THE INFLUENCE OF A CIRCULAR-PATCH MONOPOLE ANTENNAS EXCITATION METHOD ON THEIR INTEGRAL CHARACTERISTICS

PACS number: 84.40.Ba Purpose: The question of the influence of modes of excitation of disk monopole antennas of microstrip topology on the antenna general properties is considered. The purpose of work consists in determination of the optimum method of antenna excitation for increasing the antenna m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Pogarsky, S. A., Lytvynenko, L. M., Mayboroda, D. V., Poznyakov, A. V.
Format: Artikel
Sprache:English
Veröffentlicht: Видавничий дім «Академперіодика» 2018
Schlagworte:
Online Zugang:http://rpra-journal.org.ua/index.php/ra/article/view/1290
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Radio physics and radio astronomy

Institution

Radio physics and radio astronomy
id oai:ri.kharkov.ua:article-1290
record_format ojs
institution Radio physics and radio astronomy
baseUrl_str
datestamp_date 2020-06-09T10:32:41Z
collection OJS
language English
topic disk microstrip resonator
slot radiator
mode of excitation
matching
directivity diagram
spellingShingle disk microstrip resonator
slot radiator
mode of excitation
matching
directivity diagram
Pogarsky, S. A.
Lytvynenko, L. M.
Mayboroda, D. V.
Poznyakov, A. V.
THE INFLUENCE OF A CIRCULAR-PATCH MONOPOLE ANTENNAS EXCITATION METHOD ON THEIR INTEGRAL CHARACTERISTICS
topic_facet disk microstrip resonator
slot radiator
mode of excitation
matching
directivity diagram
дисковый микрополосковый резонатор
щелевой излучатель
способ возбуждения
согласование
диаграмма направленности
дисковий мікросмужковий резонатор
щілинний випромінювач
спосіб збудження
узгодження
діаграма спрямованості
format Article
author Pogarsky, S. A.
Lytvynenko, L. M.
Mayboroda, D. V.
Poznyakov, A. V.
author_facet Pogarsky, S. A.
Lytvynenko, L. M.
Mayboroda, D. V.
Poznyakov, A. V.
author_sort Pogarsky, S. A.
title THE INFLUENCE OF A CIRCULAR-PATCH MONOPOLE ANTENNAS EXCITATION METHOD ON THEIR INTEGRAL CHARACTERISTICS
title_short THE INFLUENCE OF A CIRCULAR-PATCH MONOPOLE ANTENNAS EXCITATION METHOD ON THEIR INTEGRAL CHARACTERISTICS
title_full THE INFLUENCE OF A CIRCULAR-PATCH MONOPOLE ANTENNAS EXCITATION METHOD ON THEIR INTEGRAL CHARACTERISTICS
title_fullStr THE INFLUENCE OF A CIRCULAR-PATCH MONOPOLE ANTENNAS EXCITATION METHOD ON THEIR INTEGRAL CHARACTERISTICS
title_full_unstemmed THE INFLUENCE OF A CIRCULAR-PATCH MONOPOLE ANTENNAS EXCITATION METHOD ON THEIR INTEGRAL CHARACTERISTICS
title_sort influence of a circular-patch monopole antennas excitation method on their integral characteristics
title_alt ВЛИЯНИЕ СПОСОБОВ ВОЗБУЖДЕНИЯ ДИСКОВЫХ МОНОПОЛЬНЫХ АНТЕНН НА ИХ ОСНОВНЫЕ ХАРАКТЕРИСТИКИ
ВПЛИВ СПОСОБІВ ЗБУДЖЕННЯ ДИСКОВИХ МОНОПОЛЬНИХ АНТЕН НА ЇХ ОСНОВНІ ХАРАКТЕРИСТИКИ
description PACS number: 84.40.Ba Purpose: The question of the influence of modes of excitation of disk monopole antennas of microstrip topology on the antenna general properties is considered. The purpose of work consists in determination of the optimum method of antenna excitation for increasing the antenna matching level with the external microwave chains and its influence on the antenna energy characteristics.Design/methodology/approach: The modeling of antenna general properties is made by using the finite element method (FEM). The modeling is carried out within the model of a half-open resonator formed by the two metal surfaces (a grounded base and just a strip conductor), on which the condition of electric wall is fulfilled, and also by the cylindrical surface on which the condition of magnetic wall is fulfilled. In modeling, usually the thin substrate   h<<λres  is assumed, where h is a substrate thickness, λres  being the resonance wave-length in a resonator. For such an assumption we may affirm that the vector of an electric field in a resonator will not have variations along the coordinate being perpendicular to the structure plane, and in the resonator, the prevailing types of oscillations will be oscillations  E mn0 (TM mn0 ). In modeling, special attention has been paid to the mutual coupling of just a disk resonator and the resonator formed by a coaxial line segment. Findings: The information on the influence of the mode of excitation of disk monopole antenna with microstrip topology on the antenna general properties: spectral characteristics, degree of antenna matching with external chains, and energy characteristics with variation of substrate dielectric constant values is obtained.Conclusions: The data obtained testify that the monopole disk microstrip resonators with the complex-composite topology of radiators can provide a high level of integral characteristics and form the radiated fields with the required characteristics.Key words: disk microstrip resonator, slot radiator, mode of excitation, matching, directivity diagram Manuscript submitted 17.05.2018Radio phys. radio astron. 2018, 23(2): 128-136REFERENCES1. LYTVYNENKO, L. N., POGARSKY, S. A., MAYBORODA, D. V. and POZNYAKOV, A. V., 2017. Microstrip antenna with complex configuration of radiators. In: 11th International Conference on Antenna Theory and Techniques (ICATT) Proceedings. Kyiv, Ukraine, May 24-27, 2017. DOI: https://doi.org/10.1109/ICATT.2017.79726352. LABADIE, N. R., SHARMA, S. K. and REBEIZ, G. M., 2014. A Circularly Polarized Multiple Radiating Mode Microstrip Antenna for Satellite Receive Applications. IEEE Trans. Antennas Propag. vol. 62, is. 7, pp. 3490–3500. DOI: https://doi.org/10.1109/TAP.2014.23208603. PAN, Y. M., ZHENG, S. Y. and HU, B. J., 2014. Wideband and Low-Profile Omnidirectional Circularly Polarized Patch Antenna. IEEE Trans. Antennas Propag. vol. 62, is. 8, pp. 4347–4351. DOI: https://doi.org/10.1109/TAP.2014.23234124. BAHL, I. J., STUCHLY, S. S. and STUCHLY, M. A., 1980. A new microstrip radiator for medical applications. IEEE Trans. Microw. Theory Tech. vol. 28, is. 12, pp. 1464–1469. DOI: https://doi.org/10.1109/TMTT.1980.11302685. WOLF, I., 1972. Microstrip bandpass filters using degenerate modes of a microstrip ring resonators. Electron. Lett. vol. 8, is. 12, pp. 302–303. DOI: https://doi.org/10.1049/el:197202236. KHILLA, A.-M., 1981. Simple design of x-junction microstrip circulators. Electron. Lett. vol. 17, is. 19, pp. 681–682. DOI: https://doi.org/10.1049/el:198104767. KHILLA, A.-M., 1981. Analysis of wide-band microstrip circulators by poin-matchign technique. In: IEEE MTT-S International Microwave Symposium Digest. Los Angeles, USA, June 15-19, 1981. DOI: https://doi.org/10.1109/MWSYM.1981.11298998. MONTHASUWAN, J., SAETIAW, C. and THONGSOPA, C., 2013. Curved rectangular patch array antenna using flexible copper sheet for small missile application. Int. J. Electrical, Energetic, Electronic and Comm. Eng. vol. 7, no. 11, pp. 1420–1424.9. SILIN, R. A. and SAZONOV, V. P., 1966. Slow–Wave Structures. Moscow, Russia: Sovetskoe radio Publ. (in Russian).10. MAIBORODA, D. V. and POGARSKY, S. A., 2014. On the choice of optimal topology of a reflecting module based upon the circular-disk microstrip structure. Telecomm. Radio Eng. vol. 73, is. 19, pp. 1713–1726. DOI: https://doi.org/10.1615/TelecomRadEng.v73.i19.2011. MAIBORODA, D. V. and POGARSKY, S. A., 2016. Optimization of the integral parameters of disk microstrip antennas with radiators of complex geometry. Telecomm. Radio Eng. vol. 75 is. 9, pp. 763–769. DOI: https://doi.org/10.1615/TelecomRadEng.v75.i9.1012. MAYBORODA, D.V. and POGARSKY, S. A., 2016. Tunable circular microstrip antenna with additional shorting-vias elements. UA Patent no.107847.13. WONG, K. L., 2002. Compact and Broadband Microstrip Antennas. New York: John Wiley & Sons, Inc. DOI: https://doi.org/10.1002/047122111214. JARRY, P. and BENEAT, J. N., 2015. Passive and Active RF-Microwave Circuits: Course and Exercises with Solutions. London: Elsevier15. BAHL, I. J. and BHARTIA, P., 2003. Microwave Solid State Circuit Design. New York: Wiley-Interscience.16. HUANG, C.-Y. and WONG, K.-L., 1996. Input impedance and mutual coupling of probe-fed cylindrical-circular microstrip patch antennas. Microw. Opt. Technol. Lett. vol. 11, is. 5, pp. 260–263. DOI: 10.1002/(SICI) 1098-2760(19960405)11:5<260::AID-MOP7>3.0.CO;2-C17. DAS, A. and. DAS, S. K., 1985. Input impedance of a probe excited circular microstrip ring antenna. IEE Proc. H. vol. 132, is. 6, pp. 384–390. DOI: https://doi.org/10.1049/ip-h-2.1985.006818. TAHIR, N. and BROOKER G., 2011. A Novel Approach of Feeding, Impedance Matching and Frequency Tuning of Microstrip Patch Antenna by Single Microstrip line. In: IEEE Symposium on Industrial Electronics and Applications Proceedings (ISIEA). Langkawi, Malaysia, Sept. 25-28, 2011, pp. 593–597. DOI: https://doi.org/10.1109/ISIEA.2011.610878419. PATTNAIK, S. S., PANDA, D. C. and DEVI, S., 2002. Input Impedance of Circular Microstrip Antenna using Artificial Neural Networks. Microw. Opt. Technol. Lett. vol. 32, is. 5, pp. 381–383. DOI: https://doi.org/10.1002/mop.1018420. YANO, S. and ISHIMARU, A., 1981. A theoretical study of the input impedance of a circular microstrip disk antenna. IEEE Trans. Antennas Propag. vol. AP-29, pp. 77–83. DOI: https://doi.org/10.1109/TAP.1981.114253521. MAYBORODA, D. V. and POGARSKY, S. A., 2016. Disk microstrip antenna with log-periodic radiators. UA Patent No. 112248.  
publisher Видавничий дім «Академперіодика»
publishDate 2018
url http://rpra-journal.org.ua/index.php/ra/article/view/1290
work_keys_str_mv AT pogarskysa theinfluenceofacircularpatchmonopoleantennasexcitationmethodontheirintegralcharacteristics
AT lytvynenkolm theinfluenceofacircularpatchmonopoleantennasexcitationmethodontheirintegralcharacteristics
AT mayborodadv theinfluenceofacircularpatchmonopoleantennasexcitationmethodontheirintegralcharacteristics
AT poznyakovav theinfluenceofacircularpatchmonopoleantennasexcitationmethodontheirintegralcharacteristics
AT pogarskysa vliâniesposobovvozbuždeniâdiskovyhmonopolʹnyhantennnaihosnovnyeharakteristiki
AT lytvynenkolm vliâniesposobovvozbuždeniâdiskovyhmonopolʹnyhantennnaihosnovnyeharakteristiki
AT mayborodadv vliâniesposobovvozbuždeniâdiskovyhmonopolʹnyhantennnaihosnovnyeharakteristiki
AT poznyakovav vliâniesposobovvozbuždeniâdiskovyhmonopolʹnyhantennnaihosnovnyeharakteristiki
AT pogarskysa vplivsposobívzbudžennâdiskovihmonopolʹnihantennaíhosnovníharakteristiki
AT lytvynenkolm vplivsposobívzbudžennâdiskovihmonopolʹnihantennaíhosnovníharakteristiki
AT mayborodadv vplivsposobívzbudžennâdiskovihmonopolʹnihantennaíhosnovníharakteristiki
AT poznyakovav vplivsposobívzbudžennâdiskovihmonopolʹnihantennaíhosnovníharakteristiki
AT pogarskysa influenceofacircularpatchmonopoleantennasexcitationmethodontheirintegralcharacteristics
AT lytvynenkolm influenceofacircularpatchmonopoleantennasexcitationmethodontheirintegralcharacteristics
AT mayborodadv influenceofacircularpatchmonopoleantennasexcitationmethodontheirintegralcharacteristics
AT poznyakovav influenceofacircularpatchmonopoleantennasexcitationmethodontheirintegralcharacteristics
first_indexed 2025-07-17T11:25:20Z
last_indexed 2025-07-17T11:25:20Z
_version_ 1838411031464902656
spelling oai:ri.kharkov.ua:article-12902020-06-09T10:32:41Z THE INFLUENCE OF A CIRCULAR-PATCH MONOPOLE ANTENNAS EXCITATION METHOD ON THEIR INTEGRAL CHARACTERISTICS ВЛИЯНИЕ СПОСОБОВ ВОЗБУЖДЕНИЯ ДИСКОВЫХ МОНОПОЛЬНЫХ АНТЕНН НА ИХ ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ВПЛИВ СПОСОБІВ ЗБУДЖЕННЯ ДИСКОВИХ МОНОПОЛЬНИХ АНТЕН НА ЇХ ОСНОВНІ ХАРАКТЕРИСТИКИ Pogarsky, S. A. Lytvynenko, L. M. Mayboroda, D. V. Poznyakov, A. V. disk microstrip resonator; slot radiator; mode of excitation; matching; directivity diagram дисковый микрополосковый резонатор; щелевой излучатель; способ возбуждения; согласование; диаграмма направленности дисковий мікросмужковий резонатор; щілинний випромінювач; спосіб збудження; узгодження; діаграма спрямованості PACS number: 84.40.Ba Purpose: The question of the influence of modes of excitation of disk monopole antennas of microstrip topology on the antenna general properties is considered. The purpose of work consists in determination of the optimum method of antenna excitation for increasing the antenna matching level with the external microwave chains and its influence on the antenna energy characteristics.Design/methodology/approach: The modeling of antenna general properties is made by using the finite element method (FEM). The modeling is carried out within the model of a half-open resonator formed by the two metal surfaces (a grounded base and just a strip conductor), on which the condition of electric wall is fulfilled, and also by the cylindrical surface on which the condition of magnetic wall is fulfilled. In modeling, usually the thin substrate   h<<λres  is assumed, where h is a substrate thickness, λres  being the resonance wave-length in a resonator. For such an assumption we may affirm that the vector of an electric field in a resonator will not have variations along the coordinate being perpendicular to the structure plane, and in the resonator, the prevailing types of oscillations will be oscillations  E mn0 (TM mn0 ). In modeling, special attention has been paid to the mutual coupling of just a disk resonator and the resonator formed by a coaxial line segment. Findings: The information on the influence of the mode of excitation of disk monopole antenna with microstrip topology on the antenna general properties: spectral characteristics, degree of antenna matching with external chains, and energy characteristics with variation of substrate dielectric constant values is obtained.Conclusions: The data obtained testify that the monopole disk microstrip resonators with the complex-composite topology of radiators can provide a high level of integral characteristics and form the radiated fields with the required characteristics.Key words: disk microstrip resonator, slot radiator, mode of excitation, matching, directivity diagram Manuscript submitted 17.05.2018Radio phys. radio astron. 2018, 23(2): 128-136REFERENCES1. LYTVYNENKO, L. N., POGARSKY, S. A., MAYBORODA, D. V. and POZNYAKOV, A. V., 2017. Microstrip antenna with complex configuration of radiators. In: 11th International Conference on Antenna Theory and Techniques (ICATT) Proceedings. Kyiv, Ukraine, May 24-27, 2017. DOI: https://doi.org/10.1109/ICATT.2017.79726352. LABADIE, N. R., SHARMA, S. K. and REBEIZ, G. M., 2014. A Circularly Polarized Multiple Radiating Mode Microstrip Antenna for Satellite Receive Applications. IEEE Trans. Antennas Propag. vol. 62, is. 7, pp. 3490–3500. DOI: https://doi.org/10.1109/TAP.2014.23208603. PAN, Y. M., ZHENG, S. Y. and HU, B. J., 2014. Wideband and Low-Profile Omnidirectional Circularly Polarized Patch Antenna. IEEE Trans. Antennas Propag. vol. 62, is. 8, pp. 4347–4351. DOI: https://doi.org/10.1109/TAP.2014.23234124. BAHL, I. J., STUCHLY, S. S. and STUCHLY, M. A., 1980. A new microstrip radiator for medical applications. IEEE Trans. Microw. Theory Tech. vol. 28, is. 12, pp. 1464–1469. DOI: https://doi.org/10.1109/TMTT.1980.11302685. WOLF, I., 1972. Microstrip bandpass filters using degenerate modes of a microstrip ring resonators. Electron. Lett. vol. 8, is. 12, pp. 302–303. DOI: https://doi.org/10.1049/el:197202236. KHILLA, A.-M., 1981. Simple design of x-junction microstrip circulators. Electron. Lett. vol. 17, is. 19, pp. 681–682. DOI: https://doi.org/10.1049/el:198104767. KHILLA, A.-M., 1981. Analysis of wide-band microstrip circulators by poin-matchign technique. In: IEEE MTT-S International Microwave Symposium Digest. Los Angeles, USA, June 15-19, 1981. DOI: https://doi.org/10.1109/MWSYM.1981.11298998. MONTHASUWAN, J., SAETIAW, C. and THONGSOPA, C., 2013. Curved rectangular patch array antenna using flexible copper sheet for small missile application. Int. J. Electrical, Energetic, Electronic and Comm. Eng. vol. 7, no. 11, pp. 1420–1424.9. SILIN, R. A. and SAZONOV, V. P., 1966. Slow–Wave Structures. Moscow, Russia: Sovetskoe radio Publ. (in Russian).10. MAIBORODA, D. V. and POGARSKY, S. A., 2014. On the choice of optimal topology of a reflecting module based upon the circular-disk microstrip structure. Telecomm. Radio Eng. vol. 73, is. 19, pp. 1713–1726. DOI: https://doi.org/10.1615/TelecomRadEng.v73.i19.2011. MAIBORODA, D. V. and POGARSKY, S. A., 2016. Optimization of the integral parameters of disk microstrip antennas with radiators of complex geometry. Telecomm. Radio Eng. vol. 75 is. 9, pp. 763–769. DOI: https://doi.org/10.1615/TelecomRadEng.v75.i9.1012. MAYBORODA, D.V. and POGARSKY, S. A., 2016. Tunable circular microstrip antenna with additional shorting-vias elements. UA Patent no.107847.13. WONG, K. L., 2002. Compact and Broadband Microstrip Antennas. New York: John Wiley & Sons, Inc. DOI: https://doi.org/10.1002/047122111214. JARRY, P. and BENEAT, J. N., 2015. Passive and Active RF-Microwave Circuits: Course and Exercises with Solutions. London: Elsevier15. BAHL, I. J. and BHARTIA, P., 2003. Microwave Solid State Circuit Design. New York: Wiley-Interscience.16. HUANG, C.-Y. and WONG, K.-L., 1996. Input impedance and mutual coupling of probe-fed cylindrical-circular microstrip patch antennas. Microw. Opt. Technol. Lett. vol. 11, is. 5, pp. 260–263. DOI: 10.1002/(SICI) 1098-2760(19960405)11:5<260::AID-MOP7>3.0.CO;2-C17. DAS, A. and. DAS, S. K., 1985. Input impedance of a probe excited circular microstrip ring antenna. IEE Proc. H. vol. 132, is. 6, pp. 384–390. DOI: https://doi.org/10.1049/ip-h-2.1985.006818. TAHIR, N. and BROOKER G., 2011. A Novel Approach of Feeding, Impedance Matching and Frequency Tuning of Microstrip Patch Antenna by Single Microstrip line. In: IEEE Symposium on Industrial Electronics and Applications Proceedings (ISIEA). Langkawi, Malaysia, Sept. 25-28, 2011, pp. 593–597. DOI: https://doi.org/10.1109/ISIEA.2011.610878419. PATTNAIK, S. S., PANDA, D. C. and DEVI, S., 2002. Input Impedance of Circular Microstrip Antenna using Artificial Neural Networks. Microw. Opt. Technol. Lett. vol. 32, is. 5, pp. 381–383. DOI: https://doi.org/10.1002/mop.1018420. YANO, S. and ISHIMARU, A., 1981. A theoretical study of the input impedance of a circular microstrip disk antenna. IEEE Trans. Antennas Propag. vol. AP-29, pp. 77–83. DOI: https://doi.org/10.1109/TAP.1981.114253521. MAYBORODA, D. V. and POGARSKY, S. A., 2016. Disk microstrip antenna with log-periodic radiators. UA Patent No. 112248.   PACS number: 84.40.Ba Предмет и цель работы: Рассматривается вопрос о влиянии способов возбуждения дисковой монопольной антенны микрополосковой топологии на основные характеристики антенны. Цель работы состоит в определении оптимального способа возбуждения антенны для повышения уровня согласования антенны с внешними СВЧ цепями и его влияния на энергетические характеристики антенны.Методы и методология: Моделирование основных характеристик антенны осуществлено с использованием метода конечных элементов (FEM). Моделирование проведено в рамках модели полуоткрытого резонатора, образованного двумя металлическими поверхностями (заземленное основание и собственно полосковый проводник), на которых выполняется условие электрической стенки, и цилиндрической поверхностью, на которой выполняется условие магнитной стенки. При моделировании обычно вводят предположение тонкой подложки  h<<λres , где h - толщина подложки λres  - резонансная длина волны в резонаторе. При такого рода предположении можно утверждать, что вектор электрического поля в резонаторе не будет иметь вариаций вдоль координаты, перпендикулярной плоскости структуры, а в резонаторе превалирующими типами колебаний будут колебания E mn0 (TM mn0 ). При моделировании особое внимание уделено взаимному влиянию собственно дискового резонатора и резонатора, образованного отрезком коаксиальной линии.Результаты: Получены данные о влиянии способа возбуждения дисковой монопольной антенны с микрополосковой топологией на основные характеристики антенны: спектральные характеристики, степень согласования антенны с внешними цепями и энергетические характеристики при вариации значений относительной диэлектрической проницаемости подложки.Заключение: Полученные данные свидетельствуют о том, что монопольные дисковые микрополосковые резонаторы со сложнокомпозиционной топологией излучателей могут обеспечивать высокий уровень интегральных характеристик и формировать излучаемые поля с требуемыми характеристиками.Ключевые слова: дисковый микрополосковый резонатор, щелевой излучатель, способ возбуждения, согласование, диаграмма направленностиСтатья поступила в редакцию 17.05.2018Radio phys. radio astron. 2018, 23(2): 128-136СПИСОК ЛИТЕРАТУРЫ1. LYTVYNENKO, L. N., POGARSKY, S. A., MAYBORODA, D. V. and POZNYAKOV, A. V., 2017. Microstrip antenna with complex configuration of radiators. In: 11th International Conference on Antenna Theory and Techniques (ICATT) Proceedings. Kyiv, Ukraine, May 24-27, 2017. DOI: https://doi.org/10.1109/ICATT.2017.79726352. LABADIE, N. R., SHARMA, S. K. and REBEIZ, G. M., 2014. A Circularly Polarized Multiple Radiating Mode Microstrip Antenna for Satellite Receive Applications. IEEE Trans. Antennas Propag. vol. 62, is. 7, pp. 3490–3500. DOI: https://doi.org/10.1109/TAP.2014.23208603. PAN, Y. M., ZHENG, S. Y. and HU, B. J., 2014. Wideband and Low-Profile Omnidirectional Circularly Polarized Patch Antenna. IEEE Trans. Antennas Propag. vol. 62, is. 8, pp. 4347–4351. DOI: https://doi.org/10.1109/TAP.2014.23234124. BAHL, I. J., STUCHLY, S. S. and STUCHLY, M. A., 1980. A new microstrip radiator for medical applications. IEEE Trans. Microw. Theory Tech. vol. 28, is. 12, pp. 1464–1469. DOI: https://doi.org/10.1109/TMTT.1980.11302685. WOLF, I., 1972. Microstrip bandpass filters using degenerate modes of a microstrip ring resonators. Electron. Lett. vol. 8, is. 12, pp. 302–303. DOI: https://doi.org/10.1049/el:197202236. KHILLA, A.-M., 1981. Simple design of x-junction microstrip circulators. Electron. Lett. vol. 17, is. 19, pp. 681–682. DOI: https://doi.org/10.1049/el:198104767. KHILLA, A.-M., 1981. Analysis of wide-band microstrip circulators by poin-matchign technique. In: IEEE MTT-S International Microwave Symposium Digest. Los Angeles, USA, June 15-19, 1981. DOI: https://doi.org/10.1109/MWSYM.1981.11298998. MONTHASUWAN, J., SAETIAW, C. and THONGSOPA, C., 2013. Curved rectangular patch array antenna using flexible copper sheet for small missile application. Int. J. Electrical, Energetic, Electronic and Comm. Eng. vol. 7, no. 11, pp. 1420–1424.9. SILIN, R. A. and SAZONOV, V. P., 1966. Slow–Wave Structures. Moscow, Russia: Sovetskoe radio Publ. (in Russian).10. MAIBORODA, D. V. and POGARSKY, S. A., 2014. On the choice of optimal topology of a reflecting module based upon the circular-disk microstrip structure. Telecomm. Radio Eng. vol. 73, is. 19, pp. 1713–1726. DOI: https://doi.org/10.1615/TelecomRadEng.v73.i19.2011. MAIBORODA, D. V. and POGARSKY, S. A., 2016. Optimization of the integral parameters of disk microstrip antennas with radiators of complex geometry. Telecomm. Radio Eng. vol. 75 is. 9, pp. 763–769. DOI: https://doi.org/10.1615/TelecomRadEng.v75.i9.1012. MAYBORODA, D.V. and POGARSKY, S. A., 2016. Tunable circular microstrip antenna with additional shorting-vias elements. UA Patent no.107847.13. WONG, K. L., 2002. Compact and Broadband Microstrip Antennas. New York: John Wiley & Sons, Inc. DOI: https://doi.org/10.1002/047122111214. JARRY, P. and BENEAT, J. N., 2015. Passive and Active RF-Microwave Circuits: Course and Exercises with Solutions. London: Elsevier15. BAHL, I. J. and BHARTIA, P., 2003. Microwave Solid State Circuit Design. New York: Wiley-Interscience.16. HUANG, C.-Y. and WONG, K.-L., 1996. Input impedance and mutual coupling of probe-fed cylindrical-circular microstrip patch antennas. Microw. Opt. Technol. Lett. vol. 11, is. 5, pp. 260–263. DOI: 10.1002/(SICI) 1098-2760(19960405)11:5<260::AID-MOP7>3.0.CO;2-C17. DAS, A. and. DAS, S. K., 1985. Input impedance of a probe excited circular microstrip ring antenna. IEE Proc. H. vol. 132, is. 6, pp. 384–390. DOI: https://doi.org/10.1049/ip-h-2.1985.006818. TAHIR, N. and BROOKER G., 2011. A Novel Approach of Feeding, Impedance Matching and Frequency Tuning of Microstrip Patch Antenna by Single Microstrip line. In: IEEE Symposium on Industrial Electronics and Applications Proceedings (ISIEA). Langkawi, Malaysia, Sept. 25-28, 2011, pp. 593–597. DOI: https://doi.org/10.1109/ISIEA.2011.610878419. PATTNAIK, S. S., PANDA, D. C. and DEVI, S., 2002. Input Impedance of Circular Microstrip Antenna using Artificial Neural Networks. Microw. Opt. Technol. Lett. vol. 32, is. 5, pp. 381–383. DOI: https://doi.org/10.1002/mop.1018420. YANO, S. and ISHIMARU, A., 1981. A theoretical study of the input impedance of a circular microstrip disk antenna. IEEE Trans. Antennas Propag. vol. AP-29, pp. 77–83. DOI: https://doi.org/10.1109/TAP.1981.114253521. MAYBORODA, D. V. and POGARSKY, S. A., 2016. Disk microstrip antenna with log-periodic radiators. UA Patent No. 112248. PACS number: 84.40.Ba Предмет і мета роботи: Розглядається питання про вплив способів збудження дискової монопольної антени мікросмужкової топології на основні характеристики антени. Мета роботи полягає у визначенні оптимального способу збудження антени для підвищення рівня узгодження антени із зовнішніми НВЧ ланцюгами і його впливу на енергетичні характеристики антени.Методи і методологія: Моделювання основних характеристик антени здійснене з використанням методу кінцевих елементів (FEM). Моделювання виконано в рамках моделі напіввідкритого резонатора, утвореного двома металевими поверхнями (заземлена основа та власне смужковий провідник), на яких виконується умова електричної стінки, та циліндричною поверхнею, на якій виконується умова магнітної стінки. При моделюванні зазвичай вводять припущення тонкої підкладки  h<<λres  , де h - товщина підкладки, λres  - резонансна довжина хвилі в резонаторі. За таким припущенням можна стверджувати, що вектор електричного поля в резонаторі не матиме варіацій уздовж координати, перпендикулярної площині структури, а в резонаторі переважаючими типами коливань будуть коливання  E mn0 (TM mn0 ). При моделюванні особливої уваги приділено взаємному впливу власне дискового резонатора і резонатора, утвореного відрізком коаксіальної лінії.Результати: Отримано дані про вплив способу збудження дискової монопольної антени з мікросмужковою топологією на основні характеристики антени: спектральні характеристики, міра узгодження антени із зовнішніми ланцюгами і енергетичні характеристики при варіації значень відносної діелектричної проникності підкладки.Висновок: Отримані дані свідчать про те, що монопольні дискові мікросмужкові резонатори із складнокомпозиційною топологією випромінювачів можуть забезпечувати високий рівень інтегральних характеристик і формувати випромінювані поля з необхідними характеристиками.Ключові слова: дисковий мікросмужковий резонатор, щілинний випромінювач, спосіб збудження, узгодження, діаграма спрямованості Стаття надійшла до редакції 17.05.2018Radio phys. radio astron. 2018, 23(2): 128-136СПИСОК ЛІТЕРАТУРИ1. LYTVYNENKO, L. N., POGARSKY, S. A., MAYBORODA, D. V. and POZNYAKOV, A. V., 2017. Microstrip antenna with complex configuration of radiators. In: 11th International Conference on Antenna Theory and Techniques (ICATT) Proceedings. Kyiv, Ukraine, May 24-27, 2017. DOI: https://doi.org/10.1109/ICATT.2017.79726352. LABADIE, N. R., SHARMA, S. K. and REBEIZ, G. M., 2014. A Circularly Polarized Multiple Radiating Mode Microstrip Antenna for Satellite Receive Applications. IEEE Trans. Antennas Propag. vol. 62, is. 7, pp. 3490–3500. DOI: https://doi.org/10.1109/TAP.2014.23208603. PAN, Y. M., ZHENG, S. Y. and HU, B. J., 2014. Wideband and Low-Profile Omnidirectional Circularly Polarized Patch Antenna. IEEE Trans. Antennas Propag. vol. 62, is. 8, pp. 4347–4351. DOI: https://doi.org/10.1109/TAP.2014.23234124. BAHL, I. J., STUCHLY, S. S. and STUCHLY, M. A., 1980. A new microstrip radiator for medical applications. IEEE Trans. Microw. Theory Tech. vol. 28, is. 12, pp. 1464–1469. DOI: https://doi.org/10.1109/TMTT.1980.11302685. WOLF, I., 1972. Microstrip bandpass filters using degenerate modes of a microstrip ring resonators. Electron. Lett. vol. 8, is. 12, pp. 302–303. DOI: https://doi.org/10.1049/el:197202236. KHILLA, A.-M., 1981. Simple design of x-junction microstrip circulators. Electron. Lett. vol. 17, is. 19, pp. 681–682. DOI: https://doi.org/10.1049/el:198104767. KHILLA, A.-M., 1981. Analysis of wide-band microstrip circulators by poin-matchign technique. In: IEEE MTT-S International Microwave Symposium Digest. Los Angeles, USA, June 15-19, 1981. DOI: https://doi.org/10.1109/MWSYM.1981.11298998. MONTHASUWAN, J., SAETIAW, C. and THONGSOPA, C., 2013. Curved rectangular patch array antenna using flexible copper sheet for small missile application. Int. J. Electrical, Energetic, Electronic and Comm. Eng. vol. 7, no. 11, pp. 1420–1424.9. SILIN, R. A. and SAZONOV, V. P., 1966. Slow–Wave Structures. Moscow, Russia: Sovetskoe radio Publ. (in Russian).10. MAIBORODA, D. V. and POGARSKY, S. A., 2014. On the choice of optimal topology of a reflecting module based upon the circular-disk microstrip structure. Telecomm. Radio Eng. vol. 73, is. 19, pp. 1713–1726. DOI: https://doi.org/10.1615/TelecomRadEng.v73.i19.2011. MAIBORODA, D. V. and POGARSKY, S. A., 2016. Optimization of the integral parameters of disk microstrip antennas with radiators of complex geometry. Telecomm. Radio Eng. vol. 75 is. 9, pp. 763–769. DOI: https://doi.org/10.1615/TelecomRadEng.v75.i9.1012. MAYBORODA, D.V. and POGARSKY, S. A., 2016. Tunable circular microstrip antenna with additional shorting-vias elements. UA Patent no.107847.13. WONG, K. L., 2002. Compact and Broadband Microstrip Antennas. New York: John Wiley & Sons, Inc. DOI: https://doi.org/10.1002/047122111214. JARRY, P. and BENEAT, J. N., 2015. Passive and Active RF-Microwave Circuits: Course and Exercises with Solutions. London: Elsevier15. BAHL, I. J. and BHARTIA, P., 2003. Microwave Solid State Circuit Design. New York: Wiley-Interscience.16. HUANG, C.-Y. and WONG, K.-L., 1996. Input impedance and mutual coupling of probe-fed cylindrical-circular microstrip patch antennas. Microw. Opt. Technol. Lett. vol. 11, is. 5, pp. 260–263. DOI: 10.1002/(SICI) 1098-2760(19960405)11:5<260::AID-MOP7>3.0.CO;2-C17. DAS, A. and. DAS, S. K., 1985. Input impedance of a probe excited circular microstrip ring antenna. IEE Proc. H. vol. 132, is. 6, pp. 384–390. DOI: https://doi.org/10.1049/ip-h-2.1985.006818. TAHIR, N. and BROOKER G., 2011. A Novel Approach of Feeding, Impedance Matching and Frequency Tuning of Microstrip Patch Antenna by Single Microstrip line. In: IEEE Symposium on Industrial Electronics and Applications Proceedings (ISIEA). Langkawi, Malaysia, Sept. 25-28, 2011, pp. 593–597. DOI: https://doi.org/10.1109/ISIEA.2011.610878419. PATTNAIK, S. S., PANDA, D. C. and DEVI, S., 2002. Input Impedance of Circular Microstrip Antenna using Artificial Neural Networks. Microw. Opt. Technol. Lett. vol. 32, is. 5, pp. 381–383. DOI: https://doi.org/10.1002/mop.1018420. YANO, S. and ISHIMARU, A., 1981. A theoretical study of the input impedance of a circular microstrip disk antenna. IEEE Trans. Antennas Propag. vol. AP-29, pp. 77–83. DOI: https://doi.org/10.1109/TAP.1981.114253521. MAYBORODA, D. V. and POGARSKY, S. A., 2016. Disk microstrip antenna with log-periodic radiators. UA Patent No. 112248.   Видавничий дім «Академперіодика» 2018-06-14 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1290 10.15407/rpra23.02.128 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 23, No 2 (2018); 128 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 23, No 2 (2018); 128 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 23, No 2 (2018); 128 2415-7007 1027-9636 10.15407/rpra23.02 en http://rpra-journal.org.ua/index.php/ra/article/view/1290/pdf Copyright (c) 2018 RADIO PHYSICS AND RADIO ASTRONOMY