THE INFLUENCE OF A CIRCULAR-PATCH MONOPOLE ANTENNAS EXCITATION METHOD ON THEIR INTEGRAL CHARACTERISTICS
PACS number: 84.40.Ba Purpose: The question of the influence of modes of excitation of disk monopole antennas of microstrip topology on the antenna general properties is considered. The purpose of work consists in determination of the optimum method of antenna excitation for increasing the antenna m...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Видавничий дім «Академперіодика»
2018
|
Теми: | |
Онлайн доступ: | http://rpra-journal.org.ua/index.php/ra/article/view/1290 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Radio physics and radio astronomy |
Репозитарії
Radio physics and radio astronomyРезюме: | PACS number: 84.40.Ba Purpose: The question of the influence of modes of excitation of disk monopole antennas of microstrip topology on the antenna general properties is considered. The purpose of work consists in determination of the optimum method of antenna excitation for increasing the antenna matching level with the external microwave chains and its influence on the antenna energy characteristics.Design/methodology/approach: The modeling of antenna general properties is made by using the finite element method (FEM). The modeling is carried out within the model of a half-open resonator formed by the two metal surfaces (a grounded base and just a strip conductor), on which the condition of electric wall is fulfilled, and also by the cylindrical surface on which the condition of magnetic wall is fulfilled. In modeling, usually the thin substrate h<<λres is assumed, where h is a substrate thickness, λres being the resonance wave-length in a resonator. For such an assumption we may affirm that the vector of an electric field in a resonator will not have variations along the coordinate being perpendicular to the structure plane, and in the resonator, the prevailing types of oscillations will be oscillations E mn0 (TM mn0 ). In modeling, special attention has been paid to the mutual coupling of just a disk resonator and the resonator formed by a coaxial line segment. Findings: The information on the influence of the mode of excitation of disk monopole antenna with microstrip topology on the antenna general properties: spectral characteristics, degree of antenna matching with external chains, and energy characteristics with variation of substrate dielectric constant values is obtained.Conclusions: The data obtained testify that the monopole disk microstrip resonators with the complex-composite topology of radiators can provide a high level of integral characteristics and form the radiated fields with the required characteristics.Key words: disk microstrip resonator, slot radiator, mode of excitation, matching, directivity diagram Manuscript submitted 17.05.2018Radio phys. radio astron. 2018, 23(2): 128-136REFERENCES1. LYTVYNENKO, L. N., POGARSKY, S. A., MAYBORODA, D. V. and POZNYAKOV, A. V., 2017. Microstrip antenna with complex configuration of radiators. In: 11th International Conference on Antenna Theory and Techniques (ICATT) Proceedings. Kyiv, Ukraine, May 24-27, 2017. DOI: https://doi.org/10.1109/ICATT.2017.79726352. LABADIE, N. R., SHARMA, S. K. and REBEIZ, G. M., 2014. A Circularly Polarized Multiple Radiating Mode Microstrip Antenna for Satellite Receive Applications. IEEE Trans. Antennas Propag. vol. 62, is. 7, pp. 3490–3500. DOI: https://doi.org/10.1109/TAP.2014.23208603. PAN, Y. M., ZHENG, S. Y. and HU, B. J., 2014. Wideband and Low-Profile Omnidirectional Circularly Polarized Patch Antenna. IEEE Trans. Antennas Propag. vol. 62, is. 8, pp. 4347–4351. DOI: https://doi.org/10.1109/TAP.2014.23234124. BAHL, I. J., STUCHLY, S. S. and STUCHLY, M. A., 1980. A new microstrip radiator for medical applications. IEEE Trans. Microw. Theory Tech. vol. 28, is. 12, pp. 1464–1469. DOI: https://doi.org/10.1109/TMTT.1980.11302685. WOLF, I., 1972. Microstrip bandpass filters using degenerate modes of a microstrip ring resonators. Electron. Lett. vol. 8, is. 12, pp. 302–303. DOI: https://doi.org/10.1049/el:197202236. KHILLA, A.-M., 1981. Simple design of x-junction microstrip circulators. Electron. Lett. vol. 17, is. 19, pp. 681–682. DOI: https://doi.org/10.1049/el:198104767. KHILLA, A.-M., 1981. Analysis of wide-band microstrip circulators by poin-matchign technique. In: IEEE MTT-S International Microwave Symposium Digest. Los Angeles, USA, June 15-19, 1981. DOI: https://doi.org/10.1109/MWSYM.1981.11298998. MONTHASUWAN, J., SAETIAW, C. and THONGSOPA, C., 2013. Curved rectangular patch array antenna using flexible copper sheet for small missile application. Int. J. Electrical, Energetic, Electronic and Comm. Eng. vol. 7, no. 11, pp. 1420–1424.9. SILIN, R. A. and SAZONOV, V. P., 1966. Slow–Wave Structures. Moscow, Russia: Sovetskoe radio Publ. (in Russian).10. MAIBORODA, D. V. and POGARSKY, S. A., 2014. On the choice of optimal topology of a reflecting module based upon the circular-disk microstrip structure. Telecomm. Radio Eng. vol. 73, is. 19, pp. 1713–1726. DOI: https://doi.org/10.1615/TelecomRadEng.v73.i19.2011. MAIBORODA, D. V. and POGARSKY, S. A., 2016. Optimization of the integral parameters of disk microstrip antennas with radiators of complex geometry. Telecomm. Radio Eng. vol. 75 is. 9, pp. 763–769. DOI: https://doi.org/10.1615/TelecomRadEng.v75.i9.1012. MAYBORODA, D.V. and POGARSKY, S. A., 2016. Tunable circular microstrip antenna with additional shorting-vias elements. UA Patent no.107847.13. WONG, K. L., 2002. Compact and Broadband Microstrip Antennas. New York: John Wiley & Sons, Inc. DOI: https://doi.org/10.1002/047122111214. JARRY, P. and BENEAT, J. N., 2015. Passive and Active RF-Microwave Circuits: Course and Exercises with Solutions. London: Elsevier15. BAHL, I. J. and BHARTIA, P., 2003. Microwave Solid State Circuit Design. New York: Wiley-Interscience.16. HUANG, C.-Y. and WONG, K.-L., 1996. Input impedance and mutual coupling of probe-fed cylindrical-circular microstrip patch antennas. Microw. Opt. Technol. Lett. vol. 11, is. 5, pp. 260–263. DOI: 10.1002/(SICI) 1098-2760(19960405)11:5<260::AID-MOP7>3.0.CO;2-C17. DAS, A. and. DAS, S. K., 1985. Input impedance of a probe excited circular microstrip ring antenna. IEE Proc. H. vol. 132, is. 6, pp. 384–390. DOI: https://doi.org/10.1049/ip-h-2.1985.006818. TAHIR, N. and BROOKER G., 2011. A Novel Approach of Feeding, Impedance Matching and Frequency Tuning of Microstrip Patch Antenna by Single Microstrip line. In: IEEE Symposium on Industrial Electronics and Applications Proceedings (ISIEA). Langkawi, Malaysia, Sept. 25-28, 2011, pp. 593–597. DOI: https://doi.org/10.1109/ISIEA.2011.610878419. PATTNAIK, S. S., PANDA, D. C. and DEVI, S., 2002. Input Impedance of Circular Microstrip Antenna using Artificial Neural Networks. Microw. Opt. Technol. Lett. vol. 32, is. 5, pp. 381–383. DOI: https://doi.org/10.1002/mop.1018420. YANO, S. and ISHIMARU, A., 1981. A theoretical study of the input impedance of a circular microstrip disk antenna. IEEE Trans. Antennas Propag. vol. AP-29, pp. 77–83. DOI: https://doi.org/10.1109/TAP.1981.114253521. MAYBORODA, D. V. and POGARSKY, S. A., 2016. Disk microstrip antenna with log-periodic radiators. UA Patent No. 112248. |
---|