CHARACTERISTICS OF THE INFRASOUND SIGNAL GENERATED BY CHELYABINSK CELESTIAL BODY: GLOBAL STATISTICS
PACS numbers: 93, 96.30.Ys Purpose: The investigation subject is the statistical characteristics of the infrasound signal generated during the passage and airburst of the Chelyabinsk celestial body on February 15, 2013. The parameters under study include the time delay, amplitude, duration, period,...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | rus |
Опубліковано: |
Видавничий дім «Академперіодика»
2018
|
Теми: | |
Онлайн доступ: | http://rpra-journal.org.ua/index.php/ra/article/view/1282 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Radio physics and radio astronomy |
Репозитарії
Radio physics and radio astronomyРезюме: | PACS numbers: 93, 96.30.Ys Purpose: The investigation subject is the statistical characteristics of the infrasound signal generated during the passage and airburst of the Chelyabinsk celestial body on February 15, 2013. The parameters under study include the time delay, amplitude, duration, period, celerity and its dependence on the distance to the epicentre of the airburst from the observation site and on the back-azimuth angle of arrival.The study aims at constructing correlation diagrams for the signal celerity and the distance, the signal celerity and the sine of the back-azimuth angle of arrival, the signal duration and the distance, the signal amplitude and the distance, the period and the period for the periods determined by two techniques, and at fitting simple analytical relations to the diagrams obtained. Here, the distance refers to the distance between the infrasound source and the infrasound station where the infrasound is observed.Design/methodology/approach: The data retrieved from the US Department of Defence, the Comprehensive Nuclear-Test-Ban Treaty Organization’s International Monitoring System database are used to determine approximate relations for the basic characteristics of the infrasound signal generated by the passage and airburst of the Chelyabinsk celestial body on February 15, 2013. Findings: The correlation diagrams for the infrasound signal celerity and the distance between the source and an observation station have been shown to exhibit a significant scatter with a mean of (286.0 ± 21.5) m· s-1. The model fits of the infrasound signal celerity to the signal duration, to the back-azimuth angle of arrival, and to the distance between the source and an observation station, as well as the model fit of the signal amplitude to distance, are determined. The correlation diagrams for the main oscillation periods obtained by two different techniques are constructed.Conclusions: The infrasound signal time delay increases virtuallylinearly with the distance between the infrasound source and the station. The infrasound signal celerity averaged over all paths is equal to 291 m m·s-1. The celerity dependence on distance is fit with a constant due to a large data scatter. The celerity dependence on the sine of the back-azimuth angle of arrival, both calculated and estimated, is fit with a straight line that gives mean values of the celerity (287-288 m m·s-1) and tropospherestratosphere winds (12-14 m m· s-1) along all paths. The dependence of the infrasound signal duration on distance is fit with a straight line, and the signal duration near the source is found to be 10.7 min. The spectral components with a period within 17 to 85 s predominate in the infrasound signal spectrum, and the period mean values estimated by employing different techniques vary from 35 to 39 s.Key words: Chelyabinsk meteoroid, signal time delay, celerity, signal duration, signal amplitude, signal period, model fitManuscript submitted 10.01.2018Radio phys. radio astron. 2018, 23(1): 24-35 REFERENCES1. ALEKSEEV, V. A., ed. 2013. Proceedings of the international scientific-practical conference “Asteroids and comets. Chelyabinsk event and study of the meteorite falling into the lake Chebarkul”. Chelyabinsk, Russia: Krai Ra Publ. (in Russian).2. ALPATOV, V. V., BUROV, V. N., VAGIN, J. P., GALKIN, K. A., GIVISHVILI, G. V., GLUHOV, J. V., DAVIDENKO, D. V., ZUBACHEV, D. S., IVANOV, V. N., KARHOV, A. N., KOLOMIN, M. V., KORSHUNOV, V. A., LAPSHIN, V. B., LESHENKO, L. N., LYSENKO, D. A., MINLIGAREEV, V. T., MOROZOVA, M. A., PERMINOVA, E. S., PORTNYAGIN, J. I., RUSAKOV, J. S., STAL, N. L., SYROESHKIN, A. V., TERTYSHNIKOV, A. V., TULINOV, G. F., CHICHAEVA, M. A., CHUDNOVSKY, V. S. and SHTYRKOV, A. Y., 2013. Geophysical conditions at the explosion of the Chelyabinsk (Chebarkulsky) meteoroid in February 15, 2013. Moscow, Russia: FGBU “IPG” Publ. (in Russian).3. GRIGORYAN, S. S., IBODOV, F. S. and IBADOV, S. I., 2013. Physical mechanism of Chelyabinsk superbolide explosion. Sol. Syst. Res. vol. 47, no. 4, pp. 268–274. DOI: https://doi.org/10.1134/S00380946130401514. SOLAR SYSTEM RESEARCH. 2013. vol. 47, no. 4. (Thematical issue).5. ANTIPIN, N. A., ed. 2014. The Chelyabinsk Meteorite – one year on the Earth: Proceedings of All-Russian Scientific Conference. Chelyabinsk, Russia: Kamennyi poyas Publ. (in Russian).6. EMEL’YANENKO, V. V., POPOVA, O. P., CHUGAI, N. N., SHELYAKOV, M. A., PAKHOMOV, YU. V., SHUSTOV, B. M., SHUVALOV, V. V., BIRYUKOV, E. E., RYBNOV, YU. S., MAROV, M. YA., RYKHLOVA, L. V., NAROENKOV, S. A., KARTASHOVA, A. P., KHARLAMOV, V. A. and TRUBETSKAYA, I. A., 2013. Astronomical and physical aspects of Chelyabinsk event (February 15, 2013). Sol. Syst. Res. vol. 47, is. 4, pp. 240–254. DOI: https://doi.org/10.1134/S00380946130401147. POPOVA, O. P., SHUVALOV, V. V., RYBNOV, Y. S., HARLAMOV, V. A., GLAZACHEV, D. O., EMELIANENKO, V. V., KARTASHOVA, A. P. and JENNISKENS, P., 2013. Chelyabinsk meteoroid parameters: Data analysis. In: Dinamicheskie protsessy v geosferah: sb. nauch. tr. IDG RAN. Moscow, Russia: Geos Publ. is. 4, pp. 10–21 (in Russian).8. POPOVA, O. P., JENNISKENS, P., EMELYANENKO, V., KARTASHOVA, A., BIRYUKOV, E., KHAIBRAKHMANOV, S., SHUVALOV, V., RYBNOV, Y., DUDOROV, A., GROKHOVSKY, V. I., BADYUKOV, D. D., YIN, Q.-Z., GURAL, P. S., ALBERS, J., GRANVIK, M., EVERS, L. G., KUIPER, J., HARLAMOV, V., SOLOVYOV, A., RUSAKOV, Y. S., KOROTKIY, S., SERDYUK, I., KOROCHANTSEV, A. V., LARIONOV, M. Y., GLAZACHEV, D., MAYER, A. E., GISLER, G., GLADKOVSKY, S. V., WIMPENNY, J., SANBORN, M. E., YAMAKAWA, A., VEROSUB, K. L., ROWLAND, D. J., ROESKE, S., BOTTO, N. W., FRIEDRICH, J. M., ZOLENSKY, M. E, LE, L., ROSS, D., ZIEGLER, K., NAKAMURA, T., AHN, I., LEE, J. I., ZHOU, Q., LI, X. H., LI, Q. L., LIU, Y., TANG, G.-Q., HIROI, T., SEARS, D., WEINSTEIN, I. A., VOKHMINTSEV, A. S., ISHCHENKO, A. V., SCHMITT-KOPPLIN, P., HERTKORN, N., NAGAO, K., HABA, M. K., KOMATSU, M. and MIKOUCHI, T., 2013. Chelyabinsk airburst, damage assessment, meteorite, and characterization. Science. vol. 342, is. 6162, pp. 1069–1073. DOI: https://doi.org/10.1126/science.12426429. POPOVA, O. P., JENNISKENS, P., EMELYANENKO, V., KARTASHOVA, A., BIRYUKOV, E., KHAIBRAKHMANOV, S., SHUVALOV, V., RYBNOV, Y., DUDOROV, A., GROKHOVSKY, V. I., BADYUKOV, D. D., YIN, Q.-Z., GURAL, P. S., ALBERS, J., GRANVIK, M., EVERS, L. G., KUIPER, J., HARLAMOV, V., SOLOVYOV, A., RUSAKOV, Y. S., KOROTKIY, S., SERDYUK, I., KOROCHANTSEV, A. V., LARIONOV, M. Y., GLAZACHEV, D., MAYER, A. E., GISLER, G., GLADKOVSKY, S. V., WIMPENNY, J., SANBORN, M. E., YAMAKAWA, A., VEROSUB, K. L., ROWLAND, D. J., ROESKE, S., BOTTO, N. W., FRIEDRICH, J. M., ZOLENSKY, M. E, LE, L., ROSS, D., ZIEGLER, K., NAKAMURA, T., AHN, I., LEE, J. I., ZHOU, Q., LI, X. H., LI, Q. L., LIU, Y., TANG, G.-Q., HIROI, T., SEARS, D., WEINSTEIN, I. A., VOKHMINTSEV, A. S., ISHCHENKO, A. V., SCHMITT-KOPPLIN, P., HERTKORN, N., NAGAO, K., HABA, M. K., KOMATSU, M. and MIKOUCHI, T., 2013. Supplementary materials for Chelyabinsk airburst, damage assessment, meteorite, and characterization. Science [online]. vol. 342. [viewed 30 January 2017]. Available from: www.sciencemag.org/cgi/content/full/science.1242642/DC110. CHERNOGOR, L. F. and ROZUMENKO, V. T., 2013. The physical effects associated with Chelyabinsk meteorite’s passage. Probl. Atom. Sci. Technol. vol. 86, no. 4, pp. 136–139.11. CHERNOGOR, L. F., 2013. The main physical effects associated with the Chelyabinsk bolide passage. In: Asteroids and comets. Chelyabinsk event and study of the meteorite falling into the lake Chebarkul: Proceedings of the international scientific-practical conference. Chelyabinsk, Russia: Krai Ra Publ., pp. 148–152 (in Russian).12. CHERNOGOR, L. F., 2013. Plasma, electromagnetic and acoustic effects of meteorite Chelyabinsk. Inzhenernaya fizika. no. 8, pp. 23–40 (in Russian).13. CHERNOGOR, L. F., 2013. Physical effects caused by flight of Chelyabinsk meteoroid. Dopovіdі Natsіonalnoi akademіi nauk Ukraini. no. 10, pp. 97–104 (in Russian).14. CHERNOGOR, L. F., 2014. Main effects of Chelyabinsk meteorite falling: physics and mathematics calculation results. In: ANTIPIN, N. A., ed. The Chelyabinsk Meteorite – one year on the Earth: Proceedings of All-Russian Scientific Conference. Chelyabinsk, Russia: Kamennyi poyas Publ., pp. 229–264 (in Russian).15. LE PICHON, A., CERANNA, L., PILGER, C., MIALLE, P., BROWN, D., HERRY, P. and BRACHET, N., 2013. The 2013 Russian fireball largest ever detected by CTBTO infrasound sensors. Geophys. Res. Lett. vol. 40, is. 14, pp. 3732–3737. DOI: https://doi.org/10.1002/grl.5061916. RYBNOV, Y. S., POPOVA, O. P., HARLAMOV, V. A, SOLOVIEV, A. V., RUSAKOV, Y. S., GLUKHOV, A. G., SILBER, E., PODOBNAYA, E. D. and SURKOVA, D. V., 2013. Energy estimation of Chelyabinsk bolide using infrasound measurements. In: Dinamicheskie protsessy v geosferah: Sb. nauch. tr. IDG RAN. Moscow, Russia: Geos Publ. is. 4, pp. 21–32 (in Russian).17. SOROKIN, A. G., 2014. On infrasonic radiation of Chelyabinsk meteoroid. Solnechno-zemnaya fizika. vol. 24, pp. 58–63 (in Russian).18. RYBNOV, YU. S., POPOVA, O. P. and HARLAMOV, V. A., 2014. The energy estimation of the Chelyabinsk meteoroid by the power spectra of long-periods oscillations of the atmospheric pressure. In: Dinamicheskie protsessy v geosferah: Sb. nauch. tr. IDG RAN. Moscow, Russia: Geos Publ. is. 5, pp. 78–86 (in Russian).19. AVRAMENKO, M. I., GLAZYRIN, I. V., IONOV, G. V. and KARPEEV, A. V., 2014. Simulation of the airwave caused by the Chelyabinsk superbolide. J. Geophys. Res. Atmos. vol. 119, is. 12, pp. 7035–7050. DOI: https://doi.org/10.1002/2013JD02102820. CHERNOGOR, L. F., 2017. Chelyabinsk Meteoroid Acoustic Effects. Radio Phys. Radio Astron. vol. 22, no. 1, pp. 53–66 (in Russian). DOI: https://doi.org/10.15407/rpra22.01.05321. CHERNOGOR, L. F. and SHEVELEV, M. B., 2017. Statistical Characteristics of Meter-Size Celestial Bodies in Earth’s Atmosphere. Visnyk Kharkivs’kogo natsional’nogo universytetu imeni V. N. Karazina. Seriya “Radiofizyka ta electronika”. vol. 26, pp. 80–83 (in Russian).22. LAZORENKO, O. V. and CHERNOGOR, L. F., 2017. System Spectral Analysis of Infrasonic Signal Generated by Chelyabinsk Meteoroid. Radioelectron. Commun. Syst. vol. 60, is. 8, pp. 331–338. DOI: https://doi.org/10.3103/S073527271708001523. CHERNOGOR, L. F. and LIASHCHUK, A. I., 2017. Parameters of Infrasonic Waves Generated by the Ghelyabinsk Meteoroid on February 15, 2013. Kinematics and Physics of Celestial Bodies. vol. 33, no. 2, pp. 79–87. DOI:https://doi.org/10.3103/S088459131702002724. CHRISTIE, D. R. and CAMPUS, P., 2010. The IMS infrasound network: Design and establishment of infrasound stations. In: A. LE PICHON, E. BlANC, A. HAUCHECORNE, eds. Infrasound monitoring for atmospheric studies. Dordrecht: Springer, pp. 27–73.25. REVELLE, D. O., 1997. Historical Detection of Atmospheric Impacts by Large Bolides Using Acoustic-Gravity Waves. Ann. N. Y. Acad. Sci. vol. 822, is. 1, pp. 284–302. DOI: https://doi.org/10.1111/j.1749-6632.1997.tb48347.x26. EDWARDS, W. N., BROWN, P. G. and REVELLE, D. O., 2006. Estimates of meteoroid kinetic energies from observations of infrasonic airwaves. J. Atmos. Sol.-Terr. Phys. vol. 68, is. 10, pp. 1136–1160. DOI: https://doi.org/10.1016/j.jastp.2006.02.010 |
---|