GEOMAGNETIC EFFECT OF TURKISH EARTHQUAKE OF JANUARY 24, 2020
Purpose:The main cause of geomagnetic disturbances are cosmic sources, processes acting in the solar wind and in the interplanetary medium, as well as large celestial bodies entering the terrestrial atmosphere. Earthquakes (EQs) also act to produce geomagnetic effects. In accordance with the systems...
Збережено в:
Дата: | 2020 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Видавничий дім «Академперіодика»
2020
|
Теми: | |
Онлайн доступ: | http://rpra-journal.org.ua/index.php/ra/article/view/1341 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Radio physics and radio astronomy |
Репозитарії
Radio physics and radio astronomyid |
oai:ri.kharkov.ua:article-1341 |
---|---|
record_format |
ojs |
institution |
Radio physics and radio astronomy |
collection |
OJS |
language |
Ukrainian |
topic |
earthquake fluxmeter magnetometer quasi-periodic disturbance seismic wave acoustic-gravity wave MHD pulse earthquake fluxmeter magnetometer quasi-periodic disturbance seismic wave acoustic-gravity wave MHD pulse землетрус магнітометр-флюксметр квазіперіодичні збурення сейсмічні хвилі акустико-гравітаційні хвилі МГД імпульс |
spellingShingle |
earthquake fluxmeter magnetometer quasi-periodic disturbance seismic wave acoustic-gravity wave MHD pulse earthquake fluxmeter magnetometer quasi-periodic disturbance seismic wave acoustic-gravity wave MHD pulse землетрус магнітометр-флюксметр квазіперіодичні збурення сейсмічні хвилі акустико-гравітаційні хвилі МГД імпульс Luo, Y. Chernogor, L. F. Garmash, K. P. GEOMAGNETIC EFFECT OF TURKISH EARTHQUAKE OF JANUARY 24, 2020 |
topic_facet |
earthquake fluxmeter magnetometer quasi-periodic disturbance seismic wave acoustic-gravity wave MHD pulse earthquake fluxmeter magnetometer quasi-periodic disturbance seismic wave acoustic-gravity wave MHD pulse землетрус магнітометр-флюксметр квазіперіодичні збурення сейсмічні хвилі акустико-гравітаційні хвилі МГД імпульс |
format |
Article |
author |
Luo, Y. Chernogor, L. F. Garmash, K. P. |
author_facet |
Luo, Y. Chernogor, L. F. Garmash, K. P. |
author_sort |
Luo, Y. |
title |
GEOMAGNETIC EFFECT OF TURKISH EARTHQUAKE OF JANUARY 24, 2020 |
title_short |
GEOMAGNETIC EFFECT OF TURKISH EARTHQUAKE OF JANUARY 24, 2020 |
title_full |
GEOMAGNETIC EFFECT OF TURKISH EARTHQUAKE OF JANUARY 24, 2020 |
title_fullStr |
GEOMAGNETIC EFFECT OF TURKISH EARTHQUAKE OF JANUARY 24, 2020 |
title_full_unstemmed |
GEOMAGNETIC EFFECT OF TURKISH EARTHQUAKE OF JANUARY 24, 2020 |
title_sort |
geomagnetic effect of turkish earthquake of january 24, 2020 |
title_alt |
GEOMAGNETIC EFFECT OF TURKISH EARTHQUAKE OF JANUARY 24, 2020 ГЕОМАГНІТНИЙ ЕФЕКТ ТУРЕЦЬКОГО ЗЕМЛЕТРУСУ 24 СІЧНЯ 2020 р. |
description |
Purpose:The main cause of geomagnetic disturbances are cosmic sources, processes acting in the solar wind and in the interplanetary medium, as well as large celestial bodies entering the terrestrial atmosphere. Earthquakes (EQs) also act to produce geomagnetic effects. In accordance with the systems paradigm, the Earth–atmosphere–ionosphere–magnetosphere system (EAIMS) constitute a unified system, where positive and negative couplings among the subsystems, as well as feedbacks and precondition among the system components take place. The mechanisms for the action of EQs and processes acting in the lithosphere on the geomagnetic field are poorly understood. It is considered that the EQ action is caused by cracking of rocks, fluctuating motion in the pore fluid, static electricity discharges, etc. In the course of EQs, the seismic, acoustic, atmospheric gravity waves (AGWs), and magnetohydrodynamic (MHD) waves are generated. The purpose of this paper is to describe the magnetic effects of the EQ, which took place in Turkey on 24 January 2020.Design/methodology/approach: The measurements are taken with the fluxmeter magnetometer delivering 0.5-500 pT sensitivity in the 1-1000 s period range, respectively, and in a wide enough studied frequency band within 0.001 to 1 Hz. The EM-II magnetometer with the embedded microcontroller digitizes the magnetometer signals and performs preliminary filtering over 0.5 s time intervals, while the external flash memory is used to store the filtered out magnetometer signals and the times of their acquisition. To investigate quasi-periodic processes in detail, the temporal variations in the level of the H and D components of the geomagnetic field were applied to the systems spectral analysis, which makes use of the short-time Fourier transform, the wavelet transform using the Morlet wavelet as a basis function, and the Fourier transform in a sliding window with a width adjusted to be equal to a fixed number of harmonic periods.Findings: The train of oscillations in the level of the D component observed 25.5 h before the EQ on 23 January 2020 is supposed to be associated with the magnetic precursor. The bidirectional pulse in the H component observed on 24 January 2020 could be due to the piston action of the EQ, which had generated an MHD pulse. The quasi-periodic variations in the level of the H and D components of the geomagnetic field, which followed 75 min after the EQ, were caused by a magnetic disturbance produced by the traveling ionospheric disturbances due to the AGWs launched by the EQ. The magnetic effect amplitude was estimated to be close to 0.3 nT, and the quasi-period to be 700-900 s. The amplitude of the disturbances in the electron density in the AGW field was estimated to be about 8 % and the period of 700-900 s. Damping oscillations in both components of the magnetic field were detected to occur with a period of approximately 120 s. This effect is supposed to be due to the shock wave generated in the atmosphere in the course of the EQ.Conclusions: The magnetic variations associated with the EQ and occurring before and during the EQ have been studied in the1-1000 s period range.Key words: earthquake, fluxmeter magnetometer, quasi-periodic disturbance, seismic wave, acoustic-gravity wave, MHD pulseManuscript submitted 11.08.2020Radio phys. radio astron. 2020, 25(4): 276-289REFERENCES1. PUDOVKIN, M. I., RASPOPOV, O. M. and KLEIMENOVA, N. G., 1976. Disturbances of the Earth’s Electromagnetic Field. vol. 2. Leningrad, Russia: LGU Publ. (in Russian).2. GUGLIELMI, A. V., 1979. MHD Waves in Near-Earth Plasma. Moscow, Russia: Nauka Publ. (in Russian).3. NISHIDA, A., 1980. Geomagnetic Diagnosis of the Magnetosphere. Moscow, Russia: Mir Publ. (in Russian).4. GUGLIELMI, A. V. and TROITSKAYA, V. A., 1973. Geomagnetic Pulsations and Diagnostics of the Magnetosphere. Moscow, Russia: Nauka Publ. (in Russian).5. LIKHTER, YA. I., GUGLIELMI, A. V., ERUKHIMOV, L. M. and MIKHAILOVA, G. A., 1988. Wave Diagnostics of Surface Plasma. Moscow, Russia: Nauka Publ. (in Russian).6. CHERNOGOR, L. F., 2012. Geomagnetic Pulsations Accompanied the Solar Terminator Moving Through Magnetoconjugate Region. Radio Phys. Radio Astron. vol. 17, no. 1, pp. 57–66. (in Russian).7. CHERNOGOR, L. F., 2013. Large-Scale Disturbances in the Earth’s Magnetic Field Associated with the Chelyabinsk Meteorite Event. Radiofiz. Electron. vol. 4 (18), no. 3, pp. 47–54. (in Russian).8. CHERNOGOR, L. F., 2014. Geomagnetic field effects of the Chelyabinsk meteoroid. Geomagn. Aeron. vol. 54, is. 5, pp. 613–624. DOI: https://doi.org/10.1134/S001679321405003X9. CHERNOGOR, L. F., 2018. Magnetospheric Effects during the Approach of the Chelyabinsk Meteoroid. Geomagn. Aeron. vol. 58, is. 2, pp. 252–265. DOI: https://doi.org/10.1134/S001679321802004410. BLIOKH, P. V., NIKOLAENKO, A. P. and FILIPPOV, YU. F., 1977. Global Electromagnetic Resonances in the Earth–Ionosphere Cavity. Kiev: Naukova dumka Publ. (in Russian). DOI: https://doi.org/10.1007/BF0103391811. CHEKRYZHOV, V. M., SVIRKUNOV, P. N. and KOZLOV, S. V., 2019. The Influence of Cyclonic Activity on the Geomagnetic Field Disturbance. Geomagn. Aeron. vol. 59, is. 1, pp. 53–61. DOI: https://doi.org/10.1134/S001679321901003112. MARTINES-BEDENKO, V. A., PILIPENKO, V. A., ZAKHAROV, V. I. and GRUSHIN, V. A., 2019. Influence of the Vongfong 2014 hurricane on the ionosphere and geomagnetic field as detected by Swarm satellites: 2. Geomagnetic disturbances. Sol.-Terr. Phys. vol. 5, is. 4, pp. 74–80. DOI: https://doi.org/10.12737/stp-5420191013. RIKITAKE, T., ed., 1981. Current research in Earth prediction. Dordrecht: D. Reidel Publishing.14. GOKHBERG, M. B., MORGUNOV, V. A. and POKHOTELOV, O. A., 1988. Seismoelectromagnetic Phenomena. Moscow, Russia: Nauka Publ. (in Russian).15. HAYAKAWA, M. and FUJINAWA, Y., eds., 1994. Electromagnetic Phenomena Related to Earthquake Prediction. Tokyo: TERRAPUB.16. HAYAKAWA, M., ed., 1999. Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes. Tokyo: TERRAPUB.17. SURKOV, V. V., 2000. Electromagnetic Effects Caused by Explosions and Earthquakes. Moscow, Russia: MIFI Publ. (in Russian).18. HAYAKAWA, M. and MOLCHANOV, O. A., eds., 2002. Seismo Electromagnetics: Lithosphere–Atmosphere–Ionosphere Coupling. Tokyo: TERRAPUB.19. SOBOLEV, G. A. and PONOMAREV, A. V., 2003. Physics of Earthquakes and Precursors. Moscow, Russia: Nauka Publ. (in Russian).20. MOLCHANOV, O. A. and HAYAKAWA, M., 2008. Seismo-Electromagnetics and Related Phenomena: History and Latest Results. Tokyo: TERRAPUB.21. HAYAKAWA, M., ed., 2009. Electromagnetic phenomena associated with earthquakes. Trivandrum, India: Transworld Research Network.22. HAYAKAWA, M., ed., 2013. Earthquakes prediction studies: seismo electromagnetic. Tokyo: TERRAPUB. DOI: https://doi.org/10.1007/978-4-431-54367-123. SURKOV, V. and HAYAKAWA, M., 2014. Ultra and Extremely Low Frequency Electromagnetic Fields. Tokyo, Heidelberg, New York, Dordrecht, London: Springer Japan.24. GOKHBERG, M. B. and SHALIMOV, S. L., 2008. The Impact of Earthquakes and Explosions on the Ionosphere. Moscow, Russia: Nauka Publ. (in Russian).25. CHERNOGOR, L. F., 2012. Physics and Ecology of Disasters. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).26. CHERNOGOR, L. F. and GARMASH, K. P., 2018. Magnetospheric and Ionospheric Effects Accompanying the Strongest Technogenic Catastrophe. Geomagn. Aeron. vol. 58, no. 5, pp. 673–685. DOI: https://doi.org/10.1134/S001679321805003127. CHERNOGOR, L. F., 2009. Radiophysical and Geomagnetic Effects of Rocket Engine Burn: Monograph. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).28. CHERNOGOR, L. F. and BLAUNSTEIN, N., 2013. Radiophysical and Geomagnetic Effects of Rocket Burn and Launch in the Near-the-Earth Environment. Boca Raton, London, New York: CRC Press. Taylor & Francis Group.29. CHERNOGOR, L. F., 2016. Possibility Action of Rocket and Space Engineering Launches on Earth’s Magnetic Field. In: V. V. Adushkin, S. I. Kozlov, M. V. Sil’nikov, eds. Rocket and Space Engineering Action on Environment. Moscow, Russia: GEOS Publ. (in Russian).30. CHERNOGOR, L. F., VERTOGRADOV, G. G., URYADOV, V. P., VERTOGRADOVA, E. G. and SHAMOTA, M. A., 2010. Consistent Quasi-Periodic Variations of the Geomagnetic Pulsation Level and Doppler Frequency Shift of Decametric Radio Waves Aspect-Scattered by Artificial Field-Aligned Ionospheric Irregularities. Radiophys. Quantum Electron. vol. 53, no. 12, pp. 688–705. DOI: https://doi.org/10.1007/s11141-011-9262-z31. CHERNOGOR, L. F., 2014. Physics of High-Power Radio Emissions in Geospace: Monograph. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).32. CHERNOGOR, L. F., 2019. Geomagnetic Disturbances Accompanying the Great Japanese Earthquake of March 11, 2011. Geomagn. Aeron. vol. 59, no. 1, pp. 62–75. DOI: https://doi.org/10.1134/S001679321901004333. CHERNOGOR, L. F., 2019. Possible Generation of Quasi-Periodic Magnetic Precursors of Earthquakes. Geomagn. Aeron. vol. 59, no. 3, pp. 374–382. DOI: https://doi.org/10.1134/S001679321903006X34. CHERNOGOR, L. F., 2003. Physics of Earth, Atmosphere, and Geospace from the Standpoint of System Paradigm. Radio Phys. Radio Astron. vol. 8, no. 1, pp. 59–106. (in Russian).35. CHERNOGOR, L. F., 2006. The Earth – atmosphere – ionosphere – magnetosphere as an open dynamic non-linear physical system. 1. Nelineinyi Mir. vol. 4, no. 12, pp. 655–697. (in Russian).36. CHERNOGOR, L. F., 2007. The Earth – atmosphere – ionosphere – magnetosphere as an open dynamic non-linear physical system. 2. Nelineinyi Mir. vol. 5, no. 4, pp. 198–231. (in Russian).37. CHERNOGOR, L. F. and ROZUMENKO, V. Т., 2008. Earth – Atmosphere – Geospace as an Open Nonlinear Dynamical System. Radio Phys. Radio Astron. vol. 13, is. 2, pp. 120–137.38. CHERNOGOR, L. F., 2011. The Earth-atmosphere-geospace system: main properties and processes. Int. J. Remote Sens. vol. 32, is. 11, pp. 3199–3218. DOI: https://doi.org/10.1080/01431161.2010.54151039. GUO, Q., CHERNOGOR, L. F., GARMASH, K. P., ROZUMENKO, V. T. and ZHENG, Y., 2019. Dynamical processes in the ionosphere following the moderate earthquake in Japan on 7 July 2018. J. Atmos. Sol.-Terr. Phys. vol. 186, pp. 88–103. DOI: https://doi.org/10.1016/j.jastp.2019.02.00340. LUO, Y., GUO, Q., ZHENG, YU, GARMASH, K. P., CHERNOGOR, L. F. and SHULGA, S. M., 2019. HF radio-wave characteristic variations over China during moderate earthquake in Japan on September 5, 2018. Visnyk of V. N. Karazin Kharkiv National Universit. Ser. Radio Physics and Electronics. vol. 30, pp. 16–26. (in Ukrainian). DOI: https://doi.org/10.26565/2311-0872-2019-30-0241. LUO, Y., GARMASH, K. P., CHERNOGOR, L. F. and SHULGA, S. M., 2019. Geomagnetic field fluctuations during Chuysk earthquakes on September – October, 2003. Visnyk of V. N. Karazin Kharkiv National University. Ser. Radio Physics and Electronics. vol. 31, pp. 87–104. (in Russian). DOI: https://doi.org/10.26565/2311-0872-2019-31-0942. LUO, Y., CHERNOGOR, L. F., GARMASH, K. P., GUO, Q. and ZHENG, YU., 2020. Seismic-Ionospheric Effects: Results of Radio Soundings at Oblique Incidence. Radio Phys. Radio Astron. vol. 25, no. 3, pp. 218–230. (in Ukrainian). DOI: https://doi.org/10.15407/rpra25.03.21843. MOORE, G. W., 1964. Magnetic Disturbances preceding the 1964 Alaska Earthquake. Nature. vol. 203, pp. 508–509. DOI: https://doi.org/10.1038/203508b044. VOROB’EV, A. A., 1970. On the possibility of electric discharges in the Earth’s interiors. Geologiya i Geofizika. no. 12, pp. 3–13. (in Russian).45. GOGATISHVILI, YA. M., 1984. Geomagnetic precursor of intensive earthquakes in the spectrum of geomagnetic pulsations with frequencies of 1–0.02 Hz. Geomagn. Aeron. vol. 24, no. 4, pp. 697–700. (in Russian).46. SIDORIN, A. YA., 1992. Earthquake Precursors. Moscow, Russia: Nauka Publ. (in Russian).47. SOBISEVICH, L. E., KANONIDI, K. KH. and SOBISEVICH, A. L., 2009. Ultra low-frequency electromagnetic disturbances appearing before strong seismic events. Dokl. Earth Sci. vol. 429, no. 5, pp. 1549–1552. DOI: https://doi.org/10.1134/S1028334X0909028148. SOBISEVICH, L. E., SOBISEVICH, A. L. and KANONIDI, K. KH., 2012. Anomalous geomagnetic disturbances induced by catastrophic tsunamigenic earthquakes in the region of Indonesia. Geofizicheskiy Zhurnal. vol. 34, no. 5, pp. 22–37. (in Russian). DOI: 10.24028/gzh.0203-3100.v34i5.2012.11666149. SOBISEVICH, L. E., KANONIDI, K. KH., SOBISEVICH, A. L. and MISEYUK, O. I., 2013. Geomagnetic Disturbances in the Geomagnetic Field’s Variations at Stages of Preparation and Implementation of the Elazig (March 8, 2010) and M 5.3 (January 19, 2011) Earthquakes in Turkey. Dokl. Earth Sci. vol. 449, no. 1, pp. 324–327. DOI: https://doi.org/10.1134/S1028334X1303006950. SOBISEVICH, A. L., STAROSTENKO, V. I., SOBISEVICH, L. E., KENDZERA, A. V., SHUMAN, V. N., VOL’FMAN, YU. M., POTEMKA, E. P., KANONIDI, K. KH. and GARIFULIN, V. A., 2013. The Black Sea earthquakes of late December 2012 and their manifestations in the geomagnetic field. Geofizicheskiy Zhurnal. vol. 35, no. 6, pp. 54–70. (in Russian). DOI: 10.24028/gzh.0203-3100.v35i6.2013.11645551. SOBISEVICH, L. E., SOBISEVICH, A. L. and KANONIDI, K. KH., 2015. Some anomalous geospheric processes during preparation and development of seismic events. Trigger effects in geospheres. In: V. V. ADUSHKIN and G. G. KOCHARYAN, eds. Proceedings of the Third All-Russian Workshop–Meeting. Moscow, Russia: GEOS Publ. (in Russian).52. FRASER-SMITH, A. C., BERNARDI, A., MCGILL, P. R., LADD, M. E., HALLIWELL, R. A. and VILLARD, O. G., Jr., 1990. Low-frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta Earthquake. Geophy. Res. Lett. vol. 17, is. 9, pp. 1465–1468. DOI: https://doi.org/10.1029/GL017i009p0146553. CAMPBELL, W. H., 2009. Natural magnetic disturbance fields, not precursors, preceding the Loma Prieta earthquake. J. Geophys. Res. Spase Phys. vol. 114, is. A5, id. A05307. DOI: https://doi.org/10.1029/2008JA01393254. SHESTOPALOV, I. P., BELOV, S. V., SOLOVIEV, A. A. and KUZMIN, YU. D., 2013. Neutron generation and geomagnetic disturbances in connection with the Chilean earthquake of February 27, 2010 and a volcanic eruption in Iceland in March-April 2010. Geomagn. Aeron. vol. 53, no. 1, pp. 124–135. DOI: https://doi.org/10.1134/S001679321301017955. ROMANOVA, N. V., PILIPENKO, V. A. and STEPANOVA, M. V., 2015. On the magnetic precursor of the Chilean earthquake of February 27, 2010, Geomagn. Aeron. vol. 55, no. 2, pp. 219–222. DOI: https://doi.org/10.1134/S001679321501010756. MOLCHANOV, O. A., KOPYTENKO, YU. A., VORONOV, P. M., KOPYTENKO, E. A., MATIASHVILI, T. G., FRASER-SMITH, A. C. and BERNARDI, A., 1992. Results of ULF magnetic field measurements near the epicenters of the Spitak (Ms=6.9) and Loma Prieta (Ms=7.1) earthquakes: Comparative analysis. Geophys. Res. Lett. vol. 19, is. 14, pp. 1495–1498. DOI: https://doi.org/10.1029/92GL0115257. KOPYTENKO, YU. A., MATIASHVILI, T. G., VORONOV, P. M., KOPYTENKO, E. A. and MOLCHANOV, O. A., 1993. Detection of ultra-low-frequency emissions connected with the Spitak earthquake and its aftershock activity, based on geomagnetic pulsations data at Dusheti and Vardzia observatories. Phys. Earth Planet. Inter. vol. 77, is. 1-2, pp. 85– 5. DOI: https://doi.org/10.1016/0031-9201(93)90035-858. HAYAKAWA, M., KAWATE, R., MOLCHANOV, O. A. and JUMOTO, K., 1996. Results of ultra-low-frequency magnetic field measurements during the Guam earthquake of 8 August 1993. Geophys. Res. Lett. vol. 23, is. 3, pp. 241–244. DOI: https://doi.org/10.1029/95GL0286359. SCHEKOTOV, A., FEDOROV, E., HOBARA, Y. and HAYAKAWA, M., 2013. ULF Magnetic Field Depression as a Possible Precursor to the 2011/3.11 Japan Earthquake. J. Atmos. Electr. vol. 33, is. 1, pp. 41–51. DOI: https://doi.org/10.1541/jae.33.4160. SCHEKOTOV, A., FEDOROV, E., HOBARA, Y. and HAYAKAWA, M., 2013. ULF magnetic field depression as a possible precursor to the 2011/3.11 Japan earthquake. Radiofiz. Electron. vol. 4(18), no. 1, pp. 47–52. DOI: https://doi.org/10.1541/jae.33.4161. FRASER-SMITH, A. C., MCGILL, P. R., HELLIWELL, R. A. and VILLARD, O. G., Jr., 1994. Ultra-low frequency magnetic field measurements in southern California during the Northridge Earthquake of 17 January 1994. Geophys. Res. Lett. vol. 21, is. 20, pp. 2195–2198. DOI: https://doi.org/10.1029/94GL0198462. KARAKELIAN, D., KLEMPERER, S. L., FRASER-SMITH, A. C. and THOMPSON, G. A., 2002. Ultra-low frequency electromagnetic measurements associated with the 1998 Mw 5.1 San Juan Bautista, California earthquake and implications for mechanisms of electromagnetic earthquake precursors. Tectonophysics. vol. 359, is. 1-2, pp. 65–79. DOI: https://doi.org/10.1016/S0040-1951(02)00439-063. FRASER-SMITH, A. C., 2008. Ultralow-Frequency Magnetic Fields Preceding Large Earthquakes. Eos. vol. 89, no. 23, p. 211. DOI: https://doi.org/10.1029/2008EO23000764. PARK, S. K., JOHNSON, M. J. S, MADDEN, T. R., MORGAN, F. D. and MORRISON, H. F., 1993. Electromagnetic precursors to earthquakes in the ULF band: A review of observations and mechanisms. Rev. Geophys. vol. 31, is. 2, pp. 117–132. DOI: https://doi.org/10.1029/93RG0082065. GELLER, R. J., 1997. Earthquake prediction: a critical review. Geophys. J. Int. vol. 131, is. 3, pp. 425–450. DOI: https://doi.org/10.1111/j.1365-246X.1997.tb06588.x66. BAKUN, W. H., AAGAARD, B., DOST, B., ELLSWORTH, W. L., HARDEBECK, J. L., HARRIS, R. A., JI, C., JOHNSTON, M. J. S., LANGBEIN, J., LIENKAEMPER, J. J., MICHAEL, A. J., MURRAY, J. R., NADEAU, R. M., REASENBERG, P. A., REICHLE, M. S., ROELOFFS, E. A., SHAKAL, A., SIMPSON, R. W. and WALDHAUSER, F., 2005. Implications for prediction and hazard assessment from the 2004 Parkfield earthquake. Nature. vol. 437, pp. 969–974. DOI: https://doi.org/10.1038/nature0406767. KOSTERIN, N. A., PILIPENKO, V. A. and DMITRIEV, E. M., 2015. On global ultralow frequency electromagnetic signals prior to earthquakes. Geophysical Research. vol. 16, no. 1, pp. 24–34. (in Russian).68. BAKHMUTOV, V. G., SEDOVA, F. I. and MOZGOVAYA, T. A., 2003. Morphological analysis of geomagnetic variations in preparation period of the strongest earthquake of 25 March 1998 in Antarctic. Ukrainian Antarktic Journal. no. 1, pp. 54–60. (in Russian).69. SURKOV, V. V. and PILIPENKO, V. A., 1997. Magnetic effects due to earthquakes and underground explosions: a review. Ann. Geophys. vol. 40, no. 2, pp. 227–239. DOI: 10.4401/ag-390470. GUGLIELMI, A. V., 2007. Ultra-low-frequency electromagnetic waves in the Earth’s crust and magnetosphere. Phys.-Uspekhi. vol. 50, is. 12, pp. 1197–1216. DOI: https://doi.org/10.1070/PU2007v050n12ABEH00641371. PULINETS, S. A., OUZOUNOV, D. P., KARELIN, A. V. and DAVIDENKO, D. V., 2015. Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphere-atmosphere-ionosphere-magnetosphere system. Geomagn. Aeron. vol. 55, is. 4, pp. 521–538. DOI: https://doi.org/10.1134/S001679321504013172. CHERNOGOR, L. F., 2008. Advanced Methods of Spectral Analysis of Quasiperiodic Wave-Like Processes in the Ionosphere: Specific Features and Experimental Results. Geomagn. Aeron. vol. 48, is. 5, pp. 652–673. DOI: https://doi.org/10.1134/S001679320805010173. KULICHKOV, S. N., 1992. Long-range sound propagation in the atmosphere (Review). Rossiiskaia Akademiia Nauk, Izvestiia, Fizika Atmosfery i Okeana. vol. 28, no. 4, pp. 339–360. (in Russian).74. Le PICHON, A., BLANC, E. and HAUCHECORNE, A., eds., 2010. Infrasound monitoring for atmospheric studies. Dordrecht, Heidelberg, London, New York: Springer Int. Publ. DOI: https://doi.org/10.1007/978-1-4020-9508-5 |
publisher |
Видавничий дім «Академперіодика» |
publishDate |
2020 |
url |
http://rpra-journal.org.ua/index.php/ra/article/view/1341 |
work_keys_str_mv |
AT luoy geomagneticeffectofturkishearthquakeofjanuary242020 AT chernogorlf geomagneticeffectofturkishearthquakeofjanuary242020 AT garmashkp geomagneticeffectofturkishearthquakeofjanuary242020 AT luoy geomagnítnijefektturecʹkogozemletrusu24síčnâ2020r AT chernogorlf geomagnítnijefektturecʹkogozemletrusu24síčnâ2020r AT garmashkp geomagnítnijefektturecʹkogozemletrusu24síčnâ2020r |
first_indexed |
2024-05-26T06:28:36Z |
last_indexed |
2024-05-26T06:28:36Z |
_version_ |
1802804637439361024 |
spelling |
oai:ri.kharkov.ua:article-13412020-12-07T14:28:43Z GEOMAGNETIC EFFECT OF TURKISH EARTHQUAKE OF JANUARY 24, 2020 GEOMAGNETIC EFFECT OF TURKISH EARTHQUAKE OF JANUARY 24, 2020 ГЕОМАГНІТНИЙ ЕФЕКТ ТУРЕЦЬКОГО ЗЕМЛЕТРУСУ 24 СІЧНЯ 2020 р. Luo, Y. Chernogor, L. F. Garmash, K. P. earthquake; fluxmeter magnetometer; quasi-periodic disturbance; seismic wave; acoustic-gravity wave; MHD pulse earthquake; fluxmeter magnetometer; quasi-periodic disturbance; seismic wave; acoustic-gravity wave; MHD pulse землетрус; магнітометр-флюксметр; квазіперіодичні збурення; сейсмічні хвилі; акустико-гравітаційні хвилі; МГД імпульс Purpose:The main cause of geomagnetic disturbances are cosmic sources, processes acting in the solar wind and in the interplanetary medium, as well as large celestial bodies entering the terrestrial atmosphere. Earthquakes (EQs) also act to produce geomagnetic effects. In accordance with the systems paradigm, the Earth–atmosphere–ionosphere–magnetosphere system (EAIMS) constitute a unified system, where positive and negative couplings among the subsystems, as well as feedbacks and precondition among the system components take place. The mechanisms for the action of EQs and processes acting in the lithosphere on the geomagnetic field are poorly understood. It is considered that the EQ action is caused by cracking of rocks, fluctuating motion in the pore fluid, static electricity discharges, etc. In the course of EQs, the seismic, acoustic, atmospheric gravity waves (AGWs), and magnetohydrodynamic (MHD) waves are generated. The purpose of this paper is to describe the magnetic effects of the EQ, which took place in Turkey on 24 January 2020.Design/methodology/approach: The measurements are taken with the fluxmeter magnetometer delivering 0.5-500 pT sensitivity in the 1-1000 s period range, respectively, and in a wide enough studied frequency band within 0.001 to 1 Hz. The EM-II magnetometer with the embedded microcontroller digitizes the magnetometer signals and performs preliminary filtering over 0.5 s time intervals, while the external flash memory is used to store the filtered out magnetometer signals and the times of their acquisition. To investigate quasi-periodic processes in detail, the temporal variations in the level of the H and D components of the geomagnetic field were applied to the systems spectral analysis, which makes use of the short-time Fourier transform, the wavelet transform using the Morlet wavelet as a basis function, and the Fourier transform in a sliding window with a width adjusted to be equal to a fixed number of harmonic periods.Findings: The train of oscillations in the level of the D component observed 25.5 h before the EQ on 23 January 2020 is supposed to be associated with the magnetic precursor. The bidirectional pulse in the H component observed on 24 January 2020 could be due to the piston action of the EQ, which had generated an MHD pulse. The quasi-periodic variations in the level of the H and D components of the geomagnetic field, which followed 75 min after the EQ, were caused by a magnetic disturbance produced by the traveling ionospheric disturbances due to the AGWs launched by the EQ. The magnetic effect amplitude was estimated to be close to 0.3 nT, and the quasi-period to be 700-900 s. The amplitude of the disturbances in the electron density in the AGW field was estimated to be about 8 % and the period of 700-900 s. Damping oscillations in both components of the magnetic field were detected to occur with a period of approximately 120 s. This effect is supposed to be due to the shock wave generated in the atmosphere in the course of the EQ.Conclusions: The magnetic variations associated with the EQ and occurring before and during the EQ have been studied in the1-1000 s period range.Key words: earthquake, fluxmeter magnetometer, quasi-periodic disturbance, seismic wave, acoustic-gravity wave, MHD pulseManuscript submitted 11.08.2020Radio phys. radio astron. 2020, 25(4): 276-289REFERENCES1. PUDOVKIN, M. I., RASPOPOV, O. M. and KLEIMENOVA, N. G., 1976. Disturbances of the Earth’s Electromagnetic Field. vol. 2. Leningrad, Russia: LGU Publ. (in Russian).2. GUGLIELMI, A. V., 1979. MHD Waves in Near-Earth Plasma. Moscow, Russia: Nauka Publ. (in Russian).3. NISHIDA, A., 1980. Geomagnetic Diagnosis of the Magnetosphere. Moscow, Russia: Mir Publ. (in Russian).4. GUGLIELMI, A. V. and TROITSKAYA, V. A., 1973. Geomagnetic Pulsations and Diagnostics of the Magnetosphere. Moscow, Russia: Nauka Publ. (in Russian).5. LIKHTER, YA. I., GUGLIELMI, A. V., ERUKHIMOV, L. M. and MIKHAILOVA, G. A., 1988. Wave Diagnostics of Surface Plasma. Moscow, Russia: Nauka Publ. (in Russian).6. CHERNOGOR, L. F., 2012. Geomagnetic Pulsations Accompanied the Solar Terminator Moving Through Magnetoconjugate Region. Radio Phys. Radio Astron. vol. 17, no. 1, pp. 57–66. (in Russian).7. CHERNOGOR, L. F., 2013. Large-Scale Disturbances in the Earth’s Magnetic Field Associated with the Chelyabinsk Meteorite Event. Radiofiz. Electron. vol. 4 (18), no. 3, pp. 47–54. (in Russian).8. CHERNOGOR, L. F., 2014. Geomagnetic field effects of the Chelyabinsk meteoroid. Geomagn. Aeron. vol. 54, is. 5, pp. 613–624. DOI: https://doi.org/10.1134/S001679321405003X9. CHERNOGOR, L. F., 2018. Magnetospheric Effects during the Approach of the Chelyabinsk Meteoroid. Geomagn. Aeron. vol. 58, is. 2, pp. 252–265. DOI: https://doi.org/10.1134/S001679321802004410. BLIOKH, P. V., NIKOLAENKO, A. P. and FILIPPOV, YU. F., 1977. Global Electromagnetic Resonances in the Earth–Ionosphere Cavity. Kiev: Naukova dumka Publ. (in Russian). DOI: https://doi.org/10.1007/BF0103391811. CHEKRYZHOV, V. M., SVIRKUNOV, P. N. and KOZLOV, S. V., 2019. The Influence of Cyclonic Activity on the Geomagnetic Field Disturbance. Geomagn. Aeron. vol. 59, is. 1, pp. 53–61. DOI: https://doi.org/10.1134/S001679321901003112. MARTINES-BEDENKO, V. A., PILIPENKO, V. A., ZAKHAROV, V. I. and GRUSHIN, V. A., 2019. Influence of the Vongfong 2014 hurricane on the ionosphere and geomagnetic field as detected by Swarm satellites: 2. Geomagnetic disturbances. Sol.-Terr. Phys. vol. 5, is. 4, pp. 74–80. DOI: https://doi.org/10.12737/stp-5420191013. RIKITAKE, T., ed., 1981. Current research in Earth prediction. Dordrecht: D. Reidel Publishing.14. GOKHBERG, M. B., MORGUNOV, V. A. and POKHOTELOV, O. A., 1988. Seismoelectromagnetic Phenomena. Moscow, Russia: Nauka Publ. (in Russian).15. HAYAKAWA, M. and FUJINAWA, Y., eds., 1994. Electromagnetic Phenomena Related to Earthquake Prediction. Tokyo: TERRAPUB.16. HAYAKAWA, M., ed., 1999. Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes. Tokyo: TERRAPUB.17. SURKOV, V. V., 2000. Electromagnetic Effects Caused by Explosions and Earthquakes. Moscow, Russia: MIFI Publ. (in Russian).18. HAYAKAWA, M. and MOLCHANOV, O. A., eds., 2002. Seismo Electromagnetics: Lithosphere–Atmosphere–Ionosphere Coupling. Tokyo: TERRAPUB.19. SOBOLEV, G. A. and PONOMAREV, A. V., 2003. Physics of Earthquakes and Precursors. Moscow, Russia: Nauka Publ. (in Russian).20. MOLCHANOV, O. A. and HAYAKAWA, M., 2008. Seismo-Electromagnetics and Related Phenomena: History and Latest Results. Tokyo: TERRAPUB.21. HAYAKAWA, M., ed., 2009. Electromagnetic phenomena associated with earthquakes. Trivandrum, India: Transworld Research Network.22. HAYAKAWA, M., ed., 2013. Earthquakes prediction studies: seismo electromagnetic. Tokyo: TERRAPUB. DOI: https://doi.org/10.1007/978-4-431-54367-123. SURKOV, V. and HAYAKAWA, M., 2014. Ultra and Extremely Low Frequency Electromagnetic Fields. Tokyo, Heidelberg, New York, Dordrecht, London: Springer Japan.24. GOKHBERG, M. B. and SHALIMOV, S. L., 2008. The Impact of Earthquakes and Explosions on the Ionosphere. Moscow, Russia: Nauka Publ. (in Russian).25. CHERNOGOR, L. F., 2012. Physics and Ecology of Disasters. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).26. CHERNOGOR, L. F. and GARMASH, K. P., 2018. Magnetospheric and Ionospheric Effects Accompanying the Strongest Technogenic Catastrophe. Geomagn. Aeron. vol. 58, no. 5, pp. 673–685. DOI: https://doi.org/10.1134/S001679321805003127. CHERNOGOR, L. F., 2009. Radiophysical and Geomagnetic Effects of Rocket Engine Burn: Monograph. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).28. CHERNOGOR, L. F. and BLAUNSTEIN, N., 2013. Radiophysical and Geomagnetic Effects of Rocket Burn and Launch in the Near-the-Earth Environment. Boca Raton, London, New York: CRC Press. Taylor & Francis Group.29. CHERNOGOR, L. F., 2016. Possibility Action of Rocket and Space Engineering Launches on Earth’s Magnetic Field. In: V. V. Adushkin, S. I. Kozlov, M. V. Sil’nikov, eds. Rocket and Space Engineering Action on Environment. Moscow, Russia: GEOS Publ. (in Russian).30. CHERNOGOR, L. F., VERTOGRADOV, G. G., URYADOV, V. P., VERTOGRADOVA, E. G. and SHAMOTA, M. A., 2010. Consistent Quasi-Periodic Variations of the Geomagnetic Pulsation Level and Doppler Frequency Shift of Decametric Radio Waves Aspect-Scattered by Artificial Field-Aligned Ionospheric Irregularities. Radiophys. Quantum Electron. vol. 53, no. 12, pp. 688–705. DOI: https://doi.org/10.1007/s11141-011-9262-z31. CHERNOGOR, L. F., 2014. Physics of High-Power Radio Emissions in Geospace: Monograph. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).32. CHERNOGOR, L. F., 2019. Geomagnetic Disturbances Accompanying the Great Japanese Earthquake of March 11, 2011. Geomagn. Aeron. vol. 59, no. 1, pp. 62–75. DOI: https://doi.org/10.1134/S001679321901004333. CHERNOGOR, L. F., 2019. Possible Generation of Quasi-Periodic Magnetic Precursors of Earthquakes. Geomagn. Aeron. vol. 59, no. 3, pp. 374–382. DOI: https://doi.org/10.1134/S001679321903006X34. CHERNOGOR, L. F., 2003. Physics of Earth, Atmosphere, and Geospace from the Standpoint of System Paradigm. Radio Phys. Radio Astron. vol. 8, no. 1, pp. 59–106. (in Russian).35. CHERNOGOR, L. F., 2006. The Earth – atmosphere – ionosphere – magnetosphere as an open dynamic non-linear physical system. 1. Nelineinyi Mir. vol. 4, no. 12, pp. 655–697. (in Russian).36. CHERNOGOR, L. F., 2007. The Earth – atmosphere – ionosphere – magnetosphere as an open dynamic non-linear physical system. 2. Nelineinyi Mir. vol. 5, no. 4, pp. 198–231. (in Russian).37. CHERNOGOR, L. F. and ROZUMENKO, V. Т., 2008. Earth – Atmosphere – Geospace as an Open Nonlinear Dynamical System. Radio Phys. Radio Astron. vol. 13, is. 2, pp. 120–137.38. CHERNOGOR, L. F., 2011. The Earth-atmosphere-geospace system: main properties and processes. Int. J. Remote Sens. vol. 32, is. 11, pp. 3199–3218. DOI: https://doi.org/10.1080/01431161.2010.54151039. GUO, Q., CHERNOGOR, L. F., GARMASH, K. P., ROZUMENKO, V. T. and ZHENG, Y., 2019. Dynamical processes in the ionosphere following the moderate earthquake in Japan on 7 July 2018. J. Atmos. Sol.-Terr. Phys. vol. 186, pp. 88–103. DOI: https://doi.org/10.1016/j.jastp.2019.02.00340. LUO, Y., GUO, Q., ZHENG, YU, GARMASH, K. P., CHERNOGOR, L. F. and SHULGA, S. M., 2019. HF radio-wave characteristic variations over China during moderate earthquake in Japan on September 5, 2018. Visnyk of V. N. Karazin Kharkiv National Universit. Ser. Radio Physics and Electronics. vol. 30, pp. 16–26. (in Ukrainian). DOI: https://doi.org/10.26565/2311-0872-2019-30-0241. LUO, Y., GARMASH, K. P., CHERNOGOR, L. F. and SHULGA, S. M., 2019. Geomagnetic field fluctuations during Chuysk earthquakes on September – October, 2003. Visnyk of V. N. Karazin Kharkiv National University. Ser. Radio Physics and Electronics. vol. 31, pp. 87–104. (in Russian). DOI: https://doi.org/10.26565/2311-0872-2019-31-0942. LUO, Y., CHERNOGOR, L. F., GARMASH, K. P., GUO, Q. and ZHENG, YU., 2020. Seismic-Ionospheric Effects: Results of Radio Soundings at Oblique Incidence. Radio Phys. Radio Astron. vol. 25, no. 3, pp. 218–230. (in Ukrainian). DOI: https://doi.org/10.15407/rpra25.03.21843. MOORE, G. W., 1964. Magnetic Disturbances preceding the 1964 Alaska Earthquake. Nature. vol. 203, pp. 508–509. DOI: https://doi.org/10.1038/203508b044. VOROB’EV, A. A., 1970. On the possibility of electric discharges in the Earth’s interiors. Geologiya i Geofizika. no. 12, pp. 3–13. (in Russian).45. GOGATISHVILI, YA. M., 1984. Geomagnetic precursor of intensive earthquakes in the spectrum of geomagnetic pulsations with frequencies of 1–0.02 Hz. Geomagn. Aeron. vol. 24, no. 4, pp. 697–700. (in Russian).46. SIDORIN, A. YA., 1992. Earthquake Precursors. Moscow, Russia: Nauka Publ. (in Russian).47. SOBISEVICH, L. E., KANONIDI, K. KH. and SOBISEVICH, A. L., 2009. Ultra low-frequency electromagnetic disturbances appearing before strong seismic events. Dokl. Earth Sci. vol. 429, no. 5, pp. 1549–1552. DOI: https://doi.org/10.1134/S1028334X0909028148. SOBISEVICH, L. E., SOBISEVICH, A. L. and KANONIDI, K. KH., 2012. Anomalous geomagnetic disturbances induced by catastrophic tsunamigenic earthquakes in the region of Indonesia. Geofizicheskiy Zhurnal. vol. 34, no. 5, pp. 22–37. (in Russian). DOI: 10.24028/gzh.0203-3100.v34i5.2012.11666149. SOBISEVICH, L. E., KANONIDI, K. KH., SOBISEVICH, A. L. and MISEYUK, O. I., 2013. Geomagnetic Disturbances in the Geomagnetic Field’s Variations at Stages of Preparation and Implementation of the Elazig (March 8, 2010) and M 5.3 (January 19, 2011) Earthquakes in Turkey. Dokl. Earth Sci. vol. 449, no. 1, pp. 324–327. DOI: https://doi.org/10.1134/S1028334X1303006950. SOBISEVICH, A. L., STAROSTENKO, V. I., SOBISEVICH, L. E., KENDZERA, A. V., SHUMAN, V. N., VOL’FMAN, YU. M., POTEMKA, E. P., KANONIDI, K. KH. and GARIFULIN, V. A., 2013. The Black Sea earthquakes of late December 2012 and their manifestations in the geomagnetic field. Geofizicheskiy Zhurnal. vol. 35, no. 6, pp. 54–70. (in Russian). DOI: 10.24028/gzh.0203-3100.v35i6.2013.11645551. SOBISEVICH, L. E., SOBISEVICH, A. L. and KANONIDI, K. KH., 2015. Some anomalous geospheric processes during preparation and development of seismic events. Trigger effects in geospheres. In: V. V. ADUSHKIN and G. G. KOCHARYAN, eds. Proceedings of the Third All-Russian Workshop–Meeting. Moscow, Russia: GEOS Publ. (in Russian).52. FRASER-SMITH, A. C., BERNARDI, A., MCGILL, P. R., LADD, M. E., HALLIWELL, R. A. and VILLARD, O. G., Jr., 1990. Low-frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta Earthquake. Geophy. Res. Lett. vol. 17, is. 9, pp. 1465–1468. DOI: https://doi.org/10.1029/GL017i009p0146553. CAMPBELL, W. H., 2009. Natural magnetic disturbance fields, not precursors, preceding the Loma Prieta earthquake. J. Geophys. Res. Spase Phys. vol. 114, is. A5, id. A05307. DOI: https://doi.org/10.1029/2008JA01393254. SHESTOPALOV, I. P., BELOV, S. V., SOLOVIEV, A. A. and KUZMIN, YU. D., 2013. Neutron generation and geomagnetic disturbances in connection with the Chilean earthquake of February 27, 2010 and a volcanic eruption in Iceland in March-April 2010. Geomagn. Aeron. vol. 53, no. 1, pp. 124–135. DOI: https://doi.org/10.1134/S001679321301017955. ROMANOVA, N. V., PILIPENKO, V. A. and STEPANOVA, M. V., 2015. On the magnetic precursor of the Chilean earthquake of February 27, 2010, Geomagn. Aeron. vol. 55, no. 2, pp. 219–222. DOI: https://doi.org/10.1134/S001679321501010756. MOLCHANOV, O. A., KOPYTENKO, YU. A., VORONOV, P. M., KOPYTENKO, E. A., MATIASHVILI, T. G., FRASER-SMITH, A. C. and BERNARDI, A., 1992. Results of ULF magnetic field measurements near the epicenters of the Spitak (Ms=6.9) and Loma Prieta (Ms=7.1) earthquakes: Comparative analysis. Geophys. Res. Lett. vol. 19, is. 14, pp. 1495–1498. DOI: https://doi.org/10.1029/92GL0115257. KOPYTENKO, YU. A., MATIASHVILI, T. G., VORONOV, P. M., KOPYTENKO, E. A. and MOLCHANOV, O. A., 1993. Detection of ultra-low-frequency emissions connected with the Spitak earthquake and its aftershock activity, based on geomagnetic pulsations data at Dusheti and Vardzia observatories. Phys. Earth Planet. Inter. vol. 77, is. 1-2, pp. 85– 5. DOI: https://doi.org/10.1016/0031-9201(93)90035-858. HAYAKAWA, M., KAWATE, R., MOLCHANOV, O. A. and JUMOTO, K., 1996. Results of ultra-low-frequency magnetic field measurements during the Guam earthquake of 8 August 1993. Geophys. Res. Lett. vol. 23, is. 3, pp. 241–244. DOI: https://doi.org/10.1029/95GL0286359. SCHEKOTOV, A., FEDOROV, E., HOBARA, Y. and HAYAKAWA, M., 2013. ULF Magnetic Field Depression as a Possible Precursor to the 2011/3.11 Japan Earthquake. J. Atmos. Electr. vol. 33, is. 1, pp. 41–51. DOI: https://doi.org/10.1541/jae.33.4160. SCHEKOTOV, A., FEDOROV, E., HOBARA, Y. and HAYAKAWA, M., 2013. ULF magnetic field depression as a possible precursor to the 2011/3.11 Japan earthquake. Radiofiz. Electron. vol. 4(18), no. 1, pp. 47–52. DOI: https://doi.org/10.1541/jae.33.4161. FRASER-SMITH, A. C., MCGILL, P. R., HELLIWELL, R. A. and VILLARD, O. G., Jr., 1994. Ultra-low frequency magnetic field measurements in southern California during the Northridge Earthquake of 17 January 1994. Geophys. Res. Lett. vol. 21, is. 20, pp. 2195–2198. DOI: https://doi.org/10.1029/94GL0198462. KARAKELIAN, D., KLEMPERER, S. L., FRASER-SMITH, A. C. and THOMPSON, G. A., 2002. Ultra-low frequency electromagnetic measurements associated with the 1998 Mw 5.1 San Juan Bautista, California earthquake and implications for mechanisms of electromagnetic earthquake precursors. Tectonophysics. vol. 359, is. 1-2, pp. 65–79. DOI: https://doi.org/10.1016/S0040-1951(02)00439-063. FRASER-SMITH, A. C., 2008. Ultralow-Frequency Magnetic Fields Preceding Large Earthquakes. Eos. vol. 89, no. 23, p. 211. DOI: https://doi.org/10.1029/2008EO23000764. PARK, S. K., JOHNSON, M. J. S, MADDEN, T. R., MORGAN, F. D. and MORRISON, H. F., 1993. Electromagnetic precursors to earthquakes in the ULF band: A review of observations and mechanisms. Rev. Geophys. vol. 31, is. 2, pp. 117–132. DOI: https://doi.org/10.1029/93RG0082065. GELLER, R. J., 1997. Earthquake prediction: a critical review. Geophys. J. Int. vol. 131, is. 3, pp. 425–450. DOI: https://doi.org/10.1111/j.1365-246X.1997.tb06588.x66. BAKUN, W. H., AAGAARD, B., DOST, B., ELLSWORTH, W. L., HARDEBECK, J. L., HARRIS, R. A., JI, C., JOHNSTON, M. J. S., LANGBEIN, J., LIENKAEMPER, J. J., MICHAEL, A. J., MURRAY, J. R., NADEAU, R. M., REASENBERG, P. A., REICHLE, M. S., ROELOFFS, E. A., SHAKAL, A., SIMPSON, R. W. and WALDHAUSER, F., 2005. Implications for prediction and hazard assessment from the 2004 Parkfield earthquake. Nature. vol. 437, pp. 969–974. DOI: https://doi.org/10.1038/nature0406767. KOSTERIN, N. A., PILIPENKO, V. A. and DMITRIEV, E. M., 2015. On global ultralow frequency electromagnetic signals prior to earthquakes. Geophysical Research. vol. 16, no. 1, pp. 24–34. (in Russian).68. BAKHMUTOV, V. G., SEDOVA, F. I. and MOZGOVAYA, T. A., 2003. Morphological analysis of geomagnetic variations in preparation period of the strongest earthquake of 25 March 1998 in Antarctic. Ukrainian Antarktic Journal. no. 1, pp. 54–60. (in Russian).69. SURKOV, V. V. and PILIPENKO, V. A., 1997. Magnetic effects due to earthquakes and underground explosions: a review. Ann. Geophys. vol. 40, no. 2, pp. 227–239. DOI: 10.4401/ag-390470. GUGLIELMI, A. V., 2007. Ultra-low-frequency electromagnetic waves in the Earth’s crust and magnetosphere. Phys.-Uspekhi. vol. 50, is. 12, pp. 1197–1216. DOI: https://doi.org/10.1070/PU2007v050n12ABEH00641371. PULINETS, S. A., OUZOUNOV, D. P., KARELIN, A. V. and DAVIDENKO, D. V., 2015. Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphere-atmosphere-ionosphere-magnetosphere system. Geomagn. Aeron. vol. 55, is. 4, pp. 521–538. DOI: https://doi.org/10.1134/S001679321504013172. CHERNOGOR, L. F., 2008. Advanced Methods of Spectral Analysis of Quasiperiodic Wave-Like Processes in the Ionosphere: Specific Features and Experimental Results. Geomagn. Aeron. vol. 48, is. 5, pp. 652–673. DOI: https://doi.org/10.1134/S001679320805010173. KULICHKOV, S. N., 1992. Long-range sound propagation in the atmosphere (Review). Rossiiskaia Akademiia Nauk, Izvestiia, Fizika Atmosfery i Okeana. vol. 28, no. 4, pp. 339–360. (in Russian).74. Le PICHON, A., BLANC, E. and HAUCHECORNE, A., eds., 2010. Infrasound monitoring for atmospheric studies. Dordrecht, Heidelberg, London, New York: Springer Int. Publ. DOI: https://doi.org/10.1007/978-1-4020-9508-5 Purpose:The main cause of geomagnetic disturbances are cosmic sources, processes acting in the solar wind and in the interplanetary medium, as well as large celestial bodies entering the terrestrial atmosphere. Earthquakes (EQs) also act to produce geomagnetic effects. In accordance with the systems paradigm, the Earth–atmosphere–ionosphere–magnetosphere system (EAIMS) constitute a unified system, where positive and negative couplings among the subsystems, as well as feedbacks and precondition among the system components take place. The mechanisms for the action of EQs and processes acting in the lithosphere on the geomagnetic field are poorly understood. It is considered that the EQ action is caused by cracking of rocks, fluctuating motion in the pore fluid, static electricity discharges, etc. In the course of EQs, the seismic, acoustic, atmospheric gravity waves (AGWs), and magnetohydrodynamic (MHD) waves are generated. The purpose of this paper is to describe the magnetic effects of the EQ, which took place in Turkey on 24 January 2020.Design/methodology/approach: The measurements are taken with the fluxmeter magnetometer delivering 0.5-500 pT sensitivity in the 1-1000 s period range, respectively, and in a wide enough studied frequency band within 0.001 to 1 Hz. The EM-II magnetometer with the embedded microcontroller digitizes the magnetometer signals and performs preliminary filtering over 0.5 s time intervals, while the external flash memory is used to store the filtered out magnetometer signals and the times of their acquisition. To investigate quasi-periodic processes in detail, the temporal variations in the level of the H and D components of the geomagnetic field were applied to the systems spectral analysis, which makes use of the short-time Fourier transform,the wavelet transform using the Morlet wavelet as a basis function, and the Fourier transform in a sliding window with a width adjusted to be equal to a fixed number of harmonic periods.Findings: The train of oscillations in the level of the D component observed 25.5 h before the EQ on 23 January 2020 is supposed to be associated with the magnetic precursor. The bidirectional pulse in the H component observed on 24 January 2020 could be due to the piston action of the EQ, which had generated an MHD pulse. The quasi-periodic variations in the level of the H and D components of the geomagnetic field, which followed 75 min after the EQ, were caused by a magnetic disturbance produced by the traveling ionospheric disturbances due to the AGWs launched by the EQ. The magnetic effect amplitude was estimated to be close to 0.3 nT, and the quasi-period to be 700-900 s. The amplitude of the disturbances in the electron density in the AGW field was estimated to be about 8 % and the period of 700-900 s. Damping oscillations in both components of the magnetic field were detected to occur with a period of approximately 120 s. This effect is supposed to be due to the shock wave generated in the atmosphere in the course of the EQ.Conclusions: The magnetic variations associated with the EQand occurring before and during the EQ have been studied in the1-1000 s period range.Key words: earthquake, fluxmeter magnetometer, quasi-periodic disturbance, seismic wave, acoustic-gravity wave, MHD pulseManuscript submitted 11.08.2020Radio phys. radio astron. 2020, 25(4): 276-289REFERENCES1. PUDOVKIN, M. I., RASPOPOV, O. M. and KLEIMENOVA, N. G., 1976. Disturbances of the Earth’s Electromagnetic Field. vol. 2. Leningrad, Russia: LGU Publ. (in Russian).2. GUGLIELMI, A. V., 1979. MHD Waves in Near-Earth Plasma. Moscow, Russia: Nauka Publ. (in Russian).3. NISHIDA, A., 1980. Geomagnetic Diagnosis of the Magnetosphere. Moscow, Russia: Mir Publ. (in Russian).4. GUGLIELMI, A. V. and TROITSKAYA, V. A., 1973. Geomagnetic Pulsations and Diagnostics of the Magnetosphere. Moscow, Russia: Nauka Publ. (in Russian).5. LIKHTER, YA. I., GUGLIELMI, A. V., ERUKHIMOV, L. M. and MIKHAILOVA, G. A., 1988. Wave Diagnostics of Surface Plasma. Moscow, Russia: Nauka Publ. (in Russian).6. CHERNOGOR, L. F., 2012. Geomagnetic Pulsations Accompanied the Solar Terminator Moving Through Magnetoconjugate Region. Radio Phys. Radio Astron. vol. 17, no. 1, pp. 57–66. (in Russian).7. CHERNOGOR, L. F., 2013. Large-Scale Disturbances in the Earth’s Magnetic Field Associated with the Chelyabinsk Meteorite Event. Radiofiz. Electron. vol. 4 (18), no. 3, pp. 47–54. (in Russian).8. CHERNOGOR, L. F., 2014. Geomagnetic field effects of the Chelyabinsk meteoroid. Geomagn. Aeron. vol. 54, is. 5, pp. 613–624. DOI: 10.1134/S001679321405003X9. CHERNOGOR, L. F., 2018. Magnetospheric Effects during the Approach of the Chelyabinsk Meteoroid. Geomagn. Aeron. vol. 58, is. 2, pp. 252–265. DOI: 10.1134/S001679321802004410. BLIOKH, P. V., NIKOLAENKO, A. P. and FILIPPOV, YU. F., 1977. Global Electromagnetic Resonances in the Earth–Ionosphere Cavity. Kiev: Naukova dumka Publ. (in Russian).11. CHEKRYZHOV, V. M., SVIRKUNOV, P. N. and KOZLOV, S. V., 2019. The Influence of Cyclonic Activity on the Geomagnetic Field Disturbance. Geomagn. Aeron. vol. 59, is. 1, pp. 53–61. DOI: 10.1134/S001679321901003112. MARTINES-BEDENKO, V. A., PILIPENKO, V. A., ZAKHAROV, V. I. and GRUSHIN, V. A., 2019. Influence of the Vongfong 2014 hurricane on the ionosphere and geomagnetic field as detected by Swarm satellites: 2. Geomagnetic disturbances. Sol.-Terr. Phys. vol. 5, is. 4, pp. 74–80. DOI: 10.12737/stp-5420191013. RIKITAKE, T., ed., 1981. Current research in Earth prediction. Dordrecht: D. Reidel Publishing.14. GOKHBERG, M. B., MORGUNOV, V. A. and POKHOTELOV, O. A., 1988. Seismoelectromagnetic Phenomena. Moscow, Russia: Nauka Publ. (in Russian).15. HAYAKAWA, M. and FUJINAWA, Y., eds., 1994. Electromagnetic Phenomena Related to Earthquake Prediction. Tokyo: TERRAPUB.16. HAYAKAWA, M., ed., 1999. Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes. Tokyo: TERRAPUB.17. SURKOV, V. V., 2000. Electromagnetic Effects Caused by Explosions and Earthquakes. Moscow, Russia: MIFI Publ. (in Russian).18. HAYAKAWA, M. and MOLCHANOV, O. A., eds., 2002. Seismo Electromagnetics: Lithosphere–Atmosphere–Ionosphere Coupling. Tokyo: TERRAPUB.19. SOBOLEV, G. A. and PONOMAREV, A. V., 2003. Physics of Earthquakes and Precursors. Moscow, Russia: Nauka Publ. (in Russian).20. MOLCHANOV, O. A. and HAYAKAWA, M., 2008. Seismo-Electromagnetics and Related Phenomena: History and Latest Results. Tokyo: TERRAPUB.21. HAYAKAWA, M., ed., 2009. Electromagnetic phenomena associated with earthquakes. Trivandrum, India: Transworld Research Network.22. HAYAKAWA, M., ed., 2013. Earthquakes prediction studies: seismo electromagnetic. Tokyo: TERRAPUB.23. SURKOV, V. and HAYAKAWA, M., 2014. Ultra and Extremely Low Frequency Electromagnetic Fields. Tokyo, Heidelberg, New York, Dordrecht, London: Springer Japan.24. GOKHBERG, M. B. and SHALIMOV, S. L., 2008. The Impact of Earthquakes and Explosions on the Ionosphere. Moscow, Russia: Nauka Publ. (in Russian).25. CHERNOGOR, L. F., 2012. Physics and Ecology of Disasters. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).26. CHERNOGOR, L. F. and GARMASH, K. P., 2018. Magnetospheric and Ionospheric Effects Accompanying the Strongest Technogenic Catastrophe. Geomagn. Aeron. vol. 58, no. 5, pp. 673–685. DOI: 10.1134/S001679321805003127. CHERNOGOR, L. F., 2009. Radiophysical and Geomagnetic Effects of Rocket Engine Burn: Monograph. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).28. CHERNOGOR, L. F. and BLAUNSTEIN, N., 2013. Radiophysical and Geomagnetic Effects of Rocket Burn and Launch in the Near-the-Earth Environment. Boca Raton, London, New York: CRC Press. Taylor & Francis Group.29. CHERNOGOR, L. F., 2016. Possibility Action of Rocket and Space Engineering Launches on Earth’s Magnetic Field. In: V. V. Adushkin, S. I. Kozlov, M. V. Sil’nikov, eds. Rocket and Space Engineering Action on Environment. Moscow, Russia: GEOS Publ. (in Russian).30. CHERNOGOR, L. F., VERTOGRADOV, G. G., URYADOV, V. P., VERTOGRADOVA, E. G. and SHAMOTA, M. A., 2010. Consistent Quasi-Periodic Variations of the Geomagnetic Pulsation Level and Doppler Frequency Shift of Decametric Radio Waves Aspect-Scattered by Artificial Field-Aligned Ionospheric Irregularities. Radiophys. Quantum Electron. vol. 53, no. 12, pp. 688–705. DOI: 10.1007/s11141-011-9262-z31. CHERNOGOR, L. F., 2014. Physics of High-Power Radio Emissions in Geospace: Monograph. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).32. CHERNOGOR, L. F., 2019. Geomagnetic Disturbances Accompanying the Great Japanese Earthquake of March 11, 2011. Geomagn. Aeron. vol. 59, no. 1, pp. 62–75. DOI: 10.1134/S001679321901004333. CHERNOGOR, L. F., 2019. Possible Generation of Quasi-Periodic Magnetic Precursors of Earthquakes. Geomagn. Aeron. vol. 59, no. 3, pp. 374–382. DOI: 10.1134/S001679321903006X34. CHERNOGOR, L. F., 2003. Physics of Earth, Atmosphere, and Geospace from the Standpoint of System Paradigm. Radio Phys. Radio Astron. vol. 8, no. 1, pp. 59–106. (in Russian).35. CHERNOGOR, L. F., 2006. The Earth – atmosphere – ionosphere – magnetosphere as an open dynamic non-linear physical system. 1. Nelineinyi Mir. vol. 4, no. 12, pp. 655–697. (in Russian).36. CHERNOGOR, L. F., 2007. The Earth – atmosphere – ionosphere – magnetosphere as an open dynamic non-linear physical system. 2. Nelineinyi Mir. vol. 5, no. 4, pp. 198–231. (in Russian).37. CHERNOGOR, L. F. and ROZUMENKO, V. Т., 2008. Earth – Atmosphere – Geospace as an Open Nonlinear Dynamical System. Radio Phys. Radio Astron. vol. 13, is. 2, pp. 120–137.38. CHERNOGOR, L. F., 2011. The Earth-atmosphere-geospace system: main properties and processes. Int. J. Remote Sens. vol. 32, is. 11, pp. 3199–3218. DOI: 10.1080/01431161.2010.54151039. GUO, Q., CHERNOGOR, L. F., GARMASH, K. P., ROZUMENKO, V. T. and ZHENG, Y., 2019. Dynamical processes in the ionosphere following the moderate earthquake in Japan on 7 July 2018. J. Atmos. Sol.-Terr. Phys. vol. 186, pp. 88–103. DOI: 10.1016/j.jastp.2019.02.00340. LUO, Y., GUO, Q., ZHENG, YU, GARMASH, K. P., CHERNOGOR, L. F. and SHULGA, S. M., 2019. HF radio-wave characteristic variations over China during moderate earthquake in Japan on September 5, 2018. Visnyk of V. N. Karazin Kharkiv National Universit. Ser. Radio Physics and Electronics. vol. 30, pp. 16–26. (in Ukrainian). DOI: 10.26565/2311-0872-2019-30-0241. LUO, Y., GARMASH, K. P., CHERNOGOR, L. F. and SHULGA, S. M., 2019. Geomagnetic field fluctuations during Chuysk earthquakes on September – October, 2003. Visnyk of V. N. Karazin Kharkiv National University. Ser. Radio Physics and Electronics. vol. 31, pp. 87–104. (in Russian). DOI: 10.26565/2311-0872-2019-31-0942. LUO, Y., CHERNOGOR, L. F., GARMASH, K. P., GUO, Q. and ZHENG, YU., 2020. Seismic-Ionospheric Effects: Results of Radio Soundings at Oblique Incidence. Radio Phys. Radio Astron. vol. 25, no. 3, pp. 218–230. (in Ukrainian). DOI: 10.15407/rpra25.03.21843. MOORE, G. W., 1964. Magnetic Disturbances preceding the 1964 Alaska Earthquake. Nature. vol. 203, pp. 508–509. DOI: 10.1038/203508b044. VOROB’EV, A. A., 1970. On the possibility of electric discharges in the Earth’s interiors. Geologiya i Geofizika. no. 12, pp. 3–13. (in Russian).45. GOGATISHVILI, YA. M., 1984. Geomagnetic precursor of intensive earthquakes in the spectrum of geomagnetic pulsations with frequencies of 1–0.02 Hz. Geomagn. Aeron. vol. 24, no. 4, pp. 697–700. (in Russian).46. SIDORIN, A. YA., 1992. Earthquake Precursors. Moscow, Russia: Nauka Publ. (in Russian).47. SOBISEVICH, L. E., KANONIDI, K. KH. and SOBISEVICH, A. L., 2009. Ultra low-frequency electromagnetic disturbances appearing before strong seismic events. Dokl. Earth Sci. vol. 429, no. 5, pp. 1549–1552. DOI: 10.1134/S1028334X0909028148. SOBISEVICH, L. E., SOBISEVICH, A. L. and KANONIDI, K. KH., 2012. Anomalous geomagnetic disturbances induced by catastrophic tsunamigenic earthquakes in the region of Indonesia. Geofizicheskiy Zhurnal. vol. 34, no. 5, pp. 22–37. (in Russian). DOI: 10.24028/gzh.0203-3100.v34i5.2012.11666149. SOBISEVICH, L. E., KANONIDI, K. KH., SOBISEVICH, A. L. and MISEYUK, O. I., 2013. Geomagnetic Disturbances in the Geomagnetic Field’s Variations at Stages of Preparation and Implementation of the Elazig (March 8, 2010) and M 5.3 (January 19, 2011) Earthquakes in Turkey. Dokl. Earth Sci. vol. 449, no. 1, pp. 324–327. DOI: 10.1134/S1028334X1303006950. SOBISEVICH, A. L., STAROSTENKO, V. I., SOBISEVICH, L. E., KENDZERA, A. V., SHUMAN, V. N., VOL’FMAN, YU. M., POTEMKA, E. P., KANONIDI, K. KH. and GARIFULIN, V. A., 2013. The Black Sea earthquakes of late December 2012 and their manifestations in the geomagnetic field. Geofizicheskiy Zhurnal. vol. 35, no. 6, pp. 54–70. (in Russian). DOI: 10.24028/gzh.0203-3100.v35i6.2013.11645551. SOBISEVICH, L. E., SOBISEVICH, A. L. and KANONIDI, K. KH., 2015. Some anomalous geospheric processes during preparation and development of seismic events. Trigger effects in geospheres. In: V. V. ADUSHKIN and G. G. KOCHARYAN, eds. Proceedings of the Third All-Russian Workshop–Meeting. Moscow, Russia: GEOS Publ. (in Russian).52. FRASER-SMITH, A. C., BERNARDI, A., MCGILL, P. R., LADD, M. E., HALLIWELL, R. A. and VILLARD, O. G., Jr., 1990. Low-frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta Earthquake. Geophy. Res. Lett. vol. 17, is. 9, pp. 1465–1468. DOI: 10.1029/GL017i009p0146553. CAMPBELL, W. H., 2009. Natural magnetic disturbance fields, not precursors, preceding the Loma Prieta earthquake. J. Geophys. Res. Spase Phys. vol. 114, is. A5, id. A05307. DOI: 10.1029/2008JA01393254. SHESTOPALOV, I. P., BELOV, S. V., SOLOVIEV, A. A. and KUZMIN, YU. D., 2013. Neutron generation and geomagnetic disturbances in connection with the Chilean earthquake of February 27, 2010 and a volcanic eruption in Iceland in March-April 2010. Geomagn. Aeron. vol. 53, no. 1, pp. 124–135. DOI: 10.1134/S001679321301017955. ROMANOVA, N. V., PILIPENKO, V. A. and STEPANOVA, M. V., 2015. On the magnetic precursor of the Chilean earthquake of February 27, 2010, Geomagn. Aeron. vol. 55, no. 2, pp. 219–222. DOI: 10.1134/S001679321501010756. MOLCHANOV, O. A., KOPYTENKO, YU. A., VORONOV, P. M., KOPYTENKO, E. A., MATIASHVILI, T. G., FRASER-SMITH, A. C. and BERNARDI, A., 1992. Results of ULF magnetic field measurements near the epicenters of the Spitak (Ms=6.9) and Loma Prieta (Ms=7.1) earthquakes: Comparative analysis. Geophys. Res. Lett. vol. 19, is. 14, pp. 1495–1498. DOI: 10.1029/92GL0115257. KOPYTENKO, YU. A., MATIASHVILI, T. G., VORONOV, P. M., KOPYTENKO, E. A. and MOLCHANOV, O. A., 1993. Detection of ultra-low-frequency emissions connected with the Spitak earthquake and its aftershock activity, based on geomagnetic pulsations data at Dusheti and Vardzia observatories. Phys. Earth Planet. Inter. vol. 77, is. 1-2, pp. 85– 5. DOI: 10.1016/0031-9201(93)90035-858. HAYAKAWA, M., KAWATE, R., MOLCHANOV, O. A. and JUMOTO, K., 1996. Results of ultra-low-frequency magnetic field measurements during the Guam earthquake of 8 August 1993. Geophys. Res. Lett. vol. 23, is. 3, pp. 241–244. DOI: 10.1029/95GL0286359. SCHEKOTOV, A., FEDOROV, E., HOBARA, Y. and HAYAKAWA, M., 2013. ULF Magnetic Field Depression as a Possible Precursor to the 2011/3.11 Japan Earthquake. J. Atmos. Electr. vol. 33, is. 1, pp. 41–51. DOI: 10.1541/jae.33.4160. SCHEKOTOV, A., FEDOROV, E., HOBARA, Y. and HAYAKAWA, M., 2013. ULF magnetic field depression as a possible precursor to the 2011/3.11 Japan earthquake. Radiofiz. Electron. vol. 4(18), no. 1, pp. 47–52.61. FRASER-SMITH, A. C., MCGILL, P. R., HELLIWELL, R. A. and VILLARD, O. G., Jr., 1994. Ultra-low frequency magnetic field measurements in southern California during the Northridge Earthquake of 17 January 1994. Geophys. Res. Lett. vol. 21, is. 20, pp. 2195–2198. DOI: 10.1029/94GL0198462. KARAKELIAN, D., KLEMPERER, S. L., FRASER-SMITH, A. C. and THOMPSON, G. A., 2002. Ultra-low frequency electromagnetic measurements associated with the 1998 Mw 5.1 San Juan Bautista, California earthquake and implications for mechanisms of electromagnetic earthquake precursors. Tectonophysics. vol. 359, is. 1-2, pp. 65–79. DOI: 10.1016/S0040-1951(02)00439-063. FRASER-SMITH, A. C., 2008. Ultralow-Frequency Magnetic Fields Preceding Large Earthquakes. Eos. vol. 89, no. 23, p. 211. DOI: 10.1029/2008EO23000764. PARK, S. K., JOHNSON, M. J. S, MADDEN, T. R., MORGAN, F. D. and MORRISON, H. F., 1993. Electromagnetic precursors to earthquakes in the ULF band: A review of observations and mechanisms. Rev. Geophys. vol. 31, is. 2, pp. 117–132. DOI: 10.1029/93RG0082065. GELLER, R. J., 1997. Earthquake prediction: a critical review. Geophys. J. Int. vol. 131, is. 3, pp. 425–450. DOI: 10.1111/j.1365-246X.1997.tb06588.x66. BAKUN, W. H., AAGAARD, B., DOST, B., ELLSWORTH, W. L., HARDEBECK, J. L., HARRIS, R. A., JI, C., JOHNSTON, M. J. S., LANGBEIN, J., LIENKAEMPER, J. J., MICHAEL, A. J., MURRAY, J. R., NADEAU, R. M., REASENBERG, P. A., REICHLE, M. S., ROELOFFS, E. A., SHAKAL, A., SIMPSON, R. W. and WALDHAUSER, F., 2005. Implications for prediction and hazard assessment from the 2004 Parkfield earthquake. Nature. vol. 437, pp. 969–974. DOI: 10.1038/nature0406767. KOSTERIN, N. A., PILIPENKO, V. A. and DMITRIEV, E. M., 2015. On global ultralow frequency electromagnetic signals prior to earthquakes. Geophysical Research. vol. 16, no. 1, pp. 24–34. (in Russian).68. BAKHMUTOV, V. G., SEDOVA, F. I. and MOZGOVAYA, T. A., 2003. Morphological analysis of geomagnetic variations in preparation period of the strongest earthquake of 25 March 1998 in Antarctic. Ukrainian Antarktic Journal. no. 1, pp. 54–60. (in Russian).69. SURKOV, V. V. and PILIPENKO, V. A., 1997. Magnetic effects due to earthquakes and underground explosions: a review. Ann. Geophys. vol. 40, no. 2, pp. 227–239. DOI: 10.4401/ag-390470. GUGLIELMI, A. V., 2007. Ultra-low-frequency electromagnetic waves in the Earth’s crust and magnetosphere. Phys.-Uspekhi. vol. 50, is. 12, pp. 1197–1216. DOI: 10.1070/PU2007v050n12ABEH00641371. PULINETS, S. A., OUZOUNOV, D. P., KARELIN, A. V. and DAVIDENKO, D. V., 2015. Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphere-atmosphere-ionosphere-magnetosphere system. Geomagn. Aeron. vol. 55, is. 4, pp. 521–538. DOI: 10.1134/S001679321504013172. CHERNOGOR, L. F., 2008. Advanced Methods of Spectral Analysis of Quasiperiodic Wave-Like Processes in the Ionosphere: Specific Features and Experimental Results. Geomagn. Aeron. vol. 48, is. 5, pp. 652–673. DOI: 10.1134/S001679320805010173. KULICHKOV, S. N., 1992. Long-range sound propagation in the atmosphere (Review). Rossiiskaia Akademiia Nauk, Izvestiia, Fizika Atmosfery i Okeana. vol. 28, no. 4, pp. 339–360. (in Russian).74. Le PICHON, A., BLANC, E. and HAUCHECORNE, A., eds., 2010. Infrasound monitoring for atmospheric studies. Dordrecht, Heidelberg, London, New York: Springer Int. Publ. DOI: 10.1007/978-1-4020-9508-5 Предмет і мета роботи: Головною причиною геомагнітних збурень є космічні джерела, процеси в сонячному вітрі та в міжпланетному середовищі, падіння великих космічних тіл. До геомагнітного ефекту призводять також землетруси. Згідно системної парадигми об’єкт Земля – атмосфера – іоносфера – магнітосфера є єдиною системою, де мають місце прямі та зворотні, позитивні та негативні зв’язки. Механізм впливу літосферних процесів і землетрусів на магнітне поле вивчений недостатньо. Вважається, що до цього впливу призводять розтріскування порід, флуктуюючий рух у поровій рідині, розряди статичної електрики тощо. Під час землетрусу генеруються сейсмічні, акустико-гравітаційні хвилі (АГХ) та магнітогідродинамічні (МГД) хвилі. Мета цієї роботи – опис магнітного ефекту землетруса, який мав місце 24 січня 2020 р. в Туреччині.Методи та методологія: Вимірювання виконані за допомогою магнітометра-флюксметра. Він має високу чутливість (0.5÷500 пТл у діапазоні періодів коливань рівня геомагнітного поля 1÷1000 с відповідно) і досить широку смугу досліджуваних частот (від 0.001 до 1 Гц). Магнітометр ІМ-II підключений до спеціалізованого мікроконтролерного реєстратора, який виконує поцифрування та попередню фільтрацію магнітометричних сигналів на інтервалах 0.5 с,а також зберігає відфільтровані відліки і час їх отримання в USB флеш-пам’яті. Для детального дослідження квазіперіодичних процесів використовувався системний спектральний аналіз часових варіацій рівня H і D компонент геомагнітного поля. Він ґрунтується на одночасному застосуванні віконного перетворення Фур’є, адаптивного перетворення Фур’є та вейвлет-перетворення. В останньому використовувався материнський вейвлет у вигляді функції Морлє.Результати: Припускається, що спостережуваний 23 січня 2020 р. приблизно за 25.5 год до землетрусу цуг коливань у рівні D-компоненти міг бути пов’язаний з магнітним передвісником. Двохполярний імпульс в H-компоненті 24 січня 2020 р. міг бути зумовлений поршневою дією землетрусу, який згенерував МГД імпульс. Квазіперіодичні варіації рівня H і D компонент геомагнітного поля, що спостерігалися через 75 хв після землетрусу, були викликані генерацією магнітного збурення рухомими іоносферними збуреннями, зумовленими АГХ від землетрусу. Амплітуда магнітного ефекту була близька до 0.3 нТл, квазіперіод – до 700÷900 с. За оцінками відносна амплітуда збурень концентрації електронів у полі АГХ становила близько 8 %, а період – 700÷900 с. Виявлено затухаючі коливання в обох компонентах магнітного поля з періодом близько 120 с. Припускається, що цей ефект пов’язаний з генерацією ударної хвилі в атмосфері протягом землетрусу.Висновок: Вивчено магнітні варіації в діапазоні періодів 1÷1000 с, що супроводжували підготовку землетрусу і саму сейсмічну подію.Ключові слова: землетрус, магнітометр-флюксметр, квазіперіодичні збурення, сейсмічні хвилі, акустико-гравітаційні хвилі, МГД імпульсСтаття надійшла до редакції 11.08.2020Radio phys. radio astron. 2020, 25(4): 276-289СПИСОК ЛІТЕРАТУРИ1. Пудовкин М. И., Распопов О. М., Клейменова Н. Г. Возмущения электромагнитного поля Земли. Ч. 2. Ленинград: Изд-во ЛГУ, 1976. 270 с.2. Гульельми А. В. МГД-волны в околоземной плазме. Москва: Наука, 1979. 139 с.3. Нишида А. Геомагнитный диагноз магнитосферы. Москва: Мир, 1980. 299 с.4. Гульельми А. В., Троицкая В. А. Геомагнитные пульсации и диагностика магнитосферы. Москва: Наука, 1973. 208 с.5. Лихтер Я. И., Гульельми А. В., Ерухимов Л. М., Михайлова Г. А. Волновая диагностика приземной плазмы. Москва: Наука, 1988. 215 с.6. Черногор Л. Ф. Геомагнитные пульсации, сопутствовавшие движению солнечного терминатора через магнитосопряженную область. Радиофизика и радиоастрономия. 2012. Т. 17, № 1. С. 57–66.7. Черногор Л. Ф. Крупномасштабные возмущения магнитного поля Земли, сопровождавшие падение Челябинского метеороида. Радиофизика и электроника. 2013. Т.4 (18), № 3. С. 47–54.8. Черногор Л. Ф. Эффекты Челябинского метеороида в геомагнитном поле. Геомагнетизм и аэрономия. 2014. Т. 54, № 5. С. 658–669.9. Черногор Л. Ф. Эффекты в магнитосфере при подлете Челябинского метеороида. Геомагнетизм и аэрономия. 2018. Т. 58, № 2. С. 267–280.10. Блиох П. В., Николаенко А. П., Филиппов Ю. Ф. Глобальные электромагнитные резонансы в полости Земля – ионосфера. Киев: Наукова думка, 1977. 181 с.11. Чекрыжов В. М., Свиркунов П. Н., Козлов С. В. Влияние циклонической активности на возмущение геомагнитного поля. Геомагнетизм и аэрономия. 2019. Т. 59, № 1. С. 59–68.12. Мартинес-Беденко В. А., Пилипенко В. А., Захаров В. И., Грушин В. А. Влияние тайфуна Vongfong 2014 г. на ионосферу и геомагнитное поле по данным спутников Swarm: 2. Геомагнитные возмущения. Солнечно-земная физика. 2019. Т. 5, № 4. С. 90–98.13. Current research in Earth prediction. T. Rikitake, ed. Dordrecht: D. Reidel Publishing, 1981. 510 p.14. Гохберг М. Б., Моргунов В. А., Похотелов О. А. Сейсмо-электромагнитные явления. Москва: Наука, 1988. 180 с.15. Electromagnetic Phenomena Related to Earthquake Prediction. M. Hayakawa and Y. Fujinawa, eds. Tokyo: TERRAPUB, 1994. 677 p.16. Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes. M. Hayakawa, ed. Tokyo: TERRAPUB, 1999. 996 p.17. Сурков В. В. Электромагнитные эффекты при взрывах и землетрясениях. Москва: МИФИ, 2000. 448 с.18. Seismo Electromagnetics: Lithosphere–Atmosphere–Ionosphere Coupling. M. Hayakawa and O. A. Molchanov, eds. Tokyo: TERRAPUB, 2002. 477 p.19. Соболев Г. А., Пономарёв А. В. Физика землетрясений и предвестников. Москва: Наука, 2003. 270 с.20. Molchanov O. A., Hayakawa M. Seismo-Electromagnetics and Related Phenomena: History and Latest Results. Tokyo: TERRAPUB, 2008. 198 p.21. Electromagnetic phenomena associated with earthquakes. M. Hayakawa, ed. Trivandrum, India: Transworld Research Network, 2009. 279 p.22. Earthquakes Prediction Studies: Seismo Electromagnetic. M. Hayakawa, ed. Tokyo: TERRAPUB, 2013. 794 p.23. Surkov V. and Hayakawa M. Ultra and Extremely Low Frequency Electromagnetic Fields. Tokyo, Heidelberg, New York, Dordrecht, London: Springer Japan, 2014. 486 p.24. Гохберг М. Б., Шалимов С. Л. Воздействие землетрясений и взрывов на ионосферу. Москва: Наука, 2008. 295 с.25. Черногор Л. Ф. Физика и экология катастроф. Харьков: ХНУ имени В. Н. Каразина, 2012.26. Черногор Л. Ф., Гармаш К. П. Магнито-ионосферные эффекты, сопровождавшие сильнейшую техногенную катастрофу. Геомагнетизм и аэрономия. 2018. Т. 58, № 5. С. 700–712.27. Черногор Л. Ф. Радиофизические и геомагнитные эффекты стартов ракет: Монография. Харьков: ХНУ имени В. Н. Каразина, 2009. 386 с.28. Chernogor L. F. and Blaunstein N. Radiophysical and Geomagnetic Effects of Rocket Burn and Launch in the Near-the-Earth Environment. Boca Raton, London, New York: CRC Press. Taylor & Francis Group, 2013. 542 p.29. Черногор Л. Ф. О возможном воздействии запусков ракетно-космической техники на магнитное поле Земли. Воздействие ракетно-космической техники на окружающую природную среду. Под ред. В. В. Адушкина, С. И. Козлова, М. В. Сильникова. Москва: ГЕОС, 2016. 795 с.30. Черногор Л. Ф., Вертоградов Г. Г., Урядов В. П., Вертоградова Е. Г., Шамота М. А. Согласованные квазипериодические вариации уровня геомагнитных пульсаций и доплеровского смещения частоты ракурсно-рассеянных искусственными ионосферными неоднородностями радиоволн декаметрового диапазона. Изв. вузов. Радиофизика. 2010. Т. 53, № 12. С. 766–785.31. Черногор Л. Ф. Физика мощного радиоизлучения в геокосмосе: монография. Харьков: ХНУ имени В. Н. Каразина, 2014. 448 с.32. Черногор Л. Ф. Геомагнитные возмущения, сопровождавшие Великое японское землетрясение 11 марта 2011 г. Геомагнетизм и аэрономия. 2019. Т. 59, № 1. С. 69–82.33. Черногор Л. Ф. Возможность генерации квазипериодических магнитных предвестников землетрясений. Геомагнетизм и аэрономия. 2019. Т. 59, № 3. С. 400–408.34. Черногор Л. Ф. Физика Земли, атмосферы и геокосмоса в свете системной парадигмы. Радиофизика и радиоастрономия. 2003. Т. 8, № 1. С. 59–106.35. Черногор Л. Ф. Земля – атмосфера – ионосфера – магнитосфера как открытая динамическая нелинейная физическая система. 1. Нелинейный мир. 2006. Т. 4, № 12. С. 655–697.36. Черногор Л. Ф. Земля – атмосфера – ионосфера – магнитосфера как открытая динамическая нелинейная физическая система. 2. Нелинейный мир. 2007. Т. 5, № 4. С. 198–231.37. Chernogor L. F. and Rozumenko V. Т. Earth – Atmosphere – Geospace as an Open Nonlinear Dynamical System. Radio Phys. Radio Astron. 2008. Vol. 13, No. 2. P. 120–137.38. Chernogor L. F. The Earth-atmosphere-geospace system: main properties and processes. Int. J. Remote Sens. 2011. Vol. 32, No 11. P. 3199–3218. DOI: 10.1080/01431161.2010.54151039. Guo Q., Chernogor L. F., Garmash K. P., Rozumenko V. T., and Zheng Y. Dynamical processes in the ionosphere following the moderate earthquake in Japan on 7 July 2018. J. Atmos. Sol.-Terr. Phys. 2019. Vol. 186. P. 88–103. DOI: 10.1016/j.jastp.2019.02.00340. Luo Y., Qiang Guo, Yu Zheng, Гармаш К. П., Черногор Л. Ф., Шульга С. Н. Варіації характеристик радіохвиль ВЧ діапазону над Китаєм, які супроводжували помірний землетрус в Японії 5 вересня 2018 р. Вісник Харківського національного університету імені В. Н. Каразіна. Радіофізика та електроніка. 2019. Вып. 30. С. 16–26. DOI: 10.26565/2311-0872-2019-30-0241. Luo Y., Гармаш К. П., Черногор Л. Ф., Шульга С. Н. Флуктуации геомагнитного поля, сопровождавшие Чуйские землетрясения в сентябре–октябре 2003 г. Вісник Харківського національного університету імені В. Н. Каразіна. Радіофізика та електроніка. 2019. Вып. 31. С. 87–104. DOI: 10.26565/2311-0872-2019-31-0942. Luo Y., Чорногор Л. Ф., Гармаш К. П., Guo Q., Zheng Yu. Сейсмо-іоносферні ефекти: результати похилого радіозондування іоносфери. Радіофізика і радіоастрономія. 2020. Т. 25, № 3. С. 218–230. DOI: 10.15407/rpra25.03.21843. Moore G. W. Magnetic Disturbances preceding the 1964 Alaska Earthquake. Nature. 1964. Vol. 203. P. 508–509. DOI: 10.1038/203508b044. Воробьев А. А. О возможности электрических разрядов в недрах Земли. Геология и геофизика. 1970. № 12. С. 3–13.45. Гогатишвили Я. М. Геомагнитные предвестники интенсивных землетрясений в спектре геомагнитных пульсаций с частотами 1–0.02 Гц. Геомагнетизм и аэрономия. 1984. Т. 24, № 4. С. 697–700.46. Сидорин А. Я. Предвестники землетрясений. Москва: Наука, 1992. 162 с.47. Собисевич Л. Е., Канониди К. Х., Собисевич А. Л. Ультранизкочастотные электромагнитные возмущения, возникающие перед сильными сейсмическими событиями. Доклады Академии наук. 2009. Т. 429, № 5. С. 668–672.48. Собисевич Л. Е., Собисевич А. Л., Канониди К. Х. Аномальные геомагнитные возмущения, наведенные катастрофическими цунамическими землетрясениями в районе Индонезии. Геофизический журнал. 2012. Т. 34, №5. С. 22–37. DOI: 10.24028/gzh.0203-3100.v34i5.2012.11666149. Собисевич Л. Е., Канониди К. Х., Собисевич А. Л., Мисеюк О. И. Геомагнитные возмущения в вариациях магнитного поля Земли на этапах подготовки и развития Турецкого (08.03.2010 г.) и Северокавказского (19.01.2011 г.) землетрясений. Доклады Академии наук. 2013. Т. 449, № 1. С. 93–96.50. Собисевич А. Л., Старостенко В. И., Собисевич Л. Е., Кендзера А. В., Шуман В. Н., Вольфман Ю. М., Потемка Э. П., Канониди К. Х., Гарифулин В. А. Черноморские землетрясения конца декабря 2012 г. и их проявления в геомагнитном поле. Геофизический журнал. 2013. Т. 35, № 6. С. 54–70. DOI: 10.24028/gzh.0203-3100.v35i6.2013.11645551. Собисевич Л. Е., Собисевич А. Л., Канониди К. Х. О некоторых аномальных процессах в геосферах при подготовке и развитии сейсмических событий. Триггерные эффекты в геосферах. Материалы третьего Всероссийского семинара-совещания. Под ред. В. В. Адушкина, Г. Г. Кочаряна. Москва: ГЕОС, 2015. С. 284–294.52. Fraser-Smith A. C., Bernardi A., McGill P. R., Ladd M. E., Halliwell R. A., and Willard O. G., Jr. Low-frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta Earthquake. Geophy. Res. Lett. 1990. Vol. 17, Is. 9. P. 1465–1468. DOI: 10.1029/GL017i009p0146553. Campbell W. H. Natural magnetic disturbance fields, not precursors, preceding the Loma Prieta earthquake. J. Geophys. Res. Spase Phys. 2009. Vol. 114, Is. A5. id. A05307. DOI: 10.1029/2008JA01393254. Шестопалов И. П., Белов С. В., Соловьев А. А., Кузьмин Ю. Д. О генерации нейтронов и геомагнитных возмущениях в связи с Чилийским землетрясением 27 февраля и вулканическим извержением в Исландии в марте–апреле 2010 г. Геомагнетизм и аэрономия. 2013. Т. 53, № 1. С. 130–142. DOI: 10.7868/S001679401301018555. Романова Н. В., Пилипенко В. А., Степанова М. В. О магнитном предвестнике Чилийского землетрясения 27 февраля 2010 г. Геомагнетизм и аэрономия. 2015. Т. 55, № 2. С. 231–234. DOI: 10.7868/S001679401501010156. Molchanov O. A., Kopytenko Yu. A., Voronov P. M., Kopytenko E. A., Matiashvili T. G., Fraser-Smith A. C., and Bernardi A. Results of ULF magnetic field measurements near the epicenters of the Spitak (Ms=6.9) and the Loma Prieta (Ms=7.1) earthquakes: Comparative analysis. Geophys. Res. Lett. 1992. Vol. 19, Is. 14. P. 1495–1498. DOI: 10.1029/92GL0115257. Kopytenko Yu. A., Matiashvili T. G., Voronov P. M., Kopytenko E. A., and Molchanov O. A. Detection of ultra-low-frequency emissions connected with the Spitak earthquake and its aftershock activity, based on geomagnetic pulsations data at Dusheti and Vardzia observatories. Phys. Earth Planet. Inter. 1993. Vol. 77, Is. 1-2. P. 85–95. DOI: 10.1016/0031-9201(93)90035-858. Hayakawa M., Kawate R., Molchanov O. A., and Jumoto K. Results of ultra-low-frequency magnetic field measurements during the Guam earthquake of 8 August 1993. Geophys. Res. Lett. 1996. Vol. 23, Is. 3. P. 241–244. DOI: 10.1029/95GL0286359. Schekotov A., Fedorov E., Hobara Y., and Hayakawa M. ULF Magnetic Field Depression as a Possible Precursor to the 2011/3.11 Japan Earthquake. J. Atmos. Electr. 2013. Vol. 33, Is. 1. P. 41–51. DOI: 10.1541/jae.33.4160. Schekotov A., Fedorov E., Hobara Y., and Hayakawa M. ULF magnetic field depression as a possible precursor to the 2011/3.11 Japan earthquake. Радиофизика и электроника. 2013. Т. 4(18), № 1. С. 47–52.61. Fraser-Smith A. C., McGill P. R., Helliwell R. A., and Villard O. G., Jr. Ultra-low frequency magnetic field measurements in southern California during the Northridge Earthquake of 17 January 1994. Geophys. Res. Lett. 1994. Vol. 21, Is. 20. P. 2195–2198. DOI: 10.1029/94GL0198462. Karakelian D., Klemperer S. L., Fraser-Smith A. C., and Thompson G. A. Ultra-low frequency electromagnetic measurements associated with the 1998 Mw 5.1 San Juan Bautista, California earthquake and implications for mechanisms of electromagnetic earthquake precursors. Tectonophysics. 2002. Vol. 359, Is. 1-2. P. 65–79. DOI: 10.1016/S0040-1951(02)00439-063. Fraser-Smith A. C. Ultralow-Frequency Magnetic Fields Preceding Large Earthquakes. Eos. 2008. Vol. 89, No. 23. P. 211. DOI: 10.1029/2008EO23000764. Park S. K., Johnson M. J. S., Madden T. R., Morgan F. D., and Morrison H. F. Electromagnetic precursors to earthquakes in the ULF band: A review of observations and mechanisms. Rev. Geophys. 1993. Vol. 31, Is. 2. P. 117–132. DOI: 10.1029/93RG0082065. Geller R. J. Earthquake prediction: a critical review. Geophys. J. Int. 1997. Vol. 131, Is. 3. P. 425–450. DOI: 10.1111/j.1365-246X.1997.tb06588.x66. Bakun W. H., Aagaard B., Dost B., Ellsworth W. L., Hardebeck J. L., Harris R. A., Ji C., Johnston M. J. S., Langbein J., Lienkaemper J. J., Michael A. J., Murray, J. R., Nadeau R. M., Reasenberg P. A., Reichle M. S., Roeloffs E. A., Shakal A., Simpson R. W., and Waldhauser F. Implications for prediction and hazard assessment from the 2004 Parkfield earthquake. Nature. 2005. Vol. 437. P. 969–974. DOI: 10.1038/nature0406767. Костерин Н. А., Пилипенко В. А., Дмитриев Э. М. О глобальных ультранизкочастотных электромагнитных сигналах перед землетрясениями. Геофизические исследования. 2015. Т. 16, № 1. С. 24–34.68. Бахмутов В. Г., Седова Ф. И., Мозговая Т. А. Морфологические признаки в структуре геомагнитных вариаций в период подготовки сильнейшего землетрясения 25 марта 1998 г. в Антарктиде. Український антарктичний журнал. 2003. № 1. С. 54–60.69. Surkov V. V. and Pilipenko V. A. Magnetic effects due to earthquakes and underground explosions: a review. Ann. Geophys. 1997. Vol. 40, No. 2. P. 227–239. DOI: 10.4401/ag-390470. Гульельми А. В. Ультранизкочастотные электромагнитные волны в коре и в магнитосфере Земли. УФН. 2007. Т. 177, № 12. С. 1250–1276. DOI: 10.3367/UFNr.0177.200712a.125771. Пулинец С. А., Узунов Д. П., Карелин А. В., Давиденко Д. В. Физические основы генерации краткосрочных предвестников землетрясений. Комплексная модель геофизических процессов в системе литосфера – атмосфера – ионосфера – магнитосфера, инициируемых ионизацией. Геомагнетизм и аэрономия. 2015. Т. 55, № 4. С. 540–558. DOI: 10.7868/S001679401504013672. Черногор Л. Ф. Современные методы спектрального анализа квазипериодических и волновых процессов в ионосфере: особенности и результаты экспериментов. Геомагнетизм и аэрономия. 2008. Т. 48, № 5. С. 681–702.73. Куличков С. Н. Дальнее распространение звука в атмосфере (Обзор). Известия РАН. Физика атмосферы и океана. 1992. Т. 28, № 4. С. 339–360.74. Infrasound monitoring for atmospheric studies. A. Le Pichon, E. Blanc, and A. Hauchecorne, eds. Dordrecht, Heidelberg, London, New York: Springer Int. Publ., 2010. 1167 p. DOI: 10.1007/978-1-4020-9508-5 Видавничий дім «Академперіодика» 2020-11-30 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1341 10.15407/rpra25.04.276 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 25, No 4 (2020); 276 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 25, No 4 (2020); 276 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 25, No 4 (2020); 276 2415-7007 1027-9636 10.15407/rpra25.04 uk http://rpra-journal.org.ua/index.php/ra/article/view/1341/pdf Copyright (c) 2020 RADIO PHYSICS AND RADIO ASTRONOMY |