EFFECT OF THE GROUND PARAMETER VARIATIONS ON THE SENSITIVITY OF AN ACTIVE PHASED ARRAY ANTENNA ELEMENT OF THE LOW-FREQUENCY GURT RADIO TELESCOPE

PACS  numbers:  84.40.BaPurpose: Theoretical studies of sensitivity  fluctuations of a phased array antenna element for the GURT radio telescope of the new generation caused by seasonal changes of the ground parameters.Design/methodology/approach: A mathematical model of an active antenna represente...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автори: Tokarsky, P. L., Konovalenko, A. A., Kalinichenko, N. N., Yerin, S. N.
Формат: Стаття
Мова:rus
Опубліковано: Видавничий дім «Академперіодика» 2019
Теми:
Онлайн доступ:http://rpra-journal.org.ua/index.php/ra/article/view/1320
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Radio physics and radio astronomy

Репозитарії

Radio physics and radio astronomy
Опис
Резюме:PACS  numbers:  84.40.BaPurpose: Theoretical studies of sensitivity  fluctuations of a phased array antenna element for the GURT radio telescope of the new generation caused by seasonal changes of the ground parameters.Design/methodology/approach: A mathematical model of an active antenna represented as a two-port network, whose electrical parameters are described with the scattering matrix and the noise parameters – with the covariation matrix of noise wave spectral  densities  was  used  for  studying the  GURT  phased array antenna element composed of a dipole and a low-noise amplifier (LNA). Such a model allows a correct analysis of a signal-to-noise ratio at the active antenna output accounting for all internal and external noise sources. Findings: A numerical analysis of the GURT radio telescope phased array antenna element characteristics was made in a wide frequency range of 8 to 80 MHz. It was found that the seasonal fluctuations of permittivity and conductivity of the ground, which make about 8 and 6 dB correspondingly, mostly affect the dipole efficiency and its impedance matching with the LNA. Variations of both parameters reach 3 dB but have the opposite sign, therefore their effect upon the active antenna sensitivity is mostly compensated. As a result, it is shown that the seasonal fluctuations of the ground parameters do not result in the substantial active antenna sensitivity variations, which lay in about the 0.5 dB range, and only at the lowest frequencies grow to about the 1.5 dB value.Conclusions: The research efforts made have shown that the seasonal fluctuations of the ground electrophysical parameters result in small variations of the sensitivity of the GURT phased ±0.75 dB, which cannot array antenna element, not exceeding   affect the quality of radio-astronomy observations considerably. The results of this work can be useful in the development and researches of the ground active phased array antennas designed for operation in the meter and decameter wavelength ranges.Keywords: radio telescope, phased array antenna, active antenna, noise temperature, sensitivityManuscript submitted 15.10.2019Radio phys. radio astron. 2019, 24(4): 233-241REFERENCES1. SOMMERFELD, A., 1909. Uber die Ausbreitung der Wellen in der  drahtlosen  Telegraphie. Ann. Phys. vol. 28, no. 4, pp. 665–736. DOI:  https://doi.org/10.1002/andp.190933304022. WAIT, J. R., 1998. The Ancient and Modern History of EM Ground-Wave  Propagation.  IEEE Antennas Propag. Mag. vol. 40, is. 5, pp. 7–24. DOI: https://doi.org/10.1109/74.7359613. BAŇOS, A., 1966. Dipole radiation in the presence of a conducting half-space. New York. NY: Pergamon Press.4. LAVROV, G. A. and KNYAZEV, A. S., 1965. Ground and underground antennas. Moscow, Russia: Sovetskoe Radio. (in Russian).5. HANSEN, P. M., 1972. The Radiation Efficiency of a Dipole Antenna  Located Above an Imperfectly Conducting Ground. IEEE Trans. Antennas Propag. vol. 20, is. 6, pp. 766–770. DOI: https://doi.org/10.1109/TAP.1972.11403126. SHIFRIN, Ya. S., 1948. On the radiation resistance of a vertical  antenna taking into account the ground effect. Bulletin of the Artillery Radio Engineering Academy. Kharkiv, Ukraine: AREA Publ. no. 3, pp. 21–45. (in Russian).7. ELLINGSON, S. W. and KRAMER, T. C., 2005. Sensitivity and bandwidth of low-gain active antennas below 100 MHz. In: IEEE Int. APS Symp. Proceedings. Washington, DC, USA, July 3-8, 2005. Washington.  vol. 3A, pp. 561–564. DOI: https://doi.org/10.1109/APS.2005.15523138. ELLINGSON, S. W., 2005. Antennas for the next generation of low frequency radio telescopes. IEEE Trans. Antennas Propag. vol. 53, no.  8, pp. 2480–2489. DOI: https://doi.org/10.1109/TAP.2005.8522819. ELLINGSON, S. W., 2011. Sensitivity of Antenna Arrays for Long-Wavelength Radio Astronomy. IEEE Trans. Antennas Propag. vol. 59,  no. 6, pp. 1855–1863. DOI: https://doi.org/10.1109/TAP.2011.212223010. TOKARSKY, P. L., KONOVALENKO, A. A., YERIN, S. N. and  BUBNOV,  I. N., 2016. Sensitivity of Active Phased Antenna Array Element of GURT Radio Telescope. Radio Phys. Radio Astron. vol.  21,  no.  1,  pp.  48–57.  (in  Russian). DOI:  https://doi.org/10.15407/rpra21.01.04811. INTERNATIONAL TELECOMMUNICATION UNION, 2014. Handbook on Ground Wave Propagation [online]. [viewed 10 September 2019].  Available from: https:// www.itu.int/dms_pub/itu-r/opb/hdb/R-HDB-59-2014- PDF-E.pdf12. TOKARSKY, P. L., KONOVALENKO, A. A. and YERIN, S. N., 2015. Analysis of Active Phased Antenna Array Parameters for the GURT Radio Telescope. Radio Phys. Radio Astron. vol.  20,  no.  2,  pp.  142–153.  (in  Russian). DOI: https://doi.org/10.15407/rpra20.02.14213. FALKOVICH, I. S., SODIN, L. G. and KALINICHENKO, N. N., 2000. Measurement of Substrate Parameters for Specification of  Characteristics of Antennas Located Near the Earth’s Surface. Radio Phys. Radio Astron. vol. 5, no. 2, pp. 195–205. (in Russian).14. KRYMKIN, V. V., 1971. The spectrum of background lowfrequency  radio  emission. Radiophys. Quantum Electron. vol. 14, is. 2, pp. 161–164. DOI: https://doi.org/10.1007/BF0103139515. KRAUS, J. D., 1966. Radio Astronomy. New York: McGraw-Hill.16. WROBEL, J. M. and WALKER, R. C., 1999. Sensitivity. In: G. B. TAYLOR, C. L. CARILLI, and R. A. PERLEY, eds. Synthesis Imaging in Radio Astronomy II. ASP Conference Series. vol. 180, pp. 171–186.17. HICKS, B. C., PARAVASTU-DALAL, N., STEWART, K. P., ERICKSON, W. C., RAY, P. S., KASSIM, N. E., BURNS, S., CLARKE, T., SCHMITT, H., CRAIG, J., HARTMAN, J. and WEILER, K. W., 2012. A Wide-Band, Active Antenna System for Long Wavelength Radio Astronomy. Publ. Astron. Soc. Pac.  vol.  124, no. 920, pp. 1090–1104. DOI: https://doi.org/10.1086/66812118. ERICKSON, B., 2005. Integration Times. In: Long Wavelength Array (LWA) Memo Series.  [online]. [viewed 10 October 2019]. Available from: http://www.phys.unm.edu/ ~lwa/memos/memo/lwa0023.pdf19. VOORS, A., 2019. 4nec2  – NEC  based  antenna modeler and  optimizer. [online]. [viewed 10 October 2019]. Available from: www/URL: http://www.qsl.net/4nec2/20. HARRINGTON, R. F., 1993. Field Computation by moment methods. Piscataway, NJ:  IEEE Press. DOI: https://doi.org/10.1109/978047054463121. NI AWR, 2019. NI AWR Design Environment [online]. [viewed 10 September 2019]. Available from: https:// www.awr.com/software/products/ni-awr-design-environment