FINE STRUCTURE OF ANOMALOUSLY INTENSE PULSES OF PSR J0814+7429 RADIO EMISSION IN THE DECAMETER RANGE

PACS numbers: 97.60.Gb,98.38.Am Purpose: The fine structure of the anomalously intense pulses of PSR J0814+7429 (В0809+74) has been studied. The pulsar radio emission fine structure is investigated to determine its parameters in the lowest part of spectrum available for groundbased observations.Desi...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Skoryk, A. O., Ulyanov, O. M., Zakharenko, V. V., Shevtsova, A. I., Vasylieva, I. Y., Plakhov, M. S., Kravtsov, I. M.
Формат: Стаття
Мова:rus
Опубліковано: Видавничий дім «Академперіодика» 2017
Теми:
Онлайн доступ:http://rpra-journal.org.ua/index.php/ra/article/view/1261
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Radio physics and radio astronomy

Репозитарії

Radio physics and radio astronomy
Опис
Резюме:PACS numbers: 97.60.Gb,98.38.Am Purpose: The fine structure of the anomalously intense pulses of PSR J0814+7429 (В0809+74) has been studied. The pulsar radio emission fine structure is investigated to determine its parameters in the lowest part of spectrum available for groundbased observations.Design/methodology/approach: The scattering measure in the interstellar plasma have been estimated using the spectral and correlation analyses of pulsar data recorded by the UTR-2 radio telescope. Results: Two characteristic time scales of the anomalously intense pulses fine structure of the PSR J0814+7429 radio emission have been found. The strongest pulses of this pulsar in the decameter range can have a duration of about t 2÷3 ms. These pulses are emitted in short series. In some cases, they are emitted over the low-intensity plateau consisting of the “long” subpulse component. Conclusions: The narrowest correlation scale of pulsar J0814+7429 radio emission corresponds to the doubled scattering time constant of the interstellar medium impulse response. Broader scale of the fine structure of its radio emission can be explained by the radiation of a short series of narrow pulses or relatively broad pulses inside this pulsar magnetosphere.Key words: deconvolution, pulse, magnetosphere, scattering measure, plasma, pulsarManuscript submitted  27.12.2016Radio phys. radio astron. 2017, 22(2): 93-111REFERENCES1. POPOV, M. V. and SMIRNOVA, T. V., 1982. The drift behavior of PSR 0809+74. Sov. Astron. vol. 26, pp. 439–442. 2. MANCHESTER, R. N., HOBBS, G. B., TEOH, A. and HOBBS, M., 2005. The Australia Telescope National Facility Pulsar Catalogue. Astron. J. vol. 129, no. 4, pp. 1993–2006. DOI: https://doi.org/10.1086/428488 3. ATNF PULSAR CATALOG. [online]. [viewed 21 December 2016]. Available from: http://www.atnf.csiro.au/people/pulsar/psrcat/ 4. HANKINS, T. H., 1971. Microsecond Intensity Variations in the Radio Emissions from CP 0950. Astrophys. J. vol. 169, pp. 487–494. DOI: https://doi.org/10.1086/151164 5. RICKETT, B. J., 1977. Interstellar scattering and scintillation of radio waves. Ann. Rev. Astron. Astrophys. vol. 15, pp. 479–504. DOI: https://doi.org/10.1146/annurev.aa.15.090177.002403 6. CORDES, J. M., 1980. Pulsar timing. II – Analysis of random walk timing noise - Application to the Crab pulsar. Astrophys. J. vol. 237, pp. 216–226. DOI: https://doi.org/10.1086/157861 7. RICKETT, B. J., HANKINS, T. H. and CORDES, J. M., 1975. The radio spectrum of micropulses from pulsar PSR 0950+08. Astrophys. J. vol. 201, pp. 425–430. DOI: https://doi.org/10.1086/153904 8. SMIRNOVA, T. V., SOGLASNOV, V. A., POPOV, M. V. and NOVIKOV, A. Y., 1986. Dual-Frequency Correlation of Pulsar Micropulses. Sov. Astron. vol. 30, pp. 51–56. 9. KUZ'MIN, A. D., 1989. Pulsars. Moscow, Russia: Nauka Publ. (in Russian). 10. POPOV, M. V., SMIRNOVA, T. V. and SOGLASNOV, V. A., 1987. Microstructure of Pulsars PSR:0809+74 PSR:0950+08 and PSR:1133+16 in the 67-102-MHZ Range. Sov. Astron. vol. 31, pp. 529–536. 11. CORDES, J. M., 1976. Correlation analyses of microstructure and noiselike intensity fluctuations from pulsar 2016+28. Astrophys. J. vol. 208, pp. 944–954. DOI: https://doi.org/10.1086/154683 12. ULYANOV, O. M., ZAKHARENKO, V. V., KONOVALENKO, A. A., LECACHEUX, A., ROSOLEN, K. and RUCKER, H. O., 2006. Detection of Individual Pulses from Pulsars B0809+74, B0834+06, B0943+10, B0950+08+10 and B1133+16 in the Decameter Wavelengths. Radio Phys. Radio Astron. vol. 11, no. 2, pp. 113–133 (in Russian). 13. ULYANOV, O. M., DESHPANDE, A., ZAKHARENKO, V. V., ASGEKAR, A. and SHANKAR, U., 2007. Two Frequency Observations of Six Pulsars Using UTR-2 and GEETEE Radio Telescopes. Radio Phys. Radio Astron. vol. 12, no. 1, pp. 5–19 (in Russian). 14. UL'YANOV, O. M., ZAKHARENKO, V. V. and BRUCK, Y. M., 2008. The parameters of pulsar subpulse emission at decameter wavelengths. Astron. Rep. vol. 52, is. 11, pp. 917–924. DOI: https://doi.org/10.1134/S1063772908110061 15. UL'YANOV, O. M. and ZAKHARENKO, V. V., 2012. Energy of anomalously intense pulsar pulses at decameter wavelengths. Astron. Rep. vol. 56, is. 6, pp. 417–429. DOI: https://doi.org/10.1134/S1063772912060054 16. NOVIKOV, A. YU., POPOV, M. V., SOGLASNOV, V. A., BRUK, YU. M. and USTIMENKO, B. YU., 1984. Observations of pulsar PSR 0809+74 at a frequency of 25 MHz with a time resolution of 100 microsec. Sov. Astron. vol. 28, pp. 199–201. 17. ULYANOV, O. M., SKORYK, A. O., SHEVTSOVA, A. I., PLAKHOV, M. S. and ULYANOVA, O. O., 2016. Detection of the fine structure of the pulsar J0953+0755 radio emission in the decametre wave range. Mon. Not. R. Astron. Soc. vol. 455, is. 1, pp. 150–157. DOI: https://doi.org/10.1093/mnras/stv2172 18. MEGN, A. V., SODIN, L. G., SHARYKIN, N. K., BRUK, YU. M., MELIANOVSKII, P. A., INYUTIN, G. A. and GONCHAROV, N. YU., 1978. Design principles and characteristics of the antennas of the UTR-2 radio telescope. In: Anteny. Moscow, USSR: Svyaz' Publ. no. 26, pp. 15–57 (in Russian). 19. BRAUDE, S. YA., MEGN, A. V. and SODIN, L. G., 1978. Decameter wave band radio telescope UTR-2. In: Anteny. Moscow, USSR: Svyaz' Publ. no. 26, pp. 3–14 (in Russian). 20. ZAKHARENKO, V. V., SHARYKIN, N. K. and RUDAVIN, E. R., 2005. Modernization of commutation devices and an improvement of main parameters of the UTR-2 radio telescope. Kinematika i Fizika Nebesnykh Tel. Suppl. vol. 21, no. 5, pp. 90–92. 21. KONOVALENKO, A., ZARKA, P., ZAKHARENKO, V., ULYANOV, O., SIDORCHUK, M., STEPKIN, S., TOKARSKY, P., STANISLAVSKY, A., KALINICHENKO, N., KOLIADIN, V., MELNIK, V., DOROVSKIY, V., SHEPELEV, V., KOVAL, A., BUBNOV, I., YERIN, S., VASYLIEVA, I., GRIDIN, A., KULISHENKO, V., REZNIK, A., REZNICHENKO, A., KVASOV, G., KHRISTENKO, A., LITVINENKO, G., RUCKER, H. O., PANCHENKO, M., FISCHER, G., DENIS, L., COFFRE, A., GRIEßMEIER, J.-M., TAGGER, M., GIRARD, J., CHARRIER, D., RYABOV, V., MANN, G., BRAZHENKO, A. and KOSHOVYY, V., 2015. State-ofthe-art of low frequency radio astronomy, relevant antenna systems and international cooperation in Ukraine. In: Proc. of 2015 Int. Conf. on Antenna Theory and Techniques (ICATT). Kharkiv, Ukraine. pp. 1–5. DOI: https://doi.org/10.1109/ICATT.2015.7136772 22. KONOVALENKO, A., SODIN, L., ZAKHARENKO, V., ZARKA, P., ULYANOV, O., SIDORCHUK, M., STEPKIN, S., TOKARSKY, P., MELNIK, V., KALINICHENKO, N., STANISLAVSKY, A., KOLIADIN, V., SHEPELEV, V., DOROVSKYY, V., RYABOV, V., KOVAL, A., BUBNOV, I., YERIN, S., GRIDIN, A., KULISHENKO, V., REZNICHENKO, A., BORTSOV, V., LISACHENKO, V., REZNIK, A., KVASOV, G., MUKHA, D., LITVINENKO, G., KHRISTENKO, A., SHEVCHENKO, V. V., SHEVCHENKO, V. A., BELOV, A., RUDAVIN, E., VASYLIEVA, I., MIROSHNICHENKO, A., VASILENKO, N., OLYAK, M., MYLOSTNA, K., SKORYK, A., SHEVTSOVA, A., PLAKHOV, M., KRAVTSOV, I., VOLVACH, Y., LYTVINENKO, O., SHEVCHUK, N., ZHOUK, I., BOVKUN, V., ANTONOV, A., VAVRIV, D., VINOGRADOV, V., KOZHIN, R., KRAVTSOV, A., BULAKH, E., KUZIN, A., VASILYEV, A., BRAZHENKO, A., VASHCHISHIN, R., PYLAEV, O., KOSHOVYY, V., LOZINSKY, A., IVANTYSHIN, O., RUCKER, H. O., PANCHENKO, M., FISCHER, G., LECACHEUX, A., DENIS, L., COFFRE, A., GRIEßMEIER, J.-M., TAGGER, M., GIRARD, J., CHARRIER, D., BRIAND, C. and MANN, G., 2016. The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT. Exp. Astron. vol. 42, is. 1, pp. 11–48. DOI: https://doi.org/10.1007/s10686-016-9498-x 23. ULYANOV, O. M., SIDORCHUK, M. A., ZAKHARENKO, V. V., YERIN, S. N., BUBNOV, I. N., SKORYK, A. O., SHEVTSOVA, A. I., PLAKHOV, M. S., MUKHA, D. V. and RUDAVIN, E. R., 2015. New technique of testing and calibration of the UTR-2 radio telescope. In: Proc. of 2015 Int. Conf. on Antenna Theory and Techniques (ICATT). Kharkiv, Ukraine. pp. 18–23. DOI: https://doi.org/10.1109/ICATT.2015.7136783 24. RYABOV, V. B., VAVRIV, D. M., ZARKA, P., RYABOV, B. P., KOZHIN, R., VINOGRADOV, V. V. and DENIS, L., 2010. A low-noise, high-dynamic- ange, digital receiver for radio astronomy applications: an efficient solution for observing radio-bursts from Jupiter, the Sun, pulsars, and other astrophysical plasmas below 30 MHz. Astron. Astrophys. vol. 510, id. A16. DOI: https://doi.org/10.1051/0004-6361/200913335 25. ZAKHARENKO, V. V., NIKOLAENKO, V. S., ULYANOV, O. M. and MOTIYENKO, R. A., 2007. A waveform receiver for continuous registration of fast processes in pulsar radio emission. 2007 International Kharkov Symp. on Physics and Engrg. of Millimeter and Sub-Millimeter Waves (MSMW) Symp. Proceedings. Kharkov, Ukraine. vol. 2, pp. 745–747. DOI: 10.1109/MSMW. 2007.4294800 26. ZAKHARENKO, V. V., VASYLIEVA, I. Y., KONOVALENKO, A. A., ULYANOV, O. M., SERYLAK, M., ZARKA, P., GRIEßMEIER, J.-M., COGNARD, I. and NIKOLAENKO, V. S., 2013. Detection of decametre-wavelength pulsed radio emission of 40 known pulsars. Mon. Not. R. Astron. Soc. vol. 431, is. 4, pp. 3624–3641. DOI: https://doi.org/10.1093/mnras/stt470 27. HANKINS, T. H. and RICKETT, B. J., 1975. Pulsar signal processing. In: B. ALDER, S. FERNBACH, M. ROTENBERG, eds. Methods in Computational Physics: advances in research and applications. Volume 14 – Radio astronomy. New York: Academic Press, pp. 55–129. 28. SIDORCHUK, M. A., ULYANOV, O. M., SHEPELEV, V. A., MUKHA, D. V., BRAZHENKO, A. I., VASHCHISHIN, R. V. and FRANTZUSENKO, A. V., 2008. Largescale structure of the Northern sky at decametric waves. In: Scientific Workshop – Astrophysics with E-LOFAR. [online]. Available from: http://www.hs.uni-hamburg.de/DE/Ins/Lofar/lofar_workshop/poster_abstracts.html#poster27 29. KALINICHENKO, N. N., 2009. A search for compact decametric radio sources in supernova remnants using the interplanetary scintillation technique. Astrophys. Space Sci. vol. 319, is 2, pp. 131–138. DOI: https://doi.org/10.1007/s10509-008-9960-y 30. BRUK, YU. M., DAVIES, J. G., KUZ'MIN, A. D., LYNE, A. G., MALOFEEV, V. M., ROWSON, B., USTIMENKO, B. YU. and SHITOV, YU. P., 1978. Radio-emission spectra of five pulsars in the 17-1420 MHz range. Sov. Astron. vol. 22, pp. 588–593. 31. IZVEKOVA, V. A., KUZMIN, A. D., MALOFEEV, V. M., and SHITOV, YU. P., 1981. Radio spectra of pulsars. I. Observations of flux densities at meter wavelengths and analysis of the spectra. Astrophys. Space Sci. vol. 78, is. 1, pp. 45–72. DOI: https://doi.org/10.1007/BF00654022 32. MALOFEEV, V. M., GIL, J. A., JESSNER, A., MALOV, I. F., SEIRADAKIS, J. H., SIEBER, W. and WIELEBINSKI, R., 1994. Spectra of 45 pulsars. Astron. Astrophys. vol. 285, pp. 201–208. 33. RICKETT, B. J., 1975. Amplitude-modulated noise – an empirical model for the radio radiation received from pulsars. Astrophys. J. vol. 197, pp. 185–191. DOI: https://doi.org/10.1086/153501 34. HASSALL, T. E., STAPPERS, B. W., HESSELS, J. W. T., KRAMER, M., ALEXOV, A., ANDERSON, K., COENEN, T., KARASTERGIOU, A., KEANE, E. F., KONDRATIEV, V. I., LAZARIDIS, K., VAN LEEUWEN, J., NOUTSOS, A., SERYLAK, M., SOBEY, C., VERBIEST, J. P. W., WELTEVREDE, P., ZAGKOURIS, K., FENDER, R., WIJERS, R. A. M. J., BÄHREN, L., BELL, M. E., BRODERICK, J. W., CORBEL, S., DAW, E. J., DHILLON, V. S., EISLÖFFEL, J., FALCKE, H., GRIEßMEIER, J.-M., JONKER, P., LAW, C., MARKOFF, S., MILLERJONES, J. C. A., OSTEN, R., ROL, E., SCAIFE, A. M. M., SCHEERS, B., SCHELLART, P., SPREEUW, H., SWINBANK, J., TER VEEN, S., WISE, M. W., WIJNANDS, R., WUCKNITZ, O., ZARKA, P., ASGEKAR, A., BELL, M. R., BENTUM, M. J., BERNARDI, G., BEST, P., BONAFEDE, A., BOONSTRA, A. J., BRENTJENS, M., BROUW, W. N., BRÜGGEN, M., BUTCHER, H. R., CIARDI, B., GARRETT, M. A., GERBERS, M., GUNST, A. W., VAN HAARLEM, M. P., HEALD, G., HOEFT, M., HOLTIES, H., DE JONG, A., KOOPMANS, L. V. E., KUNIYOSHI, M., KUPER, G., LOOSE, G. M., MAAT, P., MASTERS, J., MCKEAN, J. P., MEULMAN, H., MEVIUS, M., MUNK, H., NOORDAM, J. E., ORRÚ, E., PAAS, H., PANDEY-POMMIER, M., PANDEY, V. N., PIZZO, R., POLATIDIS, A., REICH, W., RÖTTGERING, H., SLUMAN, J., STEINMETZ, M., STERKS, C. G. M., TAGGER, M., TANG, Y., TASSE, C., VERMEULEN, R., VAN WEEREN, R. J., WIJNHOLDS, S. J. and YATAWATTA, S., 2012. Wide-band simultaneous observations of pulsars: disentangling dispersion measure and profile variations. Astron. Astrophys. vol. 543, id. A66. DOI: https://doi.org/10.1051/0004-6361/201218970 35. ULYANOV, O. M., SHEVTSOVA, A. I., MUKHA, D. V. and SEREDKINA, A. A., 2013. Investigation of the Earth ionosphere using the radio emission of pulsars. Baltic Astron. vol. 22, is. 1, pp. 53–65. DOI: https://doi.org/10.1515/astro-2017-0147 36. KUZMIN, A. D. and LOSOVSKY, B. YA., 2007. Measurements of the scattering of pulsars radio emission. Statistical uniformity of large-scale plasma turbulence in the near Galaxy. Astron. Astrophys. Trans. vol. 26, is. 6, pp. 597–604. DOI: https://doi.org/10.1080/10556790701610282 37. CORDES, J. M. and LAZIO, T. J. W., 2002. NE2001. I. A New Model for the Galactic Distribution of Free Electrons and its Fluctuations. ArXiv Astrophysics e-prints [online]. Available from: https://arxiv.org/abs/astro-ph/0207156 38. CORDES, J. M., ANANTHAKRISHNAN, S. and DENNISON, B., 1984. Radio wave scattering in the galactic disk. Nature. vol. 309, no. 5970, pp. 689–691. DOI: https://doi.org/10.1038/309689a0 39. CORDES, J. M., PIDWERBETSKY, A. and LOVELACE, R. V. E., 1986. Refractive and diffractive scattering in the interstellar medium. Astrophys. J. vol. 310, is. 2, pp. 737–767. DOI: https://doi.org/10.1086/164728