiltonians from rotationinternal rotation theory. J. Mol. Spectrosc. vol. 156, is. 1, pp. 164–189. DOI: https://doi.org/10.1016/0022-2852(92)90101-S 12. GRONER, P., 1997. Effective rotational Hamiltonian for molecules with two periodic large-amplitude motions. J. Chem. Phys. vol. 107, is. 12, pp. 4483–4498. DOI: https://doi.org/10.1063/1.474810 13. ILYUSHIN, V. V. and HOUGEN, J. T., 2013. Afitting program for molecules with two equivalent methyl tops and C2v point-group symmetry at equilibrium: Application to existing microwave, millimeter, and sub-millimeter wave measurements of acetone. J. Mol. Spectrosc. vol. 289, pp. 41–49. DOI: https://doi.org/10.1016/j.jms.2013.05.012 14. ALEKSEEV, E. A., MOTIYENKO, R. A. and MARGULÈS, L., 2012. Millimeter- and submillimeter-wave spectrometers on the basis of direct digital frequency synthesizers. Radio Phys. Radio Astron. vol. 3, is 1, pp. 75–88. DOI: https://doi.org/10.1615/RadioPhysicsRadioAstronomy.v3.i1.100 15. LI-HONG, XU., FISHER, J., LEES, R. M., SHI, H. Y., HOUGEN, J. T., PEARSON, J. C., DROUIN, B. J., BLAKE, G. A. and BRAAKMAN, R., 2008. Torsion–rotation global analysis of the first three torsional states (vt=0, 1, 2) and terahertz database for methanol. J. Mol. Spectrosc. vol. 251, is. 1-2, pp. 305–313. DOI: https://doi.org/10.1016/j.jms.2008.03.017 16. GRONER, P., 2000. Experimental two-demensional torsional potential function for the methyl internal rotors in acetone. J. Mol. Struct. vol. 550-551, pp. 473–479. DOI: https://doi.org/10.1016/S0022-2860(00)00507-X 17. SMIRNOV, I. A., ALEKSEEV, E. A., ILYUSHIN, V. V., MARGULÈS, L., MOTIYENKO, R. A. and DROUIN, B. J., 2014. Spectroscopy of the ground, first and second excited torsional states of acetaldehyde from 0.05 to 1.6 THz. J. Mol. Spectrosc. vol. 295, pp. 44–50. DOI: https://doi.org/10.1016/j.jms.2013.11.006 18. ILYUSHIN, V. V., ENDRES, C. P., LEWEN, F., SCHLEMMER, S. and DROUIN, B. J., 2013. Submillimeter wave spectrum of acetic acid. J. Mol. Spectrosc. vol. 290, pp. 31–41. DOI: https://doi.org/10.1016/j.jms.2013.06.005 19. GRONER, P. and DURIG, J. R., 1977. Analysis of torsional spectra of molecules with two internal C3v rotors. II. Far infrared and low frequency Raman spectra of dimethylether isotopes. J. Chem. Phys. vol. 66, is. 5, pp. 1856–1874. DOI: https://doi.org/10.1063/1.434184 20. GRONER, P., 1981. Chapter 6. Internal rotation of molecules with two C3v rotors. In: Vibrational Spectra and Structure, vol. 9. Amsterdam: Elsevier, pp. 405–496.
publisher Видавничий дім «Академперіодика»
publishDate 2016
url http://rpra-journal.org.ua/index.php/ra/article/view/1232
work_keys_str_mv AT armieievaia millimeterwavespectroscopyofthegroundfirstandsecondexcitedtorsionalstatesofacetone
AT ilyushinvv millimeterwavespectroscopyofthegroundfirstandsecondexcitedtorsionalstatesofacetone
AT alekseevea millimeterwavespectroscopyofthegroundfirstandsecondexcitedtorsionalstatesofacetone
AT dorovskayaoa millimeterwavespectroscopyofthegroundfirstandsecondexcitedtorsionalstatesofacetone
AT margulesl millimeterwavespectroscopyofthegroundfirstandsecondexcitedtorsionalstatesofacetone
AT motiyenkora millimeterwavespectroscopyofthegroundfirstandsecondexcitedtorsionalstatesofacetone
AT armieievaia spektroskopiâosnovnogopervogoivtorogovozbuždennyhtorsionnyhsostoânijacetonavmillimetrovomdiapazonedlinvoln
AT ilyushinvv spektroskopiâosnovnogopervogoivtorogovozbuždennyhtorsionnyhsostoânijacetonavmillimetrovomdiapazonedlinvoln
AT alekseevea spektroskopiâosnovnogopervogoivtorogovozbuždennyhtorsionnyhsostoânijacetonavmillimetrovomdiapazonedlinvoln
AT dorovskayaoa spektroskopiâosnovnogopervogoivtorogovozbuždennyhtorsionnyhsostoânijacetonavmillimetrovomdiapazonedlinvoln
AT margulesl spektroskopiâosnovnogopervogoivtorogovozbuždennyhtorsionnyhsostoânijacetonavmillimetrovomdiapazonedlinvoln
AT motiyenkora spektroskopiâosnovnogopervogoivtorogovozbuždennyhtorsionnyhsostoânijacetonavmillimetrovomdiapazonedlinvoln
AT armieievaia spektroskopíâosnovnogoperšogotadrugogozbudženihtorsíjnihstanívacetonuumílímetrovomudíapazonídovžinhvilʹ
AT ilyushinvv spektroskopíâosnovnogoperšogotadrugogozbudženihtorsíjnihstanívacetonuumílímetrovomudíapazonídovžinhvilʹ
AT alekseevea spektroskopíâosnovnogoperšogotadrugogozbudženihtorsíjnihstanívacetonuumílímetrovomudíapazonídovžinhvilʹ
AT dorovskayaoa spektroskopíâosnovnogoperšogotadrugogozbudženihtorsíjnihstanívacetonuumílímetrovomudíapazonídovžinhvilʹ
AT margulesl spektroskopíâosnovnogoperšogotadrugogozbudženihtorsíjnihstanívacetonuumílímetrovomudíapazonídovžinhvilʹ
AT motiyenkora spektroskopíâosnovnogoperšogotadrugogozbudženihtorsíjnihstanívacetonuumílímetrovomudíapazonídovžinhvilʹ
first_indexed 2024-05-26T06:29:59Z
last_indexed 2024-05-26T06:29:59Z
_version_ 1800177114741211136
spelling oai:ri.kharkov.ua:article-12322017-05-24T15:01:36Z MILLIMETER WAVE SPECTROSCOPY OF THE GROUND, FIRST AND SECOND EXCITED TORSIONAL STATES OF ACETONE СПЕКТРОСКОПИЯ ОСНОВНОГО, ПЕРВОГО И ВТОРОГО ВОЗБУЖДЕННЫХ ТОРСИОННЫХ СОСТОЯНИЙ АЦЕТОНА В МИЛЛИМЕТРОВОМ ДИАПАЗОНЕ ДЛИН ВОЛН СПЕКТРОСКОПІЯ ОСНОВНОГО, ПЕРШОГО ТА ДРУГОГО ЗБУДЖЕНИХ ТОРСІЙНИХ СТАНІВ АЦЕТОНУ У МІЛІМЕТРОВОМУ ДІАПАЗОНІ ДОВЖИН ХВИЛЬ Armieieva, I. A. Ilyushin, V. V. Alekseev, E. A. Dorovskaya, O. A. Margulès, L. Motiyenko, R. A. acetone; millimeter wave spectrum; methyl top internal rotation ацетон; миллиметровый спектр; внутреннее вращение метильной группы ацетон; міліметровий спектр; внутрішнє обертання метильної групи PACS numbers: 33.15.-e, 33.20.-tPurpose: spectrum investigation of the lowest three torsional states of acetone (CH3COCH3 ) within the frequency ranges 34–150 and 480–620 GHz. Design/methodology/approach: New measurements were carried out using the automated millimeter wave spectrometer in the Insitute of Radio Asronomy of NASU (Kharkiv, Ukraine) and the submillimeter-wave spectrometer of PhLAM (Lille, France). The results of new measurements were fitted using a recently developed model for the molecules with two equivalent methyl rotors and C2v symmetry at equilibrium PAM_C2v_2tops program).Findings: Analysis of the acetone molecule spectrum was carried out using the new measurements for torsion–rotation transitions in the millimeter wave range belonging to the ground, first and second excited torsional states, as well as previously published data. In addition, we performed more accurate measurements of a number of previously published lines which posed some problems for previous analysis using the same model.Conclusions: The remeasurements have shown that the problems existed with spectrum description were caused by underestimated experimental error of the previously published data. The final fit uses 99 parameters to give an overall weighted root-meansquare deviation of 0.78 for the dataset consisting of 6233, 4868, and 4364 transitions with J up to 60 and Ka up to 35, belonging, respectively, to the ground, first, and second excited torsional states of the acetone molecule.Key words: acetone, millimeter wave spectrum, methyl top internal rotationManuscript submitted 11.11.2015Radio phys. radio astron. 2016, 21(1): 37-47REFERENCES1. COMBES, F., GERIN, M., WOOTEN, A., WLODARCZAK, G., CLAUSSET, F. and ENCRENAZ, P. J., 1987. Acetone in interstellar space. Astron. Astrophys. vol. 180, no. 1-2, pp. 13–16. 2. SNYDER, L. E., LOVAS, F. J., MEHRINGER, D. M., MIAO, N. Y., KUAN, Y.-J., HOLLIS, J. M. and JEWELL, P. R., 2002. Confirmation of interstellar acetone. Astrophys. J. vol. 578, no. 1, pp. 245–255. DOI: https://doi.org/10.1086/342273 3. FRIEDEL, D. N., SNYDER, L. E., REMIJAN, A. J. and TURNER, B. E., 2005. Detection of interstellar acetone toward the Orion-KL hot core. Astrophys. J. vol. 632, no. 1. pp. L95–L98. DOI: https://doi.org/10.1086/497986 4. SWALEN, J. D. and COSTAIN, C. C., 1959. Internal rotation in molecules with two internal rotors: microwave spectrum of acetone. J. Chem. Phys. vol. 31, pp. 1562–1574. DOI: https://doi.org/10.1063/1.1730653 5. NELSON, R. and PIERCE, L., 1965. Microwave spectrum, structure, and barrier to internal rotation of acetone. J. Mol. Spectrosc. vol. 18, is. 3, pp. 344–352. DOI: https://doi.org/10.1016/0022-2852(65)90144-X 6. VACHERAND, J. M., VAN EIJCK, B. P., BURIE J. and DEMAISON, J., 1986. The rotational spectrum of acetone: internal rotation and centrifugal distortion analysis. J. Mol. Spectrosc. vol. 118, is. 2, pp. 355–362. DOI: https://doi.org/10.1016/0022-2852(86)90175-X 7. OLDAG, F. and SUTTER, D. H., 1992. The rotational zeeman effect in acetone, its g-tensor, its magnetic susceptibility anisotropies and its molecular electric quadrupole moment tensor; a high resolution microwave fourier transform study. Z. Naturforch. A. vol. 47, is. 3, pp. 527–532. DOI: https://doi.org/10.1515/zna-1992-0315 8. GRONER, P., ALBERT, S., HERBST, E., DE LUCIA, F. C., LOVAS, F. J., DROUIN, B. J. and PEARSON, J. C., 2002. Acetone: laboratory assignments and predictions through 620 GHz for the vibrational-torsional ground state. Astrophys. J. Suppl. Ser. vol. 142, no. 1, pp. 145–151. DOI: https://doi.org/10.1086/341221 9. GRONER, P., HERBST, E., DE LUCIA, F. C., DROUIN, J. and MÄDER, H., 2006. Rotational spectrum of acetone, СН3COСН3, in the first torsional excites state. J. Mol. Struct. vol. 795, is 1-3, pp. 173–178. DOI: https://doi.org/10.1016/j.molstruc.2006.02.028 10. GRONER, P., MEDVEDEV, I. R., DE LUCIA, F. C. and DROUIN, J., 2008. Rotational spectrum of acetone, СН3COСН3, in the v17 torsional excites state. J. Mol. Spectrosc. vol. 251, is. 1-2, pp. 180–184. DOI: https://doi.org/10.1016/j.jms.2008.02.018 11. GRONER, P., 1992. Large-amplitude motion tunneling parameters in effective rotational Hamiltonians from rotationinternal rotation theory. J. Mol. Spectrosc. vol. 156, is. 1, pp. 164–189. DOI: https://doi.org/10.1016/0022-2852(92)90101-S 12. GRONER, P., 1997. Effective rotational Hamiltonian for molecules with two periodic large-amplitude motions. J. Chem. Phys. vol. 107, is. 12, pp. 4483–4498. DOI: https://doi.org/10.1063/1.474810 13. ILYUSHIN, V. V. and HOUGEN, J. T., 2013. Afitting program for molecules with two equivalent methyl tops and C2v point-group symmetry at equilibrium: Application to existing microwave, millimeter, and sub-millimeter wave measurements of acetone. J. Mol. Spectrosc. vol. 289, pp. 41–49. DOI: https://doi.org/10.1016/j.jms.2013.05.012 14. ALEKSEEV, E. A., MOTIYENKO, R. A. and MARGULÈS, L., 2012. Millimeter- and submillimeter-wave spectrometers on the basis of direct digital frequency synthesizers. Radio Phys. Radio Astron. vol. 3, is 1, pp. 75–88. DOI: https://doi.org/10.1615/RadioPhysicsRadioAstronomy.v3.i1.100 15. LI-HONG, XU., FISHER, J., LEES, R. M., SHI, H. Y., HOUGEN, J. T., PEARSON, J. C., DROUIN, B. J., BLAKE, G. A. and BRAAKMAN, R., 2008. Torsion–rotation global analysis of the first three torsional states (vt=0, 1, 2) and terahertz database for methanol. J. Mol. Spectrosc. vol. 251, is. 1-2, pp. 305–313. DOI: https://doi.org/10.1016/j.jms.2008.03.017 16. GRONER, P., 2000. Experimental two-demensional torsional potential function for the methyl internal rotors in acetone. J. Mol. Struct. vol. 550-551, pp. 473–479. DOI: https://doi.org/10.1016/S0022-2860(00)00507-X 17. SMIRNOV, I. A., ALEKSEEV, E. A., ILYUSHIN, V. V., MARGULÈS, L., MOTIYENKO, R. A. and DROUIN, B. J., 2014. Spectroscopy of the ground, first and second excited torsional states of acetaldehyde from 0.05 to 1.6 THz. J. Mol. Spectrosc. vol. 295, pp. 44–50. DOI: https://doi.org/10.1016/j.jms.2013.11.006 18. ILYUSHIN, V. V., ENDRES, C. P., LEWEN, F., SCHLEMMER, S. and DROUIN, B. J., 2013. Submillimeter wave spectrum of acetic acid. J. Mol. Spectrosc. vol. 290, pp. 31–41. DOI: https://doi.org/10.1016/j.jms.2013.06.005 19. GRONER, P. and DURIG, J. R., 1977. Analysis of torsional spectra of molecules with two internal C3v rotors. II. Far infrared and low frequency Raman spectra of dimethylether isotopes. J. Chem. Phys. vol. 66, is. 5, pp. 1856–1874. DOI: https://doi.org/10.1063/1.434184 20. GRONER, P., 1981. Chapter 6. Internal rotation of molecules with two C3v rotors. In: Vibrational Spectra and Structure, vol. 9. Amsterdam: Elsevier, pp. 405–496. PACS numbers: 33.15.-e, 33.20.-tПредмет и цель работы: исследование спектра первых трех торсионных состояний ацетона (CH3COCH3 ) в диапазонах 34÷150 и 480÷620 ГГц.Методы и методология работы: Новые измерения выполнены с использованием автоматизированного спектрометра миллиметрового диапазона Радиоастрономического института НАН Украины и субмиллиметрового спектрометра лаборатории ФЛАМ (Лилль, Франция). Результаты новых измерений обработаны с помощью недавно разработанной модели для молекул с двумя эквивалентными метильными группами и равновесной симметрией C2v (программа PAM_C2v_2tops).Результаты работы: Анализ спектра молекулы ацетона выполнен с использованием как новых измерений для торсионно-вращательных переходов в миллиметровом диапазоне длин волн, относящихся к основному, первому и второму возбужденным торсионным состояниям, так и ранее опубликованных данных. Кроме того, проведены более точные измерения целого ряда ранее опубликованных линий, которые представляли некоторую проблему в предыдущем анализе с использованием той же модели.Заключение: Результаты повторных измерений показали, что имевшиеся проблемы описания спектра были вызваны недооцененными экспериментальными погрешностями опубликованных ранее данных. Финальная модель использует 99 параметров и обеспечивает взвешенное среднеквадратичное отклонение 0.78 для набора данных, состоящего из 6233, 4868 и 4364 переходов с J≤60 и Ka≤35, относящихся соответственно к основному, первому и второму возбужденным торсионным состояниям молекулы ацетона.Ключевые слова: ацетон, миллиметровый спектр, внутреннее вращение метильной группыСтатья поступила в редакцию 11.11.2015Radio phys. radio astron. 2016, 21(1): 37-47СПИСОК ЛИТЕРАТУРЫ1. Combes F., Gerin M., Wooten A., Wlodarczak G., Clausset F., and Encrenaz P. J. Acetone in interstellar space // Astron. Astrophys. – 1987. – Vol. 180, No. 1-2. – P. L13–L16.2. Snyder L. E., Lovas F. J., Mehringer D. M., Miao N. Y., Kuan Y.-J., Hollis J. M., and Jewell P. R. Confirmation of interstellar acetone // Astrophys. J. – 2002. – Vol. 578, No. 1. – P. 245–255. DOI: 10.1086/3422733. Friedel D. N., Snyder L. E., Remijan A. J., and Turner B. E. Detection of interstellar acetone toward the Orion-KL hot core // Astrophys. J. – 2005. – Vol. 632, No. 1. – P. L95–L98. DOI: 10.1086/4979864. Swalen J. D. and Costain C. C. Internal rotation in molecules with two internal rotors: microwave spectrum of acetone // J. Chem. Phys. – 1959. – Vol. 31. – P. 1562–1574. DOI: 10.1063/1.17306535. Nelson R., and Pierce L. Microwave spectrum, structure, and barrier to internal rotation of acetone // J. Mol. Spectrosc. – 1965. – Vol. 18, Is. 3. – P. 344–352. DOI: 10.1016/0022-2852(65)90144-X6. Vacherand J. M., van Eijck B. P., Burie J., and Demaison J. The rotational spectrum of acetone: internal rotation and centrifugal distortion analysis // J. Mol. Spectrosc. – 1986. – Vol. 118, Is. 2. – P. 355–362. DOI: 10.1016/0022-2852(86)90175-X7. Oldag F. and Sutter D. H. The rotational zeeman effect in acetone, its g-tensor, its magnetic susceptibility anisotropies and its molecular electric quadrupole moment tensor; a high resolution microwave fourier transform study // Z. Naturforch. A. – 1992. – Vol. 47, Is. 3. – P. 527–532. DOI: 10.1515/zna-1992-03158. Groner P., Albert S., Herbst E., De Lucia F. C., Lovas F. J., Drouin B. J., and Pearson J. C. Acetone: laboratory assignments and predictions through 620 GHz for the vibrationaltorsional ground state // Astrophys. J. Suppl. Ser. – 2002. – Vol. 142, No. 1. – P. 145–151. DOI: 10.1086/3412219. Groner P., Herbst E., De Lucia F. C., Drouin J., and Mäder H. Rotational spectrum of acetone, СН3COСН3, in the first torsional excites state // J. Mol. Struct. – 2006. – Vol. 795, Is. 1-3. – P. 173–178. DOI: 10.1016/j.molstruc.2006.02.02810. Groner P., Medvedev I. R., De Lucia F. C., and Drouin J. Rotational spectrum of acetone, СН3COСН3, in the v17 torsional excites state // J. Mol. Spectrosc. – 2008. – Vol. 251, Is 1-2. – P. 180–184. DOI: 10.1016/j.jms.2008.02.01811. Groner P. Large-amplitude motion tunneling parameters in effective rotational Hamiltonians from rotation-internal rotation theory // J. Mol. Spectrosc. – 1992. – Vol. 156, Is. 1. – P. 164–189. DOI: 10.1016/0022-2852(92)90101-S12. Groner P. Effective rotational Hamiltonian for molecules with two periodic large-amplitude motions // J. Chem. Phys. – 1997. – Vol. 107, Is. 12. – P. 4483–4498. DOI: 10.1063/1.47481013. Ilyushin V. V., and Hougen J. T. A fitting program for molecules with two equivalent methyl tops and С2v pointgroup symmetry at equilibrium: Application to existing microwave, millimeter, and sub-millimeter wave measurements of acetone // J. Mol. Spectrosc. – 2013. – Vol. 289. – P. 41–49. DOI: 10.1016/j.jms.2013.05.01214. Alekseev E. A., Motiyenko R. A., and Margulès L. Millimeterand submillimeter-wave spectrometers on the basis of direct digital frequency synthesizers // Radio Physics and Radio Astronomy. – 2012. – Vol. 3, Is. 1. – P. 75–88. DOI: 10.1615/RadioPhysicsRadioAstronomy.v3.i1.10015. Li-Hong Xu., Fisher J., Lees R. M., Shi H. Y., Hougen J. T., Pearson J. C., Drouin B. J., Blake G. A., and Braakman R. Torsion–rotation global analysis of the first three torsional states (vt=0, 1, 2) and terahertz database for methanol // J. Mol. Spectrosc. – 2008. – Vol. 251, Is. 1-2. – P. 305–313. DOI: 10.1016/j.jms.2008.03.01716. Groner P. Experimental two-demensional torsional potential function for the methyl internal rotors in acetone // J. Mol. Struct. – 2000. – Vol. 550-551. – P. 473–479. DOI: 10.1016/S0022-2860(00)00507-X17. Smirnov I. A., Alekseev E. A., Ilyushin V. V., Margulès L., Motiyenko R. A., and Drouin B. J. Spectroscopy of the ground, first and second excited torsional states of acetaldehyde from 0.05 to 1.6 THz // J. Mol. Spectrosc. – 2014. – Vol. 295. – P. 44–50. DOI: 10.1016/j.jms.2013.11.00618. Ilyushin V. V., Endres C. P., Lewen F., Schlemmer S., and Drouin B. J. Submillimeter wave spectrum of acetic acid // J. Mol. Spectrosc. – 2013. – Vol. 290. – P. 31–41. DOI: 10.1016/j.jms.2013.06.00519. Groner P. and Durig J. R. Analysis of torsional spectra of molecules with two internal C3v rotors. II. Far infrared and low frequency Raman spectra of dimethylether isotopes // J. Chem. Phys. – 1977. – Vol. 66, Is. 5. – P. 1856–1874. DOI: 10.1063/1.43418420. Groner P. Chapter 6. Internal rotation of molecules with two C3v rotors. In: Vibrational Spectra and Structure, Vol 9. – Amsterdam: Elsevier, 1981. – P. 405–496. Предмет і мета роботи: дослідження спектра першихтрьох торсійних станів ацетону (CH3COCH3 ) у діапазонах 34÷150 и 480÷620 ГГц.Методи та методологія роботи: Нові вимірювання виконано з використанням автоматизованого спектрометра міліметрового діапазону Радіоастромічного інститута НАН України та субміліметрового спектрометра лабораторії ФЛАМ(Лілль, Франція). Результати нових вимірювань оброблено з використанням нещодавно розробленої моделі для молекул з двома еквівалентними метильними групами та рівноважною симетрією C2v (програма PAM_C2v_2tops).Результати роботи: Аналіз спектра молекули ацетону виконано з використанням як нових вимірювань для торсійно-обертальних переходів у міліметровому діапазоні довжин хвиль, що належать до основного, першого та другого збуджених торсійних станів, так і раніше опублікованих даних. До того ж, виконано точніші вимірювання низки раніше опублікованих ліній, котрі становили деяку проблему в попередньому аналізі з використанням тієї ж моделі.Висновок: Результати повторних вимірювань показали, що наявні проблеми з описом спектра було спричинено недооцінкою експериментальних похибок раніше опублікованих даних. Фінальна модель використовує 99 параметрів та забезпечує зважене середньоквадратичне відхилення 0.78 для набору даних, що містить 6233, 4868 та 4364 переходів з  J≤60 та Ka≤35, які належать відповідно до основного, першого та другого збуджених торсійних станів молекули ацетону.Ключові слова: ацетон, міліметровий спектр, внутрішнє обертання метильної групиСтаття надійшла до редакції 11.11.2015Radio phys. radio astron. 2016, 21(1): 37-47СПИСОК ЛІТЕРАТУРИ1. Combes F., Gerin M., Wooten A., Wlodarczak G., Clausset F., and Encrenaz P. J. Acetone in interstellar space // Astron. Astrophys. – 1987. – Vol. 180, No. 1-2. – P. L13–L16.2. Snyder L. E., Lovas F. J., Mehringer D. M., Miao N. Y., Kuan Y.-J., Hollis J. M., and Jewell P. R. Confirmation of interstellar acetone // Astrophys. J. – 2002. – Vol. 578, No. 1. – P. 245–255. DOI: 10.1086/3422733. Friedel D. N., Snyder L. E., Remijan A. J., and Turner B. E. Detection of interstellar acetone toward the Orion-KL hot core // Astrophys. J. – 2005. – Vol. 632, No. 1. – P. L95–L98. DOI: 10.1086/4979864. Swalen J. D. and Costain C. C. Internal rotation in molecules with two internal rotors: microwave spectrum of acetone // J. Chem. Phys. – 1959. – Vol. 31. – P. 1562–1574. DOI: 10.1063/1.17306535. Nelson R., and Pierce L. Microwave spectrum, structure, and barrier to internal rotation of acetone // J. Mol. Spectrosc. – 1965. – Vol. 18, Is. 3. – P. 344–352. DOI: 10.1016/0022-2852(65)90144-X6. Vacherand J. M., van Eijck B. P., Burie J., and Demaison J. The rotational spectrum of acetone: internal rotation and centrifugal distortion analysis // J. Mol. Spectrosc. – 1986. – Vol. 118, Is. 2. – P. 355–362. DOI: 10.1016/0022-2852(86)90175-X7. Oldag F. and Sutter D. H. The rotational zeeman effect in acetone, its g-tensor, its magnetic susceptibility anisotropies and its molecular electric quadrupole moment tensor; a high resolution microwave fourier transform study // Z. Naturforch. A. – 1992. – Vol. 47, Is. 3. – P. 527–532. DOI: 10.1515/zna-1992-03158. Groner P., Albert S., Herbst E., De Lucia F. C., Lovas F. J., Drouin B. J., and Pearson J. C. Acetone: laboratory assignments and predictions through 620 GHz for the vibrationaltorsional ground state // Astrophys. J. Suppl. Ser. – 2002. – Vol. 142, No. 1. – P. 145–151. DOI: 10.1086/3412219. Groner P., Herbst E., De Lucia F. C., Drouin J., and Mäder H. Rotational spectrum of acetone, СН3COСН3, in the first torsional excites state // J. Mol. Struct. – 2006. – Vol. 795, Is. 1-3. – P. 173–178. DOI: 10.1016/j.molstruc.2006.02.02810. Groner P., Medvedev I. R., De Lucia F. C., and Drouin J. Rotational spectrum of acetone, СН3COСН3, in the v17 torsional excites state // J. Mol. Spectrosc. – 2008. – Vol. 251, Is 1-2. – P. 180–184. DOI: 10.1016/j.jms.2008.02.01811. Groner P. Large-amplitude motion tunneling parameters in effective rotational Hamiltonians from rotation-internal rotation theory // J. Mol. Spectrosc. – 1992. – Vol. 156, Is. 1. – P. 164–189. DOI: 10.1016/0022-2852(92)90101-S12. Groner P. Effective rotational Hamiltonian for molecules with two periodic large-amplitude motions // J. Chem. Phys. – 1997. – Vol. 107, Is. 12. – P. 4483–4498. DOI: 10.1063/1.47481013. Ilyushin V. V., and Hougen J. T. A fitting program for molecules with two equivalent methyl tops and С2v pointgroup symmetry at equilibrium: Application to existing microwave, millimeter, and sub-millimeter wave measurements of acetone // J. Mol. Spectrosc. – 2013. – Vol. 289. – P. 41–49. DOI: 10.1016/j.jms.2013.05.01214. Alekseev E. A., Motiyenko R. A., and Margulès L. Millimeterand submillimeter-wave spectrometers on the basis of direct digital frequency synthesizers // Radio Physics and Radio Astronomy. – 2012. – Vol. 3, Is. 1. – P. 75–88. DOI: 10.1615/RadioPhysicsRadioAstronomy.v3.i1.10015. Li-Hong Xu., Fisher J., Lees R. M., Shi H. Y., Hougen J. T., Pearson J. C., Drouin B. J., Blake G. A., and Braakman R. Torsion–rotation global analysis of the first three torsional states (vt=0, 1, 2) and terahertz database for methanol // J. Mol. Spectrosc. – 2008. – Vol. 251, Is. 1-2. – P. 305–313. DOI: 10.1016/j.jms.2008.03.01716. Groner P. Experimental two-demensional torsional potential function for the methyl internal rotors in acetone // J. Mol. Struct. – 2000. – Vol. 550-551. – P. 473–479. DOI: 10.1016/S0022-2860(00)00507-X17. Smirnov I. A., Alekseev E. A., Ilyushin V. V., Margulès L., Motiyenko R. A., and Drouin B. J. Spectroscopy of the ground, first and second excited torsional states of acetaldehyde from 0.05 to 1.6 THz // J. Mol. Spectrosc. – 2014. – Vol. 295. – P. 44–50. DOI: 10.1016/j.jms.2013.11.00618. Ilyushin V. V., Endres C. P., Lewen F., Schlemmer S., and Drouin B. J. Submillimeter wave spectrum of acetic acid // J. Mol. Spectrosc. – 2013. – Vol. 290. – P. 31–41. DOI: 10.1016/j.jms.2013.06.00519. Groner P. and Durig J. R. Analysis of torsional spectra of molecules with two internal C3v rotors. II. Far infrared and low frequency Raman spectra of dimethylether isotopes // J. Chem. Phys. – 1977. – Vol. 66, Is. 5. – P. 1856–1874. DOI: 10.1063/1.43418420. Groner P. Chapter 6. Internal rotation of molecules with two C3v rotors. In: Vibrational Spectra and Structure, Vol 9. – Amsterdam: Elsevier, 1981. – P. 405–496. Видавничий дім «Академперіодика» 2016-06-06 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1232 10.15407/rpra21.01.037 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 21, No 1 (2016); 37 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 21, No 1 (2016); 37 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 21, No 1 (2016); 37 2415-7007 1027-9636 10.15407/rpra21.01 en http://rpra-journal.org.ua/index.php/ra/article/view/1232/867 Copyright (c) 2016 RADIO PHYSICS AND RADIO ASTRONOMY