I. S. SHKLOVSKY AND LOW-FREQUENCY RADIO ASTRONOMY

PACS numbers: 95.55.Jz, 95.30.-k, 95.55.-n Purpose: Proving of the high astrophysical significance of the low-frequency radio astronomy (decameter and adjacent hectometer and meter wavelengths), demonstration of the priority results of the Ukrainian low-frequency radio astronomy as well as significa...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автор: Konovalenko, A. A.
Формат: Стаття
Мова:rus
Опубліковано: Видавничий дім «Академперіодика» 2017
Теми:
Онлайн доступ:http://rpra-journal.org.ua/index.php/ra/article/view/1255
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Radio physics and radio astronomy

Репозитарії

Radio physics and radio astronomy
Опис
Резюме:PACS numbers: 95.55.Jz, 95.30.-k, 95.55.-n Purpose: Proving of the high astrophysical significance of the low-frequency radio astronomy (decameter and adjacent hectometer and meter wavelengths), demonstration of the priority results of the Ukrainian low-frequency radio astronomy as well as significant contribution of I. S. Shklovsky to its development.Design/methodology/approach: The requirements to characteristicsof high efficiency radio telescopes UTR-2, URAN, GURT and to sensitive and interference immune observational methods at low frequencies are formulated by using the theoretical analysis and astrophysical predictions including those I. S. Shklovsky’s.Findings: New generation radio telescopes UTR-2, URAN, GURT are created and modernized. New observational methods at low frequencies are introduced. Large-scale investigations of the Solar system, Galaxy and Methagalaxy are carried out. They have allowed to detect new objects and phenomena for the continuum, monochromatic, pulse and sporadic cosmic radio emission. The role of I. S. Shklovsky in the development of many low-frequency radio astronomy directionsis noted, too.Conclusions: The unique possibilities of the low-frequency radioastronomy which gives new information about the Universe, inaccessible with the other astrophysical methods, are shown. The progress of the low-frequency radio astronomy opens the impressive possibilities for the future. It includes modernization of the largest radio telescopes UTR-2, URAN, NDA and creation of new instruments GURT, NenuFAR, LOFAR, LWA, MWA, SKA as well as making multi-antenna and ground-space experiments. The contribution of outstanding astrophysicist of the XX century I. S. Shklovsky to this part of actual astronomical science is evident, claiming for attention and will never be forgotten.Key words: low-frequency radio astronomy, radio telescope, recording equipment, Solar system, Galaxy, MethagalaxyManuscript submitted 09.02.2017Radio phys. radio astron. 2017, 21(1): 7-30 REFERENCES1. BRAUDE, S. Y., MEGN, A. V. and SODIN, L. G., 1978. Decameter wave band radio telescope UTR-2. In: Anteny. Moscow, USSR: Svyaz'. no. 26, pp. 3–15 (in Russian).2. KONOVALENKO, A., SODIN, L., ZAKHARENKO, V., ZARKA, P., ULYANOV, O., SIDORCHUK, M., STEPKIN,S., TOKARSKY, P., MELNIK, V., KALINICHENKO, N., STANISLAVSKY, A., KOLIADIN, V., SHEPELEV,V., DOROVSKYY, V., RYABOV, V., KOVAL, A., BUBNOV, I., YERIN, S., GRIDIN, A., KULISHENKO,V., REZNICHENKO, A., BORTSOV, V., LISACHENKO, V., REZNIK, A., KVASOV, G., MUKHA, D., LITVINENKO, G., KHRISTENKO, A., SHEVCHENKO, V. V., SHEVCHENKO, V. A., BELOV, A., RUDAVIN, E., VASYLIEVA, I., MIROSHNICHENKO, A., VASILENKO, N., OLYAK, M., MYLOSTNA, K., SKORYK, A., SHEVTSOVA, A., PLAKHOV, M., KRAVTSOV, I., VOLVACH, Y., LYTVINENKO, O., SHEVCHUK, N., ZHOUK, I., BOVKUN, V., ANTONOV, A., VAVRIV, D., VINOGRADOV, V., KOZHIN, R., KRAVTSOV, A., BULAKH, E., KUZIN, A., VASILYEV, A., BRAZHENKO, A., VASHCHISHIN, R., PYLAEV, O., KOSHOVYY, V., LOZINSKY, A., IVANTYSHIN, O., RUCKER, H. O., PANCHENKO, M., FISCHER, G., LECACHEUX, A., DENIS, L., COFFRE, A., GRIEßMEIER, J.-M., TAGGER, M., GIRARD, J., CHARRIER, D., BRIAND, C. and MANN, G., 2016. The modern radio astronomy networkin Ukraine: UTR-2, URAN and GURT. Exp. Astron. vol. 42, is. 1, pp. 11–48. DOI: https://doi.org/10.1007/s10686-016-9498-x3. TAYLOR, G. B., ELLINGSON, S. W., KASSIM, N. E., CRAIG, J., DOWELL, J., WOLFE, C. N., HARTMAN, J.,BERNARDI, G., CLARKE, T., COHEN, A., DALAL, N. P., ERICKSON, W. C., HICKS, B., GREENHILL, L. J., JACOBY,B., LANE, W., LAZIO, J., MITCHELL, D., NAVARRO, R., ORD, S. M., PIHLSTROM, Y., POLISENSKY, E., RAY, P. S., RICKARD, L. J., SCHINZEL, F. K.,SCHMITT, H., SIGMAN, E., SORIANO, M., STEWART, K. P., STOVALL, K., TREMBLAY, S., WANG, D., WEILER, K. W., WHITE, S. and WOOD, D. L., 2012. First Light for the First Station of the Long Wavelength Array. J. Astron. Instrum. vol. 1, no. 1, pp. 1–56. DOI: https://doi.org/10.1142/S22511717125000434. MEGN, A. V., BRAUDE, S. Y., RASHKOVSKIY, S. L., SHARYKIN, N. K., SHEPELEV, V. A., INUTIN, G. A., KHRISTENKO, A. D., BULATSEN, V. G., BRAZHENKO, A. I., KOSHOVYY, V. V., ROMANCHEV, Y. V., THESEVICH, V. P. and GALANIN, V. P., 1997. URAN Systemof the Decametric Interferometers (I). Radio Phys. Radio Astron. vol. 2, no. 4, pp. 385–401 (in Russian).5. ABRANIN, E. P., BRUCK, YU. M., ZAKHARENKO, V. V. and KONOVALENKO, A. A., 2001. The New Preamplification System for the UTR-2 Radio Telescope. Exp. Astron. vol. 11, is. 2, pp. 85–112. DOI: https://doi.org/10.1023/A:10111091282846. ZAKHARENKO, V., KONOVALENKO, A., ZARKA, P., ULYANOV, O., SIDORCHUK, M., STEPKIN, S., KOLIADIN, V., KALINICHENKO, N., STANISLAVSKY, A., DOROVSKYY, V., SHEPELEV, V., BUBNOV, I., YERIN, S., MELNIK, V., KOVAL, A., SHEVCHUK, N., VASYLIEVA, I., MYLOSTNA, K., SHEVTSOVA, A., SKORYK, A., KRAVTSOV, I., VOLVACH, Y., PLAKHOV, M., VASILENKO, N., VASYLKIVSKYI, Y., VAVRIV, D., VINOGRADOV,V., KOZHIN, R., KRAVTSOV, A., BULAKH, E., KUZIN, A., VASILYEV, A., RYABOV, V., REZNICHENKO, A., BORTSOV, V., LISACHENKO, V., KVASOV, G., MUKHA, D., LITVINENKO, G., BRAZHENKO, A., VASHCHISHIN, R., PYLAEV, O., KOSHOVYY, V., LOZINSKY, A., IVANTYSHYN, O., RUCKER, H. O., PANCHENKO, M., FISCHER, G., LECACHEUX, A., DENIS, L., COFFRE, A. and GRIEßMEIER, J.-M., 2016. Digital Receivers for Low-Frequency Radio Telescopes UTR-2, URAN, GURT. J. Astron. Instrum. vol. 5, is. 4, id. 1641010. DOI: https://doi.org/10.1142/S22511717164101057. MELNIK, V. N., SHEVCHUK, N. V., KONOVALENKO, A. A., RUCKER, H. O., DOROVSKYY, V. V.,POEDTS, S. and LECACHEUX, A., 2014. Solar Decameter Spikes. Sol. Phys. vol. 289, no. 5, pp. 1701–1714. DOI: https://doi.org/10.1007/s11207-013-0434-18. SHKLOVSKII, I. S., 1946. About kinetic temperature of solar atmosphere upper layers. Astronomicheskii zhurnal. vol. 23, no. 4, pp. 203–211 (in Russian).9. SHKLOVSKII, I. S., 1946. Modern state of solar coronanature problem. Uspekhi fizicheskikh nauk. vol. 30, is. 1-2, P. 63–160 (in Russian).10. SHKLOVSKII, I. S., 1982. From the history of radio astronomy progress in USSR. Moscow, USSR: Znanie Publ. (in Russian).11. KONOVALENKO, A. A., KOSHOVYY, V. V., LOZYNSKYY, A. B., STANISLAVSKY, A. A., SHEPELEV, V. A., IVANTYSHYN, O. L., KHARCHENKO, B. S., LOZYNSKYY, R. A., BRAZHENKO, A. I., ABRANIN, E. P. and KOVAL, A. A., 2012. Quiet Sun Observations by URAN-2and URAN-3 Decameter Radio Telescopes during the Solar Eclipse of August 1, 2008. Radio Phys. Radio Astron. vol. 17, no. 4, pp. 295–300 (in Ukranian).12. SHKLOVSKII, I. S., 1982. Universe. Life. Mind. Moscow, USSR: AS USSR Publ. (in Russian).13. FARRELL, W. M., DESCH, M. D. and ZARKA, P., 1999. On the possibility of coherent cyclotron emission from extrasolar planets. J. Geophys. Res. Planets. vol. 104, is. E6, pp. 14025–14032. DOI: https://doi.org/10.1029/1998JE90005014. RYABOV, V. B., ZARKA, P., HESS, S., KONOVALENKO, A., LITVINENKO, G., ZAKHARENKO, V., SHEVCHENKO, V. A. and CECCONI, B., 2014. Fast and slow frequency-drifting millisecond bursts in Jovian decametric radio emissions. Astron. Astrophys. vol. 568, id. A53. DOI: https://doi.org/10.1051/0004-6361/20142392715. ZAKHARENKO, V. V., VASYLIEVA, I. Y., KONOVALENKO, A. A., ULYANOV, O. M., SERYLAK, M., ZARKA, P., GRIEßMEIER, J.-M., COGNARD, I. and NIKOLAENKO, V. S., 2013. Detection of decametre-wavelength pulsed radio emission of 40 known pulsars. Mon. Not. R. Astron. Soc. vol. 431, no. 4, pp. 3624–3641. DOI: https://doi.org/10.1093/mnras/stt47016. SHKLOVKII, I. S., 1949. Monochromatic radio emission from the galaxy and the possibility of its observation. Astronomicheskii zhurnal. vol. 26, no. 1, pp. 10–14 (inRussian).17. SHKLOVKII, I. S., 1952. Radio spectroscopy of the Galaxy. Astronomicheskii zhurnal. vol. 29, no. 2, pp. 144–153 (in Russian).18. SHKLOVKII, I. S., 1956. Cosmic radio emission. Moscow, USSR: Gostekhizdat Publ. (in Russian).19. KONOVALENKO, A. A. and SODIN, L. G., 1980. Neutral 14N in the interstellar medium. Nature. vol. 283, pp. 360–361. DOI: https://doi.org/10.1038/283360a020. BLAKE, D. H., CRUTCHER, R. M. and WATSON, W. D., 1980. Identification of the anomalous 26.131 MHz nitrogenline observed towards Cas A. Nature. vol. 287, pp. 707–708. DOI: https://doi.org/10.1038/287707a021. KONOVALENKO, A. A. and SODIN, L. G., 1981. The 26.13 MHz absorption line in the direction of Cassiopeia A. Nature. vol. 294, pp. 135–361. DOI: https://doi.org/10.1038/294135a022. KARDASHEV, N. S., 1959. On the Possibility of Detectionof Allowed Lines of Atomic Hydrogen in the Radio-Frequency Spectrum. Astronomicheskii zhurnal. vol. 36, no. 5, pp. 838–844 (in Russian).23. KONOVALENKO, A. A. and STEPKIN, S. V., 2005. Radio Recombination Lines, In: L. I. GURVITS, S. FREY and S. RAWLINGS, eds. Radio Astronomy from Karl Janskyto Microjansky. Budapesht: EAS Publicaions Series. vol. 15, pp. 271–295. DOI: https://doi.org/10.1051/eas:200515824. PETERS, W. M., LAZIO, T. J. W., CLARKE, T. E., ERICKSON, W. C. and KASSIM, N. E., 2011. Radio recombination lines at decametre wavelengths – Prospects for the future. Astron. Astrophys. vol. 525, id. A128. DOI: https://doi.org/10.1051/0004-6361/20101470725. STEPKIN, S. V., KONOVALENKO, A. A., KANTHARIA, N. G. and UDAYA SHANKAR, N., 2007. Radio recombination lines from the largest bound atoms in space. Mon. Not. R. Astron. Soc. vol. 374, is. 3, pp. 852–856. DOI: https://doi.org/10.1111/j.1365-2966.2006.11190.x26. KRYMKIN, V. V. and SIDORCHUK, M. A., 1988. Observation of the galactic anticentre region in the direction of PKS0607+17 with the UTR-2 and RATAN-600 radio telescopes. Astron. Astrophys. vol. 200, no. 1-2, pp. 185–190.27. KONOVALENKO, A. A., KALINICHENKO, N. N., RUCKER, H. O., LECACHEUX, A., FISCHER, G., ZARKA, P., ZAKHARENKO, V. V., MYLOSTNA, K. Y., GRIEßMEIER, J.-M., ABRANIN, E. P., FALKOVICH, I. S., SIDORCHUK, K. M., KURTH, W. S., KAISER, M. L. and GURNETT, D. A., 2013. Earliest recorded groundbased decameter wavelength observations of Saturn's lightning during the giant E-storm detected by Cassini spacecraft in early 2006. Icarus. vol. 224, no. 1, pp. 14–23. DOI: https://doi.org/10.1016/j.icarus.2012.07.02428. SHKLOVKII, I. S. and BAKULIN, P. I., 1955. Moon coverages of two discrete sources of radio emission. Astronomicheskii zhurnal. vol. 32, no. 1, pp. 29–32 (in Russian).29. VAN HAARLEM, M. P., WISE, M. W., GUNST, A. W., HEALD, G., MCKEAN, J. P., HESSELS, J. W. T., DE BRUYN, A. G., NIJBOER, R., SWINBANK, J., FALLOWS, R., BRENTJENS, M., NELLES, A., BECK, R., FALCKE, H., FENDER, R., HÖRANDEL, J., KOOPMANS, L. V. E., MANN, G., MILEY, G., RÖTTGERING, H., STAPPERS, B. W., WIJERS, R. A. M. J., ZAROUBI, S., VAN DEN AKKER, M., ALEXOV, A., ANDERSON, J., ANDERSON, K., VAN ARDENNE, A., ARTS, M., ASGEKAR, A., AVRUCH, I. M., BATEJAT,F., BÄHREN, L., BELL, M. E., BELL, M. R., VAN BEMMEL, I., BENNEMA, P., BENTUM, M. J., BERNARDI, G., BEST, P., BÎRZAN, L., BONAFEDE, A., BOONSTRA, A.-J., BRAUN, R., BREGMAN, J., BREITLING, F., VAN DE BRINK, R. H., BRODERICK, J., BROEKEMA, P. C., BROUW, W. N., BRÜGGEN, M., BUTCHER, H. R., VAN CAPPELLEN, W., CIARDI, B., COENEN, T., CONWAY, J., COOLEN, A., CORSTANJE, A., DAMSTRA, S., DAVIES, O., DELLER, A. T., DETTMAR, R.-J., VANDIEPEN, G., DIJKSTRA, K., DONKER, P., DOORDUIN, A., DROMER, J., DROST, M., VAN DUIN, A., EISLÖFFEL, J., VAN ENST, J., FERRARI, C., FRIESWIJK, W., GANKEMA, H., GARRETT, M. A., DEGASPERIN, F., GERBERS, M., DE GEUS, E., GRIEßMEIER, J.-M., GRIT, T., GRUPPEN, P., HAMAKER, J. P., HASSALL, T., HOEFT, M., HOLTIES, H. A., HORNEFFER, A., VAN DER HORST, A., VAN HOUWELINGEN, A., HUIJGEN, A., IACOBELLI, M., INTEMA, H., JACKSON, N., JELIC, V., DE JONG, A., JUETTE, E., KANT, D., KARASTERGIOU, A., KOERS, A., KOLLEN, H., KONDRATIEV, V. I., KOOISTRA, E., KOOPMAN, Y., KOSTER, A., KUNIYOSHI, M., KRAMER, M., KUPER, G., LAMBROPOULOS, P., LAW, C., VAN LEEUWEN, J., LEMAITRE, J., LOOSE, M., MAAT, P., MACARIO, G., MARKOFF, S., MASTERS,J., MCFADDEN, R. A., MCKAY-BUKOWSKI, D., MEIJERING, H., MEULMAN, H., MEVIUS, M., MIDDELBERG, E., MILLENAAR, R., MILLER-JONES, J. C. A., MOHAN, R. N., MOL, J. D., MORAWIETZ, J., MORGANTI,R., MULCAHY, D. D., MULDER, E., MUNK, H., NIEUWENHUIS, L., VAN NIEUWPOORT, R., NOORDAM,J. E., NORDEN, M., NOUTSOS, A., OFFRINGA,A. R., OLOFSSON, H., OMAR, A., ORRÚ, E., OVEREEM, R., PAAS, H., PANDEY-POMMIER, M., PANDEY, V. N., PIZZO, R., POLATIDIS, A., RAFFERTY, D., RAWLINGS, S., REICH, W., DE REIJER, J.-P., REITSMA, J., RENTING, G. A., RIEMERSV, P., ROL, E., ROMEIN, J. W., ROOSJEN, J., RUITER, M., SCAIFE, A., VAN DER SCHAAF, K., SCHEERS, B., SCHELLARTV, P., SCHOENMAKERS, A., SCHOONDERBEEK, G., SERYLAK, M., SHULEVSKI, A., SLUMAN, J., SMIRNOV, O., SOBEY, C., SPREEUW, H., STEINMETZ, M., STERKS, C. G. M., STIEPEL, H.-J., STUURWOLD, K., TAGGER, M., TANG, Y., TASSE, C.,THOMAS, I., THOUDAM, S., TORIBIO, M. C., VANDER TOL, B., USOV, O., VAN VEELEN, M., VAN DERVEEN, A.-J., TER VEEN, S., VERBIEST, J. P. W., VERMEULEN, R., VERMAAS, N., VOCKS, C., VOGT, C., DE VOS, M., VAN DER WAL, E., VAN WEEREN, R., WEGGEMANS, H., WELTEVREDE, P., WHITE, S., WIJNHOLDS, S. J., WILHELMSSON, T., WUCKNITZ, O., YATAWATTA, S., ZARKA, P., ZENSUS, A. and VAN ZWIETEN, J., 2013. LOFAR: the low-frequencyarray. Astron. Astrophys. vol. 556, id. 2. DOI: https://doi.org/ 10.1051/0004-6361/20122087330. ZARKA, P., TAGGER, M., DENIS, L., GIRARD, J. N., KONOVALENKO, A., ATEMKENG, M., ARNAUD, M., AZARIAN, S., BARSUGLIA, M., BONAFEDE, A., BOONE, F., BOSMA, A., BOYER, R., BRANCHESI, M., BRIAND, C., CECCONI, B., CÉLESTIN, S., CHARRIER, D., CHASSANDE-MOTTIN, E., COFFRE, A., COGNARD, I., COMBES, F., CORBEL, S., COURTE, C., DABBECH, A., DAIBOO, S., DALLIER, R., DUMEZVIOU, C., KORSO, M. N. E., FALGARONE, E., FALKOVYCH, I., FERRARI, A., FERRARI, C., FERRIÈ-RE, K., FEVOTTE, C., FIALKOV, A., FULLEKRUG, M., GÉRARD, E., GRIEßMEIER, J.-M., GUIDERDONI, B., GUILLEMOT, L., HESSELS, J., KOOPMANS, L., KONDRATIEV, V., LAMY, L., LANZ, T., LARZABAL, P., LEHNERT, M., LEVRIER, F., LOH, A., MACARIO, G., MAINTOUX, J. J., MARTIN, L., MARY, D., MASSON, S., MIVILLE-DESCHENES, M. A., OBEROI, D., PANCHENKO, M., PANDEY-POMMIER, M., PETITEAU,A., PINÇON, J. L., REVENU, B., RIBLE, F., RICHARD, C., RUCKER, H. O., SALOMÉ, P., SEMELIN, B., SERYLAK, M., SMIRNOV, O., STAPPERS, B., TAFFOUREAU, C., TASSE, C., THEUREAU, G., TOKARSKY, P., TORCHINSKY, S., ULYANOV, O., VAN DRIEL, W., VASYLIEVA, I., VAUBAILLON, J., VAZZA, F., VERGANI, S., WAS, M., WEBER, R. and ZAKHARENKO, V., 2015. NenuFAR: Instrument description and science case. In: International Conference on Antenna Theory and Techniques (ICATT): Proc. conf. Kharkiv, Ukraine, pp. 1–6. DOI: https://doi.org/ 10.1109/ICATT.2015.713677331 31. SHKLOVSKII, I. S., 1960. Secular Variation of the Fluxand Intensity of Radio Emission from Discrete Sources. Astronomicheskii zhurnal. vol. 37, no. 2, pp. 256–264 (in Russian).32. BUBNOV, I. N., KONOVALENKO, A. A., STANISLAVSKY, A. A., BOVKOON, V. P., ZHOUK, I. N. and MUKHA, D. V., 2014. Radio Spectrum Evolution of the Supernova Remnant Cassiopeia A at Frequencies 35–65 MHz. Radio Phys. Radio Astron. vol. 19, no. 2,pp. 111–119 (in Russian).33. KONOVALENKO, A. A., YERIN, S. M., BUBNOV, I. N., TOKARSKY, P. L., ZAKHARENKO, V. V., ULYANOV, O. M., SIDORCHUK, M. A., STEPKIN, S. V., GRIDIN, A. O., KVASOV, G. V., KOLIADIN, V. L., MELNIK, V. M., DOROVSKYY, V. V., KALINICHENKO, M. M., LITVINENKO, G. V., ZARKA, P., DENIS, L., GIRARD, J., RUCKER, H. O., PANCHENKO, M., STANISLAVSKY, A. A., KHRISTENKO, A. D., MUKHA, D. V., REZNICHENKO, O. M., LISACHENKO, V. N., BORTSOV, V. V., BRAZHENKO, A. I., VASYLIEVA, I. Y., SKORYK, A. O., SHEVTSOVA, A. I. and MYLOSTNA, K. Y., 2016. Astrophysical studies with small lowfrequency radio telescopes of new generation. Radio Phys. Radio Astron. vol. 21, no. 2, pp. 83–131 (in Russian).34. ZARKA, P., FARRELL, W., FISCHER, G. and KONOVALENKO, A., 2008. Ground-based and space-based radio observations of planetary lightning. Space Sci. Rev. vol. 137, is. 1, pp. 257–269. DOI: https://doi.org/10.1007/s11214-008-9366-835. KONOVALENKO, A. A., STANISLAVSKY, A. A., RUCKER, H. O., LECACHEUX, A., MANN, G., BOUGERET, J.-L., KAISER, M. L., BRIAND, C., ZARKA, P., ABRANIN, E. P., DOROVSKY, V. V., KOVAL, A. A., MEL'NIK, V. N., MUKHA, D. V. and PANCHENKO, M., 2013. Synchronized observations by using the STEREO and the largest ground based decameter radio telescope. Exp. Astron. vol. 36, pp. 137–154. DOI: https://doi.org/10.1007/s10686-012-9326-x36. GETMANTSEV, G. G., GINZBURG, V. L. and SHKLOVSKII, I. S., 1958. Radio astronomical investigations with the aid of artificial satellites. Sov. Phys. Usp. vol. 1, is. 1, pp. 65–67. DOI: https://doi.org/10.1070/PU1958v001n01ABEH003084