ELECTROMAGNETIC EFFECTS OF ACOUSTIC AND ATMOSPHERIC GRAVITY WAVES IN THE NEAR-EARTH ATMOSPHERE
Purpose: Acoustic and atmospheric gravity waves (AAGW) are generated by many natural and anthropogenic sources. The AAGW propagation at ionospheric heights is accompanied by the generation of disturbances in the magnetic and electric fields. The plasma presence plays a crucial role. The mechanisms f...
Збережено в:
Дата: | 2020 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Видавничий дім «Академперіодика»
2020
|
Теми: | |
Онлайн доступ: | http://rpra-journal.org.ua/index.php/ra/article/view/1342 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Radio physics and radio astronomy |
Репозитарії
Radio physics and radio astronomyid |
oai:ri.kharkov.ua:article-1342 |
---|---|
record_format |
ojs |
institution |
Radio physics and radio astronomy |
collection |
OJS |
language |
Ukrainian |
topic |
acoustic and atmospheric gravity waves near-Earth atmosphere volume charge atmospheric pressure disturbances electric field magnetic field акустико-гравітаційні хвилі приземна атмосфера об’ємний заряд збурення атмосферного тиску електричне поле магнітне поле |
spellingShingle |
acoustic and atmospheric gravity waves near-Earth atmosphere volume charge atmospheric pressure disturbances electric field magnetic field акустико-гравітаційні хвилі приземна атмосфера об’ємний заряд збурення атмосферного тиску електричне поле магнітне поле Luo, Y. Chernogor, L. F. ELECTROMAGNETIC EFFECTS OF ACOUSTIC AND ATMOSPHERIC GRAVITY WAVES IN THE NEAR-EARTH ATMOSPHERE |
topic_facet |
acoustic and atmospheric gravity waves near-Earth atmosphere volume charge atmospheric pressure disturbances electric field magnetic field акустико-гравітаційні хвилі приземна атмосфера об’ємний заряд збурення атмосферного тиску електричне поле магнітне поле |
format |
Article |
author |
Luo, Y. Chernogor, L. F. |
author_facet |
Luo, Y. Chernogor, L. F. |
author_sort |
Luo, Y. |
title |
ELECTROMAGNETIC EFFECTS OF ACOUSTIC AND ATMOSPHERIC GRAVITY WAVES IN THE NEAR-EARTH ATMOSPHERE |
title_short |
ELECTROMAGNETIC EFFECTS OF ACOUSTIC AND ATMOSPHERIC GRAVITY WAVES IN THE NEAR-EARTH ATMOSPHERE |
title_full |
ELECTROMAGNETIC EFFECTS OF ACOUSTIC AND ATMOSPHERIC GRAVITY WAVES IN THE NEAR-EARTH ATMOSPHERE |
title_fullStr |
ELECTROMAGNETIC EFFECTS OF ACOUSTIC AND ATMOSPHERIC GRAVITY WAVES IN THE NEAR-EARTH ATMOSPHERE |
title_full_unstemmed |
ELECTROMAGNETIC EFFECTS OF ACOUSTIC AND ATMOSPHERIC GRAVITY WAVES IN THE NEAR-EARTH ATMOSPHERE |
title_sort |
electromagnetic effects of acoustic and atmospheric gravity waves in the near-earth atmosphere |
title_alt |
ELECTROMAGNETIC EFFECTS OF ACOUSTIC AND ATMOSPHERIC GRAVITY WAVES IN THE NEAR-EARTH ATMOSPHERE ЕЛЕКТРОМАГНІТНІ ЕФЕКТИ АКУСТИКО-ГРАВІТАЦІЙНИХ ХВИЛЬ У ПРИЗЕМНІЙ АТМОСФЕРІ |
description |
Purpose: Acoustic and atmospheric gravity waves (AAGW) are generated by many natural and anthropogenic sources. The AAGW propagation at ionospheric heights is accompanied by the generation of disturbances in the magnetic and electric fields. The plasma presence plays a crucial role. The mechanisms for generating electrical and magnetic disturbances in the near-Earth atmosphere by the AAGW have been studied much worse. Therefore, the validation of the capability to generate electromagnetic disturbances in the near-Earth atmosphere by the AAGW is an urgent problem. The purpose of this paper is to describe the mechanism for generating disturbances in the electric and magnetic fields in the near-Earth atmosphere under the action of AAGW and to estimate the amplitudes of these disturbances for various AAGW sources.Design/methodology/approach: The impact of a series of highenergysources often results in the generation of synchronous disturbances in the acoustic and geoelectric (atmospheric) fields, when an approximate proportionality between the pressure amplitude and the amplitude of the disturbances in the atmospheric electric field is observed to occur. Based on the observational data and making use of the Maxwell equations, the theoretical estimates of the disturbances in the electric and magneticfields have been obtained.Findings: Simplified expressions have been obtained for estimating the amplitudes of the electric and magnetic fields under the action of the AAGW generated by natural and manmade sources. The amplitudes of the electric and magnetic fields generated by the AAGW of natural and manmade origin, which travel in the near-Earth atmosphere, have been calculated. The amplitudes of the AAGW generated electric and magnetic fields are shown to be large enough to be detected with the existing electrometers and fluxmeter magnetometers. The magnitudes of the amplitudes of the electric and magnetic fields generated in the near-Earth atmosphere under the action of AAGW are large enough to trigger coupling between the subsystems in the Earth–atmosphere–ionosphere–magnetosphere system.Conclusions: The estimates and not numerous observations are in good agreement.Key words: acoustic and atmospheric gravity waves, near-Earth atmosphere, volume charge, atmospheric pressure disturbances, electric field, magnetic fieldManuscript submitted 12.09.2020Radio phys. radio astron. 2020, 25(4): 290-307REFERENCES1. GOSSARD, E. E. and HOOKE, W. H., 1975. Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves: Their Generation and Propagation. 2. Developments in Atmospheric Science. Amsterdam: Elsevier Scientific.2. PARROT, C. J., 2002. An Introduction to Atmospheric Gravity Waves. San Diego, CA, USA; London, UK: Academic Press.3. LE PICHON, A., BLANC, E. and HAUCHECORNE, A., eds., 2019. Infrasound monitoring for atmospheric studies. Switzerland: Springer Int. Publ. DOI: https://doi.org/10.1007/978-3-319-75140-54. REVELLE, D. O., 1976. On meteor-generated infrasound. J. Geophys. Res. vol. 81, is. 7, pp. 1217–1240. DOI: https://doi.org/10.1029/JA081i007p012175. ARROWSMITH, S. J., REVELLE, D., EDWARDS, W. and BROWN, P., 2007. Global Detection of Infrasonic Signals from Three Large Bolides. In: J. M. TRIGO-RODRÍGUEZ, F. J. M. RIETMEIJER, J. LLORCA, and D. JANCHES, eds. Advances in Meteoroid and Meteor Science. New York, NY: Springer, pp. 357–363. DOI: https://doi.org/10.1007/978-0-387-78419-9_506. EDWARDS, W. N., 2010. Meteor Generated Infrasound: Theory and Observation. In: A. LE PICHON, E. BLANC, and A. HAUCHECORNE, eds Infrasound Monitoring for Atmospheric Studies. Dordrecht, Heidelberg, London, New York: Springer Int. Publ., P. 361–414. DOI: https://doi.org/10.1007/978-1-4020-9508-5_127. ENS, T. A., BROWN, P. G., EDWARDS, W. N. and SILBER, E. A., 2012. Infrasound production by bolides: A global statistical study. J. Atmos. Sol.-Terr. Phys. vol. 80, pp. 208–229. DOI: https://doi.org/10.1016/j.jastp.2012.01.0188. CHERNOGOR, L. F. and BARABASH, V. V., 2014. Ionosphere disturbances accompanying the flight of the Chelyabinsk body. Kinemat. Phys. Celest. Bodies. vol. 30, is. 3, pp. 126–136. DOI: https://doi.org/10.3103/S08845913140300399. CHERNOGOR, L. F., 2017. Chelyabinsk Meteoroid Acoustic Effects. Radio Phys. Radio Astron. vol. 22, no. 1, pp. 53–66. (in Russian). DOI: https://doi.org/10.15407/rpra22.01.05310. LAZORENKO, O. V. and CHERNOGOR, L. F., 2017. System Spectral Analysis of Infrasonic Signal Generated by Chelyabinsk Meteoroid. Radioelectron. Commun. Syst. vol. 60, is. 8, pp. 331–338. DOI: https://doi.org/10.3103/S073527271708001511. CHERNOGOR, L. F. and LIASHCHUK, O. I., 2017. Parameters of Infrasonic Waves Generated by the Chelyabinsk Meteoroid on February 15, 2013. Kinemat. Phys. Celest. Bodies. vol. 33, is. 2, pp. 79–87. DOI: https://doi.org/10.3103/S088459131702002712. CHERNOGOR, L. F. and SHEVELEV, N. B., 2018. Characteristics of the Infrasound SignalGenerated by Chelyabinsk Celestial Body: Global Statistics. Radio Phys. Radio Astron. vol. 23, no. 1, pp. 24–35. (in Russian). DOI: https://doi.org/10.15407/rpra23.01.02413. CHERNOGOR, L. F., 2020. Statistical Analysis of Infrasonic Parameters Generated by the Chelyabinsk Meteoroid. Kinemat. Phys. Celest. Bodies. vol. 36, is. 4, pp. 171–185. DOI: https://doi.org/10.3103/S088459132004002914. CAMPBELL, W. H. and YOUNG, J. M., 1963. Auroral-zone observations of infrasonic pressure waves related to ionospheric disturbances and geomagnetic activity. J. Geophy. Res. vol. 68, is. 21, pp. 5909–5916. DOI: https://doi.org/10.1029/JZ068i021p0590915. MAEDA, K. and WATANABE, T., 1964. Pulsating Aurorae and Infrasonic Waves in the Polar Atmosphere. J. Atmos. Sci. vol. 21, is. 1, pp. 15–29. DOI: https://doi.org/10.1175/1520-0469(1964)021<0015:PAAIWI>2.0.CO;216. CHIMONAS, G., 1970. Infrasonic waves generated by auroral currents. Planet. Space Sci. vol. 18, is. 4, pp. 591–598. DOI: https://doi.org/10.1016/0032-0633(70)90134-017. ERUSHCHENKOV, A. I. and DOVBNYA, B. V., 1977. On the relationship between high frequency infrasound and geomagnetic pulsations in the auroral zone. Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa. vol. 43, pp. 142–146. (in Russian).18. SUZUKI, Y., 1979. Auroral infrasonic waves and the auroral electrojet. J. Atmos. Terr. Phys. vol. 41, is. 1, pp. 11–23. DOI: https://doi.org/10.1016/0021-9169(79)90042-419. SUZUKI, Y., 1979. Temporal and spatial changes of polar substorms and infrasonic wave emissions. Planet. Space Sci. vol. 27, is. 9, pp. 1195–1208. DOI: https://doi.org/10.1016/0032-0633(79)90139-920. WILSON, C. R., SZUBERLA, C. A. L. and OLSON, J. V., 2010. High-latitude Observations of Infrasound from Alaska and Antarctica: Mountain Associated Waves and Geomagnetic/Auroral Infrasonic Signals. In: A. LE PICHON, E. BLANC, and A. HAUCHECORNE, eds. Infrasound Monitoring for Atmospheric Studies. Dordrecht, Heidelberg, London, New York: Springer Int. Publ. P. 415–454. DOI: https://doi.org/10.1007/978-1-4020-9508-5_1321. CHIMONAS, G. and HINES, C. O., 1970. Atmospheric gravity waves induced by a solar eclipse. J. Geophys. Res. vol. 75, is. 4, p. 875. DOI: https://doi.org/10.1029/JA075i004p0087522. DAVIS, M. J. and DA ROSA, A. V., 1970. Possible Detection of Atmospheric Gravity Waves generated by the Solar Eclipse. Nature. vol. 226, no. 5251, p. 1123. DOI: https://doi.org/10.1038/2261123a023. ICHINOSE, T. and OGAWA, T., 1976. Internal gravity waves deduced from the HF Doppler data during the April 19, 1958, solar eclipse. J. Geophys. Res. vol. 81, is. 13, pp. 2401–2404 DOI: https://doi.org/10.1029/JA081i013p0240124. BROCHE, P., CROCHET, M. and DE MAISTRE, J. C., 1976. Gravity waves generated by the 30 June 1973 solar eclipse in Africa. J. Atmos. Terr. Phys. vol. 38, is. 12, pp. 1361–1364. DOI: https://doi.org/10.1016/0021-9169(76)90147-125. BERTIN, F., HUGHES, K. A. and KERSLEY, L., 1977. Atmospheric waves induced by the solar eclipse of 30 June 1973. J. Atmos. Terr. Phys. vol. 39, is. 4, pp. 457–461. DOI: https://doi.org/10.1016/0021-9169(77)90153-226. JONES, T. B., WRIGHT, D. M., MILNER, J., YEOMAN, T. K., REID, T., CHAPMAN, P. J. and SENIOR, A., 2004. The detection of atmospheric waves produced by the total solar eclipse of 11 August 1999. J. Atmos. Sol.-Terr. Phys. vol. 66, is. 5, pp. 363–374. DOI: https://doi.org/10.1016/j.jastp.2004.01.02927. BUTCHER, E. C., DOWNING, A. M. and Cole, K. D., 1979. Wavelike variations in the F-region in the path of totality of the eclipseb of 23 October 1976. J. Atmos. Terr. Phys. vol. 41, is. 5, pp. 439–444. DOI: https://doi.org/10.1016/0021-9169(79)90068-028. CHERNOGOR, L. F., 2010. Variations in the Amplitude and Phase of VLF Radiowaves in the Ionosphere during the August 1, 2008, Solar Eclipse. Geomagn. Aeron. vol. 50, is. 1, pp. 96–106. DOI: https://doi.org/10.1134/S001679321001011129. CHERNOGOR, L. F., 2010. Wave Response of the Ionosphere to the Partial Solar Eclipse of August 1, 2008. Geomagn. Aeron. vol. 50, is. 3, pp. 346–361. DOI: https://doi.org/10.1134/S001679321003009630. CHERNOGOR, L. F., 2012. Effects of solar eclipses in the ionosphere: Results of Doppler sounding: 1. Experimental data. Geomagn. Aeron. vol. 52, is. 6, pp. 768–778. DOI: https://doi.org/10.1134/S001679321205003931. CHERNOGOR, L. F., 2012. Effects of Solar Eclipses in the Ionosphere: Doppler Sounding Results: 2. Spectral Analysis. Geomagn. Aeron. vol. 52, is. 6, pp. 779–792. DOI: https://doi.org/10.1134/S001679321205004032. BURMAKA, V. P. and CHERNOGOR, L. F., 2013. Solar Eclipse of August 1, 2008, above Kharkov: 2. Observation Results of Wave Disturbances in the Ionosphere. Geomagn. Aeron. vol. 53, is. 4, pp. 479–491. DOI: https://doi.org/10.1134/S001679321304004X33. CHERNOGOR, L. F., 2013. Physical Processes in the Middle Ionosphere Accompanying the Solar Eclipse of January 4, 2011, in Kharkov. Geomagn. Aeron. vol. 53, is. 1, pp. 19–31. DOI: https://doi.org/10.1134/S001679321301005234. CHERNOGOR, L. F., 2013. Physical effects of solar eclipses in atmosphere and geospace: monograph. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).35. PUSHIN, V. F. and CHERNOGOR, L. F., 2013. Infrasonic effect of solar eclipses. Radio Phys. Radio Astron. vol. 18, no. 2, pp. 127–137. (in Russian).36. CHERNOGOR, L. F. and GARMASH, K. P., 2017. Magneto-Ionospheric Effects of the Solar Eclipse of March 20, 2015, over Kharkov. Geomagn. Aeron. vol. 57, is. 1, pp. 72–83. DOI: https://doi.org/10.1134/S001679321606006237. STANKOV, S. M., BERGEOT, N., BERGHMANS, D., BOLSÉE, D., BRUYNINX, C., CHEVALIER, J.-M., CLETTE, F., DE BACKER, H., DE KEYSER, J., D’HUYS, E., DOMINIQUE, M., LEMAIRE, J. F., MAGDALENIĆ, J., MARQUÉ, C., PEREIRA, N., PIERRARD, V., SAPUNDJIEV, D., SEATON, D. B., STEGEN, K., VAN DER LINDEN, R., VERHULST, T. G. W. and WEST, M. J., 2017. Multi-instrument observations of the solar eclipse on 20 March 2015 and its effects on the ionosphere over Belgium and Europe. J. Space Weather Space Clim. vol. 7, id. A19 DOI: https://doi.org/10.1051/swsc/201701738. NYKIEL, G., ZANIMONSKIY, Y. M., YAMPOLSKI, Y. M. and FIGURSKI, M., 2017. Efficient Usage of Dense GNSS Networks in Central Europe for the Visualization and Investigation of Ionospheric TEC Variations. Sensors. vol. 17, is. 10, id. 2298. DOI: https://doi.org/10.3390/s1710229839. MOŠNA, Z., BOŠKA, J., KNÍŽOVÁ, P. K., ŠINDELÁŘOVÁ, T., KOUBA, D., CHUM, J., REJFEK, L., POTUŽNÍKOVÁ, K., ARIKAN, F. and TOKER, C., 2018. Observation of the solar eclipse of 20 March 2015 at the Pruhonice station. J. Atmos. Sol.-Terr. Phys. vol. 171, pp. 277–284. DOI: https://doi.org/10.1016/j.jastp.2017.07.01140. PANASENKO, S. V., OTSUKA, Y., VAN DE KAMP, M., CHERNOGOR, L. F., SHINBORI, A., TSUGAWA, T. and NISHIOKA, M., 2019. Observation and characterization of traveling ionospheric disturbances induced by solar eclipse of 20 March 2015 using incoherent scatter radars and GPS networks. J. Atmos. Sol.-Terr. Phys. vol. 191, id. 105051. DOI: https://doi.org/10.1016/j.jastp.2019.05.01541. GUO, Q., CHERNOGOR, L. F., GARMASH, K. P., ROZUMENKO, V. T. and ZHENG, Y., 2020. Radio Monitoring of Dynamic Processes in the Ionosphere Over China During the Partial Solar Eclipse of 11 August 2018. Radio Sci. vol. 55, is. 2, id. e2019RS006866. DOI: https://doi.org/10.1029/2019RS00686642. SOMSIKOV, V. M. 1983. Solar terminator and dynamic phenomena in the astrosphere. Alma-Ata, Kazakhstan: Nauka Publ. (in Russian). 43. SOMSIKOV, V. M., 1991 Waves in the Atmosphere Caused by the Solar Terminator: A Review, Geomagnetizm i Aeronomiia. vol. 31, no. 1, pp. 1–12. (in Russian)44. BURMAKA, V. P., TARAN, V. I. and CHERNOGOR, L. F., 2004. Ionospheric Wave Disturbances Accompanied by Rocket Launches against a Background of Natural Transient Processes. Geomag. Aeron. vol. 44, no. 4, pp. 476–491.45. CHERNOGOR, L. F. and SHAMOTA, M. A., 2009. Geomagnetic pulsations associated with solar terminators near Kharkiv city. 1. Spectral analysis. Space Sci. Tech. vol. 15, no. 5, pp. 43–51. (in Russian). DOI: https://doi.org/10.15407/knit2009.05.04346. CHERNOGOR, L. F. and SHAMOTA, M. A., 2009. Geomagnetic pulsations associated with solar terminators near Kharkiv city. 2. Statistical analysis. Space Sci. Tech. vol. 15, no. 6, pp. 14–19. (in Russian). DOI: https://doi.org/10.15407/knit2009.06.01447. CHERNOGOR, L. F., 2012. Geomagnetic pulsations accompanied the solar terminator moving through magnetoconjugate region. Radio Phys. Radio Astron. vol. 17, no. 1, pp. 57–66. (in Russian).48. SOLOVIEV, S. P., RYBNOV, YU. S. and KHARLAMOV, V. A., 2015. The synchronic disturbances of the acoustic and electric fields caused by artificial and natural sources. In: V. V. ADUSHKIN and G. G. KOCHERYAN, eds. Trigger effects in geosystems. Proceedings of the 3rd All-Russia Meeting. Moskow, Russia: GEOS Publ., pp. 317–326. (in Russian).49. CHERNOGOR, L. F., 2006. The tropical cyclone as an element of the Earth – atmosphere – ionosphere – magnetosphere system. Space Sci. Tech. vol. 12, no. 2-3, pp. 16–36. (in Russian). DOI: https://doi.org/10.15407/knit2006.02.01650. HETZER, C. H., WAXLER, R., GILBERT, K. E., TALMADGE, C. L. and BASS, H. E., 2008. Infrasound from hurricanes: Dependence on the ambient ocean surface wave field. Geophys. Res. Lett. vol. 35, is. 14, id: L14609. DOI: https://doi.org/10.1029/2008GL03461451. HETZER, C. H., GILBERT, K. E., WAXLER, R. and TALMADGE, C. L., 2010. Generation of Microbaroms by Deep-Ocean Hurricanes. In: A. LE PICHON, E. BLANC, and A. HAUCHECORNE, eds. Infrasound Monitoring for Atmospheric Studies. Dordrecht: Springer. DOI: https://doi.org/10.1007/978-1-4020-9508-5_852. NISHIOKA, M., TSUGAWA, T., KUBOTA, M. and ISHII, M., 2013. Concentric waves and short-period oscillations observed in the ionosphere after the 2013 Moore EF5 tornado. Geophys. Res. Lett. vol. 40, is. 21, pp. 5581–5586. DOI: https://doi.org/10.1002/2013GL05796353. CHOU, M.-Y., LIN, C. C. H., YUE, J., CHANG, L. C., TSAI, H.-F. and CHEN, C.-H., 2017. Medium-scale traveling ionospheric disturbances triggered by Super Typhoon Nepartak (2016). Geophys. Res. Lett. vol. 44, is. 15, pp. 7569–7577. DOI: https://doi.org/10.1002/2017GL07396154. SPIVAK, A. A., RYBNOV, YU. S. and KHARLAMOV, V. A., 2018. Variations in Geophysical Fields during Hurricanes and Squalls. Dokl. Earth Sci. vol. 480, pp. 788–791. DOI: https://doi.org/10.1134/S1028334X1806019355. RICHARDS, A. F., 1963. Volcanic sounds: Investigation and analysis. J. Geophys. Res. vol. 68, is. 3, pp. 919–928. DOI: https://doi.org/10.1029/JZ068i003p0091956. GOERKE, V. H., YOUNG, J. M. and COOK, R. K., 1965. Infrasonic observations of the May 16, 1963, volcanic explosion on the island of Bali. J. Geophys. Res. vol. 70, is. 24, pp. 6017–6022. DOI: https://doi.org/10.1029/JZ070i024p0601757. BOLT, B. A. and TANIMOTO, T., 1981. Atmospheric oscillations after the May 18, 1980 eruption of Mount St. Helens. Eos. vol. 62, is. 23, pp. 529–530. DOI: https://doi.org/10.1029/EO062i023p0052958. KIEFFER, S. W., 1981. Blast dynamics at Mount St Helens on 18 May 1980. Nature. vol. 291, no. 5816, pp. 568–570. DOI: https://doi.org/10.1038/291568a059. BANISTER, J. R., 1984. Pressure wave generated by the Mount St. Helens eruption. J. Geophys. Res. vol. 89, is. D3, pp. 4895–4904. DOI: https://doi.org/10.1029/JD089iD03p0489560. REED, J. W., 1987. Air pressure waves from Mount St. Helens eruptions. J. Geophys. Res. vol. 92, is. D10, pp. 11979–11992. DOI: https://doi.org/10.1029/JD092iD10p1197961. YAMASATO, H., 1997. Quantitative Analysis of Pyroclastic Flows Using Infrasonic and Seismic Data at Unzen Volcano, Japan. J. Phys. Earth. vol. 45, is. 6, pp. 397–416. DOI: https://doi.org/10.4294/jpe1952.45.39762. RIPEPE, M., CILIBERTO, S. and DELLA SCHIAVA, M., 2001. Time constraints for modeling source dynamics of volcanic explosions at Stromboli. J. Geophys. Res.: Solid Earth. vol. 106, is. B5, pp. 8713–8727. DOI: https://doi.org/10.1029/2000JB90037463. RIPEPE, M., HARRIS, A. J. L. and CARNIEL, R., 2002. Thermal, seismic and infrasonic evidences of variable degassing rates at Stromboli volcano. J. Volcanol. Geotherm. Res. vol. 118, is. 3-4, pp. 285–297. DOI: https://doi.org/10.1016/S0377-0273(02)00298-664. EVERS, L. G. and Haak, H. W., 2005. The detectability of infrasound in The Netherlands from the Italian volcano Mt. Etna. J. Atmos. Sol.-Terr. Phys. vol. 67, is. 3, pp. 259–268. DOI: https://doi.org/10.1016/j.jastp.2004.09.00265. CHERNOGOR, L. F., 2012. Physics and Ecology of Disasters. Kharkiv: V. N. Karazin Kharkiv National University Publ. (in Russian).66. DANIELS, F. B., 1962. Generation of Infrasound by Ocean Waves. J. Acoust. Soc. Am. vol. 34, is. 3, pp. 352–353. DOI: https://doi.org/10.1121/1.192812867. DONN, W. L. and POSMENTIER, E. S., 1967. Infrasonic waves from the marine storm of April 7, 1966. J. Geophys. Res. vol. 72, is. 8, pp. 2053–2061. DOI: https://doi.org/10.1029/JZ072i008p0205368. BREKHOVSKIKH, L. M., GONCHAROV, V. V, KURTEPOV, V. M. and NAUGOLNYKH, K. A., 1973. The radiation of infrasound into the atmosphere by surface waves in the ocean. Izv. Atmos. Ocean Phys. vol. 9, no. 9, pp. 899–907. (in Russan).69. ARENDT, S. and FRITTS, D. C., 2000. Acoustic radiation by ocean surface waves. J. Fluid Mech. vol. 415, pp. 1–21. DOI: https://doi.org/10.1017/S002211200000863670. GARCÉS, M., WILLIS, M., HETZER, C., LE PICHON, A. and DROB, D., 2004. On using ocean swells for continuous infrasonic measurements of winds and temperature in the lower, middle, and upper atmosphere. Geophys. Res. Lett. vol. 31, is. 19, id. L19304. DOI: https://doi.org/10.1029/2004GL02069671. LE PICHON, A., MAURER, V., RAYMOND, D. and HYVERNAUD, O., 2004. Infrasound from ocean waves observed in Tahiti. Geophys. Res. Lett. vol. 31, is. 19, id. L19103. DOI: https://doi.org/10.1029/2004GL02067672. WAXLER, R. and Gilbert, K. E., 2006. The radiation of atmospheric microbaroms by ocean waves. J. Acoust. Soc. Am. vol. 119, is. 5, pp. 2651–2664. DOI: https://doi.org/10.1121/1.219160773. GARCÉS, M., WILLIS, M. and LE PICHON, A., 2010. Infrasonic Observations of Open Ocean Swells in the Pacific: Deciphering the Song of the Sea. In: A. LE PICHON, E. BLANC, A. HAUCHECORNE, eds. Infrasound Monitoring for Atmospheric Studies. Dordrecht: Springer, 235–248. DOI: https://doi.org/10.1007/978-1-4020-9508-5_774. HETZER, C. H., GILBERT, K. E., WAXLER, R., and TALMADGE, C. L., 2010. Generation of Microbaroms by Deep-Ocean Hurricanes. In: A. LE PICHON, E. BLANC, A. HAUCHECORNE, eds. Infrasound Monitoring for Atmospheric Studies. Dordrecht: Springer, pp. 249–262. DOI: https://doi.org/10.1007/978-1-4020-9508-5_875. GOSTINTSEV, YU. A., IVANOV, E. A., KOPYLOV, N. P. and SHATSKIKH YU. V., 1983. Wave disturbances of the atmosphere due to large fires. Combust., Explos. Shock Waves. vol. 19, is. 4, pp. 427–429. DOI: https://doi.org/10.1007/BF0078363976. SPIVAK, A. A., RIABOVA, S. A. and KHARLAMOV, V. A., 2019. The Electric Field in the Surface Atmosphere of the Megapolis of Moscow. Geomagn. Aeron. vol. 59, no. 4, pp. 467–478. DOI: https://doi.org/10.1134/S001679321904016977. DONN, W. L. and POSMENTIER, E. S., 1964. Ground-coupled air waves from the Great Alaskan Earthquake. J. Geophys. Res. vol. 69, is. 24, pp. 5357–5361. DOI: https://doi.org/10.1029/JZ069i024p0535778. BOWMAN, G. G. and SHRESTHA, K. L., 1965. Atmospheric pressure waves from the Japanese earthquake on 16 June 1964. Q. J. R. Meteorol. Soc. vol. 91, is. 388, pp. 223–224. DOI: https://doi.org/10.1002/qj.4970913881379. DAVIES, K. and BAKER, D. M., 1965. Ionospheric effects observed around the time of the Alaskan earthquake of March 28, 1964. J. Geophys. Res. vol. 70, is. 9, pp. 2251–2253. DOI: https://doi.org/10.1029/JZ070i009p0225180. ROW, R. V., 1966. Evidence of long-period acoustic-gravity waves launched into theFregion by the Alaskan earthquake of March 28, 1964. J. Geophys. Res. vol. 71, is. 1, pp. 343–345. DOI: https://doi.org/10.1029/JZ071i001p0034381. MIKUMO, T., 1968. Atmospheric pressure waves and tectonic deformation associated with the Alaskan earthquake of March 28, 1964. J. Geophys. Res. vol. 73, is. 6, pp. 2009–2025. DOI: https://doi.org/10.1029/JB073i006p0200982. COOK, R. K. and BEDARD JR, A. J., 1971. On the Measurement of Infrasound. Geophys. J. R. Astron. Soc. vol. 26, is. 1-4, pp. 5–11. DOI: https://doi.org/10.1111/j.1365-246X.1971.tb03378.x83. YOUNG, J. M. and GREENE, G. E., 1982. Anomalous infrasound generated by the Alaskan earthquake of 28 March 1964. J. Acoust. Soc. Am. vol. 71, is. 2, pp. 334–339. DOI: https://doi.org/10.1121/1.38745784. KELLEY, M. C., LIVINGSTON, R. and MCCREADY, M., 1985. Large amplitude thermospheric oscillations induced by an earthquake. Geophys. Res. Lett. vol. 12, is. 9, pp. 577–580. DOI: https://doi.org/10.1029/GL012i009p0057785. OLSON, J. V., WILSON, C. R. and HANSEN, R. A., 2003. Infrasound associated with the 2002 Denali fault earthquake, Alaska. Geophys. Res. Lett. vol. 30, is. 23, id. 2195. DOI: https://doi.org/10.1029/2003GL01856886. GARCÉS, M., CARON, P., HETZER, C., LE PICHON, A., BASS, H., DROB, D. and BHATTACHARYYA, J., 2005. Deep infrasound radiated by the Sumatra earthquake and tsunami. Eos. vol. 86, is. 35, pp. 317–320. DOI: https://doi.org/10.1029/2005EO35000287. LE PICHON, A., HERRY, P., MIALLE, P., VERGOZ, J., BRACHET, N., GARCÉS, M., DROB, D. and CERANNA, L., 2005. Infrasound associated with 2004–2005 large Sumatra earthquakes and tsunami. Geophys. Res. Lett. vol. 32, is. 19, id. L19802. DOI: https://doi.org/10.1029/2005GL02389388. MUTSCHLECNER, J. P. and WHITAKER, R. W., 2005. Infrasound from earthquakes. J. Geophys. Res: Atmospheres. vol. 110, is. D1, id: D01108. DOI: https://doi.org/10.1029/2004JD00506789. MIKUMO, T., SHIBUTANI, T., LE PICHON, A., GARCÉS, M., FEE, D., TSUYUKI, T., WATADA, S. and MORII, W., 2008. Low-frequency acoustic-gravity waves from coseismic vertical deformation associated with the 2004 Sumatra-Andaman earthquake (Mw=9.2). J. Geophys. Res: Solid Earth. vol. 113, is. B12, id: B12402. DOI: https://doi.org/10.1029/2008JB00571090. GUO, Q., CHERNOGOR, L. F., GARMASH, K. P., ROZUMENKO, V. T. and ZHENG, YU., 2019. Dynamical processes in the ionosphere following the moderate earthquake in Japan on 7 July 2018. J. Atmos. Sol.-Terr. Phys. vol. 186, pp. 88–103. DOI: https://doi.org/10.1016/j.jastp.2019.02.00391. LUO, Y., GUO, Q., ZHENG, Y., GARMASH, K. P., CHERNOGOR, L. F. and SHULGA, S. M., 2019. HF radio-wave characteristic variations over China during moderate earthquake in Japan on September 5, 2018. Visnyk of V. N. Karazin Kharkiv National University, series “Radio Physics and Electronics”. vol. 30, pp. 16–26. (in Russian). DOI: https://doi.org/10.26565/2311-0872-2019-30-0292. LUO, Y., CHERNOGOR, L. F., GARMASH, K. P., GUO, Q. and ZHENG, YU. Seismic-ionospheric effects: results of radio soundings at oblique incidence. Radio Physics and Radio Astronomy. vol. 25, no. 3, pp. 218–230. (in Ukrainian). DOI: https://doi.org/10.15407/rpra25.03.21893. GARCÉS, M., CARON, P., HETZER, C., LE PICHON, A., BASS, H., DROB, D. and BHATTACHARYYA, J., 2005. Deep infrasound radiated by the Sumatra earthquake and tsunami. Eos. vol. 86, is. 35, pp. 317–320. DOI: https://doi.org/10.1029/2005EO35000294. BALACHANDRAN, N. K., 1979. Infrasonic signals from thunder. J. Geophys. Res.: Oceans vol. 84, is. C4, pp. 1735–1745. DOI: https://doi.org/10.1029/JC084iC04p0173595. BALACHANDRAN, N. K., 1983. Acoustic and electric signals from lightning. J. Geophys. Res.: Oceans. vol. 88, is. C6, pp. 3879–3884. DOI: https://doi.org/10.1029/JC088iC06p0387996. FARGES, T., BLANC, E., LE PICHON, A., NEUBERT, T. and ALLIN, T. H., 2005. Identification of infrasound produced by sprites during the Sprite2003 campaign. Geophys. Res. Lett. vol. 32, is. 1. Id. L01813. DOI: https://doi.org/10.1029/2004GL02121297. LIN, T.-L. and LANGSTON, C. A., 2007. Infrasound from thunder: A natural seismic source. Geophys. Res. Lett. vol. 34, is. 14, id. L14304. https://doi.org/10.1029/2007GL03040498. FARGES, T. and BLANC, E., 2010. Characteristics of infrasound from lightning and sprites near thunderstorm areas. J. Geophys. Res.: Space Physics. vol. 115, is. A6, id. A00E31. DOI: https://doi.org/10.1029/2009JA01470099. BLANC, E., FARGES, T., LE PICHON, A. and HEINRICH, P., 2014. Ten year observations of gravity waves from thunderstorms in western Africa. J. Geophys. Res.: Atmospheres. vol. 119, is. 11, pp. 6409–6418. DOI: https://doi.org/10.1002/2013JD020499100. SPIVAK, A. A., RYBNOV, YU. S., SOLOVIEV, S. P. and KHARLAMOV, V. A., 2017. Acoustic and electric precursors of heavy thunderstorm under megalopolis conditions. Geophysical processes and biosphere. vol. 16, no. 4, pp. 81–91. (in Russian). DOI: https://doi.org/10.21455/GPB2017.4-7101. ROSE, G., OKSMAN, J. and KATAJA, E., 1961. Round-the-World Sound Waves produced by the Nuclear Explosion on October 30, 1961, and their Effect on the Ionosphere at Sodankylä. Nature. vol. 192, no. 4808, pp. 1173–1174. DOI: https://doi.org/10.1038/1921173a0102. DONN, W. L. and EWING, M., 1962. Atmospheric waves from nuclear explosions. J. Geophys. Res. vol. 67, is. 5, pp. 1855–1866. DOI: https://doi.org/10.1029/JZ067i005p01855103. DONN, W. L. and EWING, M., 1962. Atmospheric Waves from Nuclear Explosions – Part II: The Soviet Test of 30 October 1961. J. Atmos. Sci. vol. 19, is. 3, pp. 264–273. DOI: https://doi.org/10.1175/1520-0469(1962)019<0264:AWFNEI>2.0.CO;2104. FARKAS, E., 1962. Transit of Pressure Waves through New Zealand from the Soviet 50 Megaton Bomb Explosion. Nature. vol. 193, no. 4817, pp. 765–766. DOI: https://doi.org/10.1038/193765a0105. GARDINER, G. W., 1962. Effects of the nuclear explosion of 30 October 1961. J. Atmos. Terr. Phys. vol. 24, is. 11, pp. 990–993. DOI: https://doi.org/10.1016/0021-9169(62)90146-0106. PFEFFER, R. L. and ZARICHNY, J., 1962. Acoustic-Gravity Wave Propagation from Nuclear Explosions in the Earth’s Atmosphere. J. Atmos. Sci. vol. 19, is. 3, pp. 256–263. DOI: https://doi.org/10.1175/1520-0469(1962)019<0256:AGWPFN>2.0.CO;2107. WEXLER, H. and HASS, W. A., 1962. Global atmospheric pressure effects of the October 30, 1961, explosion. J. Geophys. Res. vol. 67, is. 10, pp. 3875–3887. DOI: https://doi.org/10.1029/JZ067i010p03875108. DONN, W. L., PFEFFER, R. L. and EWING, M., 1963. Propagation of Air Waves from Nuclear Explosions: Nuclear explosions provide data on the relation of air-wave propagation to atmospheric structure. Science. vol. 139, is. 3552, pp. 307–317. DOI: https://doi.org/10.1126/science.139.3552.307109. WEBB, H. D. and DANIELS, F. B., 1964. Ionospheric oscillations following a nuclear explosion. J. Geophys. Res. vol. 69, is. 3, pp. 545–546. DOI: https://doi.org/10.1029/JZ069i003p00545110. OKSMAN, J. and KIVINEN, M., 1965. Ionospheric gravity waves caused by nuclear explosions. Geophysica. vol. 9, pp. 119–129.111. MCCRORY, R. A., 1967. Atmospheric Pressure Waves from Nuclear Explosions. J. Atmos. Sci. vol. 24, is. 4, pp. 443–447. DOI: https://doi.org/10.1175/1520-0469(1967)024<0443:APWFNE>2.0.CO;2112. ROW, R. V., 1967. Acoustic-gravity waves in the upper atmosphere due to a nuclear detonation and an earthquake. J. Geophys. Res. vol. 72, is. 5, pp. 1599–1610. DOI: https://doi.org/10.1029/JZ072i005p01599113. CHE, I.-Y., PARK, J., KIM, I., KIM, T. S. and LEE, H.-I., 2014. Infrasound signals from the underground nuclear explosions of North Korea. Geophys. J. Int. vol. 198, is. 1, pp. 495–503. DOI: https://doi.org/10.1093/gji/ggu150114. KULICHKOV, S. N., 1992. Long-range sound propagation in the atmosphere (Review). Izv. Acad. Nauk SSSR, Fiz. Atmos. Okeana. vol. 28, no. 4, pp. 3–20.115. BUSH, G. A., IVANOV, E. A., KULICHKOV, S. N. and PEDANOV, M. V., 1997. Some Results of Recording Acoustic Signals From High-Altitude Explosions. Izv. Atmos. Ocean. Phys. vol. 33, no. 1, pp. 59–63.116. CALAIS, E., MINSTER, J. B., HOFTON, M. A. and HEDLIN, M. A. H., 1998. Ionospheric Signature of Surface Mine Blasts from Global Positioning System Measurements. Geophys. J. Int. vol. 132, is. 1, pp. 191–202. DOI: https://doi.org/10.1046/j.1365-246x.1998.00438.x117. CHERNOGOR, L. F., 2004. Geophysical effects and geoecological consequences of multiple chemical explosions at ammunition dumps in Artemovsk. Geofizicheskiy Zhurnal. vol. 26, no. 4, 31–44. (in Russian).118. CHERNOGOR, L. F., 2004. Geophysical Effects and Ecological Consequences of Fire and Explosions of Ammunitions at a Military Base Near Melitopol. Geofizicheskiy Zhurnal. vol. 26, no. 6, 61–73. (in Russian).119. GIBBONS, S. J., RINGDAL, F. and KVÆRNA, T., 2007. Joint seismic-infrasonic processing of recordings from a repeating source of atmospheric explosions. J. Acoust. Soc. Am. vol. 122, is. 5, id. EL158. DOI: https://doi.org/10.1121/1.2784533120. CHERNOGOR, L. F. and GARMASH, K. P., 2018. Magnetospheric and Ionospheric Effects Accompanying the Strongest Technogenic Catastrophe. Geomagn. Aeron. vol. 58, is. 5, pp. 673–685. DOI: https://doi.org/10.1134/S0016793218050031121. CHERNOGOR, L. F., LIASHCHUK, O. I. and SHEVELEV, M. B., 2018. Parameters of infrasonic signals generated in the atmosphere by multiple explosions at an ammunition depot. Radio Phys. Radio Astron. vol. 23, no. 4, pp. 280–293. (in Russian). DOI: https://doi.org/10.15407/rpra23.04.280122. DONN, W. L., POSMENTIER, E., FEHR, U. and BALACHANDRAN, N. K., 1968. Infrasound at Long Range from Saturn V, 1967. Science. vol. 162, is. 3858, pp. 1116–1120. DOI: https://doi.org/10.1126/science.162.3858.1116123. KASCHAK, G. R., 1969. Long-range supersonic propagation of infrasonic noise generated by missiles. J. Geophys. Res. vol. 74, is. 3, pp. 914–918. DOI: https://doi.org/10.1029/JA074i003p00914124. BALACHANDRAN, N. K., DONN, W. L. and KASCHAK, G., 1971. On the Propagation of Infrasound from Rockets: Effects of Winds. J. Acoust. Soc. Am. vol. 50, is. 2A, pp. 397–404. DOI: https://doi.org/10.1121/1.1912649125. COTTEN, D. and DONN, W. L., 1971. Sound from Apollo rockets in space. Science. vol. 171, is. 3971, pp. 565–567. DOI: https://doi.org/10.1126/science.171.3971.565126. DONN, W. L., BALACHANDRAN, N. K. and RIND, D., 1975. Tidal wind control of long-range rocket infrasound. J. Geophys. Res. vol. 80, is. 12, pp. 1662–1664. . DOI: https://doi.org/10.1029/JC080i012p01662127. NOBLE, S. T., 1990. A large-amplitude traveling ionospheric disturbance excited by the space shuttle during launch. J. Geophys. Res.: Space Physics. vol. 95, is. A11, pp. 19037–19044. DOI: https://doi.org/10.1029/JA095iA11p19037128. LI, Y. Q., JACOBSON, A. R., CARLOS, R. C., MASSEY, R. S., TARANENKO, Y. N. and WU, G., 1994. The blast wave of the Shuttle plume at ionospheric heights. Geophys. Res. Lett. vol. 21, is. 24, pp. 2737–2740. DOI: https://doi.org/10.1029/94GL02548129. CHERNOGOR, L. F., 2009. Radiophysical and Geomagnetic Effects of Rocket Engine Burn: Monograph. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).130. CHERNOGOR, L. F. and BLAUNSTEIN, N., 2014. Radiophysical and Geomagnetic Effects of Rocket Burn and Launch in the Near-the-Earth Environment. Boca Raton, London, New York: CRC Press. Taylor & Francis Group.131. KAKINAMI, Y., YAMAMOTO, M., CHEN, C.-H., WATANABE, S., LIN, C., LIU, J.-Y. and HABU, H., 2013. Ionospheric disturbances induced by a missile launched from North Korea on 12 December 2012. J. Geophys. Res.: Space Physics. vol. 118, is. 8, pp. 5184–5189. DOI: https://doi.org/10.1002/jgra.50508132. LIN, C. H., LIN, J. T., CHEN, C. H., LIU, J. Y., SUN, Y. Y., KAKINAMI, Y., MATSUMURA, M., CHEN, W. H., LIU, H. and RAU, R. J., 2014. Ionospheric shock waves triggered by rockets. Ann. Geophys. vol. 32, no. 9, pp. 1145–1152. DOI: https://doi.org/10.5194/angeo-32-1145-2014133. DING, F., WAN, W., MAO, T., WANG, M., NING, B., ZHAO, B. and XIONG, B., 2014. Ionospheric response to the shock and acoustic waves excited by the launch of the Shenzhou 10 spacecraft. Geophys. Res. Lett. vol. 41, is. 10, pp. 3351–3358. DOI: https://doi.org/10.1002/2014GL060107134. LIN, C. C. H., SHEN, M.-H., CHOU, M.-Y., CHEN, C.-H., YUE, J., CHEN, P.-C. and MATSUMURA, M., 2017. Concentric traveling ionospheric disturbances triggered by the launch of a SpaceX Falcon 9 rocket. Geophys. Res. Lett. vol. 44, is. 15, pp. 7578–7586. DOI: https://doi.org/10.1002/2017GL074192135. CHOU, M.-Y., SHEN, M.-H., LIN, C. C. H., YUE, J., CHEN, C.-H., LIU, J.-Y. and LIN, J.-T., 2018. Gigantic Circular Shock Acoustic Waves in the Ionosphere Triggered by the Launch of FORMOSAT-5 Satellite. Space Weather. vol. 16, is. 2, pp. 172–184. DOI: https://doi.org/10.1002/2017SW001738136. CHOU, M.-Y., LIN, C. C. H., SHEN, M.-H., YUE, J., HUBA, J. D. and CHEN, C.-H., 2018. Ionospheric Disturbances Triggered by SpaceX Falcon Heavy. Geophys. Res. Lett. vol. 45, is. 13, pp. 6334–6342. DOI: https://doi.org/10.1029/2018GL078088137. GARMASH, K. P. and CHERNOGOR, L. F., 1998. Near-Earth effects which accompanied high-powerful radio emission action. Zarubezhnaya radioelectronika. Uspekhi sovremennoi radioelektroniki. no. 6, pp. 17–40. (in Russian).138. GARMASH, K. P. and CHERNOGOR, L. F., 1998. Electromagnetic and geophysics effects in near-Earth plasma, which accompanied high-powerful radio emission action. Electromagnitnye yavleniya. vol. 1, no. 1, pp. 90–110. (in Russian).139. BURMAKA, V. P., DOMNIN, I. F., URYADOV, V. P. and CHERNOGOR, L. F., 2009. Variations in the Parameters of Scattered Signals and the Ionosphere Connected with Plasma Modification by High-Power Radio Waves. Radiophys. Quantum Electron. vol. 52, is. 11, pp. 774–795. DOI: https://doi.org/10.1007/s11141-010-9191-2140. CHERNOGOR, L. F., VERTOGRADOV, G. G., URYADOV, V. P., VERTOGRADOVA, E. G. and SHAMOTA, M. A., 2011. Consistent Quasi-Periodic Variations of the Geomagnetic Pulsation Level and Doppler Frequency Shift of Decametric Radio Waves Aspect-Scattered by Artificial Field-Aligned Ionospheric Irregularities. Radiophys. Quantum Electron. vol. 53, is. 12, pp. 688–705. DOI: https://doi.org/10.1007/s11141-011-9262-z141. CHERNOGOR, L. F., FROLOV, V. L., KOMRAKOV, G. P. and PUSHIN, V. F., 2011. Variations in the ionospheric wave perturbation spectrum during periodic heating of the plasma by high-power high-frequency radio waves. Radiophys. Quantum Electron. vol. 54, no. 2, pp. 75–88. DOI: https://doi.org/10.1007/s11141-011-9272-x142. DOMNIN, I. F., PANASENKO, S. V., URYADOV, V. P. and CHERNOGOR, L. F., 2012. Results of radiophysical studies of the wave processes in the ionospheric plasma during its heating by high-power radio emission of the Sura facility. Radiophys. Quantum Electron. vol. 55, is. 4, pp. 253–265. DOI: https://doi.org/10.1007/s11141-012-9364-2143. CHERNOGOR, L. F. and FROLOV, V. L., 2012. Traveling ionospheric disturbances generated due to periodic plasma heating by high-power high-frequency radiation. Radiophys. Quantum Electron. vol. 55, is. 1-2, pp. 13–32. DOI: https://doi.org/10.1007/s11141-012-9346-4144. CHERNOGOR, L. F., FROLOV, V. L. and PUSHIN V. F., 2012. Infrasound oscillations in the ionosphere affected by high-power radio waves. Radiophys. Quantum Electron. vol. 55, is. 5, pp. 296–308. DOI: https://doi.org/10.1007/s11141-012-9369-x145. CHERNOGOR, L. F. and FROLOV, V. L., 2013. Features of Propagation of the Acoustic-Gravity Waves Generated by High-Power Periodic Radiation. Radiophys. Quantum Electron. 2013. vol. 56, is. 4, pp. 197–215. DOI: https://doi.org/10.1007/s11141-013-9426-0146. CHERNOGOR, L. F. and FROLOV, V. L., 2014. Geomagnetic Pulsation Amplitude and Spectrum Variations Accompanying the Ionospheric Heating by High-Power Radio waves from the Sura Facility. Radiophys. Quantum Electron. vol. 57, is. 5, pp. 340–359. DOI: https://doi.org/10.1007/s11141-014-9518-5147. CHERNOGOR, L. F., 2014. Physics of High-Power Radio Emissions in Geospace: Monograph. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).148. CHERNOGOR, L. F., PANASENKO, S. V., FROLOV, V. L. and DOMNIN, I. F., 2015. Observations of the Ionospheric Wave Disturbances Using the Kharkov Incoherent Scatter Radar upon RF Heating of the Near-Earth Plasma. Radiophys. Quantum Electron. vol. 58, is. 2, pp. 79–91. DOI: https://doi.org/10.1007/s11141-015-9583-4149. CHERNOGOR, L. F., GARMASH, K. P. and FROLOV, V. L., 2019. Large-scale disturbances in the lower and middle ionosphere accompanying its modification by the Sura heater. Radiophys. Quantum Electron. vol. 62, is. 6, pp. 395–411. DOI: https://doi.org/10.1007/s11141-019-09986-7150. BALACHANDRAN, N. K., DONN, W. L. and RIND, D. H., 1977. Concorde Sonic Booms as an Atmospheric Probe. Science. vol. 197, is. 4298, pp. 47–49. DOI: https://doi.org/10.1126/science.197.4298.47151. DONN, W. L., 1978. Exploring the Atmosphere with Sonic Booms: Or How I Learned to Love the Concorde. Am. Sci. vol 66, is. 6, pp. 724–733.152. DONN, W. L. and RIND, D., 1979. Monitoring Stratospheric Winds with Concorde-Generated Infrasound. J. Appl. Meteor. vol. 18, is. 7, pp. 945–952. DOI: https://doi.org/10.1175/1520-0450(1979)018<0945:MSWWCG>2.0.CO;2153. AFANASIEVA, N. A., PLYATSUK, L. D., FILATOV, L. G. and TRUNOVA, I. A., 2014. Pulse infrasound signal produced by a wind turbine. Principles of assessment. Eastern-European Journal of Enterprise Technologies. vol. 6, no. 10(72), pp. 13–19. (in Russian). DOI: https://doi.org/10.15587/1729-4061.2014.30979154. SPIVAK, A. A., LOKTEV, D. N., RYBNOV, YU. S., SOLOVIEV, S. P. and KHARLAMOV, V. A., 2016. Geophysical fields of a megalopolis. Izv. Atmos. Ocean. Phys. vol. 52, is. 8, pp. 841–852. DOI: https://doi.org/10.1134/S0001433816080107155. CHERNOGOR, L. F., 2017. Electric and magnetic effects of infrasound in the atmosphere. In: Proceedings of 3rd All-Russian Conference on Global electric circuit. Borok geophysical observatory of Shmidt Institute of Physics of the Earth, RAS. Yaroslavl’, Russia: Filigran’ Publ., pp. 11–12. (in Russian).156. KANAMORI, H., MORI, J., ANDERSON, D. L. and HEATON, T. H., 1991. Seismic excitation by the space shuttle Columbia. Nature. vol. 349, no. 6312, pp. 781–782. DOI: https://doi.org/10.1038/349781a0157. YAMPOLSKI, YU. M., ZALIZOVSKI, A. V., LITVINENKO, L. M., LIZUNOV, G. V., GROVES, K. and MOLDWIN, M., 2004. Magnetic Field Variations in Antarctica and the Conjugate Region (New England) Stimulated by Cyclone Activity. Radio Phys. Radio Astron. vol. 9, no. 2, pp. 130–152. (in Russian).158. CHEKRYZHOV, V. M., SVIRKUNOV, P. N. and KOZLOV, S. V., 2019. The Influence of Cyclonic Activity on the Geomagnetic Field Disturbance. Geomagn. Aeron. vol. 59, is. 1, pp. 53–61. DOI: https://doi.org/10.1134/S0016793219010031159. SOLOVIEV, S. P., RYBNOV, YU. S. and KHARLAMOV, V. A., 2015. The synchronic disturbances of the acoustic and electric fields caused by artificial and natural sources. In: V. V. ADUSHKIN and G. G. KOCHERYAN, eds. Abstracts of 3rd All-Russian Seminar–Meeting on Trigger Effects in Geosystems. Moscow, Russia: GEOS Publ. p. 71. (in Russian).160. SURKOV, V. V., 2000. Electromagnetic Effects Caused by Earthquakes and Explosions. Moscow, Russia: MEPhI Press. (in Russian).161. CHERNOGOR, L. F., 2018. Physical effects of the Romanian meteoroid. 2. Space Sci. Technol. vol. 24, no. 2, pp. 18–35. (in Russian). DOI: https://doi.org/10.15407/knit2018.02.018162. CHERNOGOR, L. F., 2019. Physical Effects of the Lipetsk Meteoroid: 3. Kinemat. Phys. Celest. Bodies. vol. 35, is. 6, pp. 271–285. DOI: https://doi.org/10.3103/S0884591319060023163. CHALMERS, J A., 1967. Atmospheric electricity. Oxford, New York: Pergamon Press. DOI: https://doi.org/10.1016/B978-0-08-012005-8.50019-7 |
publisher |
Видавничий дім «Академперіодика» |
publishDate |
2020 |
url |
http://rpra-journal.org.ua/index.php/ra/article/view/1342 |
work_keys_str_mv |
AT luoy electromagneticeffectsofacousticandatmosphericgravitywavesinthenearearthatmosphere AT chernogorlf electromagneticeffectsofacousticandatmosphericgravitywavesinthenearearthatmosphere AT luoy elektromagnítníefektiakustikogravítacíjnihhvilʹuprizemníjatmosferí AT chernogorlf elektromagnítníefektiakustikogravítacíjnihhvilʹuprizemníjatmosferí |
first_indexed |
2024-05-26T06:28:37Z |
last_indexed |
2024-05-26T06:28:37Z |
_version_ |
1802804637572530176 |
spelling |
oai:ri.kharkov.ua:article-13422020-12-07T14:28:43Z ELECTROMAGNETIC EFFECTS OF ACOUSTIC AND ATMOSPHERIC GRAVITY WAVES IN THE NEAR-EARTH ATMOSPHERE ELECTROMAGNETIC EFFECTS OF ACOUSTIC AND ATMOSPHERIC GRAVITY WAVES IN THE NEAR-EARTH ATMOSPHERE ЕЛЕКТРОМАГНІТНІ ЕФЕКТИ АКУСТИКО-ГРАВІТАЦІЙНИХ ХВИЛЬ У ПРИЗЕМНІЙ АТМОСФЕРІ Luo, Y. Chernogor, L. F. acoustic and atmospheric gravity waves; near-Earth atmosphere; volume charge; atmospheric pressure disturbances; electric field; magnetic field акустико-гравітаційні хвилі; приземна атмосфера; об’ємний заряд; збурення атмосферного тиску; електричне поле; магнітне поле Purpose: Acoustic and atmospheric gravity waves (AAGW) are generated by many natural and anthropogenic sources. The AAGW propagation at ionospheric heights is accompanied by the generation of disturbances in the magnetic and electric fields. The plasma presence plays a crucial role. The mechanisms for generating electrical and magnetic disturbances in the near-Earth atmosphere by the AAGW have been studied much worse. Therefore, the validation of the capability to generate electromagnetic disturbances in the near-Earth atmosphere by the AAGW is an urgent problem. The purpose of this paper is to describe the mechanism for generating disturbances in the electric and magnetic fields in the near-Earth atmosphere under the action of AAGW and to estimate the amplitudes of these disturbances for various AAGW sources.Design/methodology/approach: The impact of a series of highenergysources often results in the generation of synchronous disturbances in the acoustic and geoelectric (atmospheric) fields, when an approximate proportionality between the pressure amplitude and the amplitude of the disturbances in the atmospheric electric field is observed to occur. Based on the observational data and making use of the Maxwell equations, the theoretical estimates of the disturbances in the electric and magneticfields have been obtained.Findings: Simplified expressions have been obtained for estimating the amplitudes of the electric and magnetic fields under the action of the AAGW generated by natural and manmade sources. The amplitudes of the electric and magnetic fields generated by the AAGW of natural and manmade origin, which travel in the near-Earth atmosphere, have been calculated. The amplitudes of the AAGW generated electric and magnetic fields are shown to be large enough to be detected with the existing electrometers and fluxmeter magnetometers. The magnitudes of the amplitudes of the electric and magnetic fields generated in the near-Earth atmosphere under the action of AAGW are large enough to trigger coupling between the subsystems in the Earth–atmosphere–ionosphere–magnetosphere system.Conclusions: The estimates and not numerous observations are in good agreement.Key words: acoustic and atmospheric gravity waves, near-Earth atmosphere, volume charge, atmospheric pressure disturbances, electric field, magnetic fieldManuscript submitted 12.09.2020Radio phys. radio astron. 2020, 25(4): 290-307REFERENCES1. GOSSARD, E. E. and HOOKE, W. H., 1975. Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves: Their Generation and Propagation. 2. Developments in Atmospheric Science. Amsterdam: Elsevier Scientific.2. PARROT, C. J., 2002. An Introduction to Atmospheric Gravity Waves. San Diego, CA, USA; London, UK: Academic Press.3. LE PICHON, A., BLANC, E. and HAUCHECORNE, A., eds., 2019. Infrasound monitoring for atmospheric studies. Switzerland: Springer Int. Publ. DOI: https://doi.org/10.1007/978-3-319-75140-54. REVELLE, D. O., 1976. On meteor-generated infrasound. J. Geophys. Res. vol. 81, is. 7, pp. 1217–1240. DOI: https://doi.org/10.1029/JA081i007p012175. ARROWSMITH, S. J., REVELLE, D., EDWARDS, W. and BROWN, P., 2007. Global Detection of Infrasonic Signals from Three Large Bolides. In: J. M. TRIGO-RODRÍGUEZ, F. J. M. RIETMEIJER, J. LLORCA, and D. JANCHES, eds. Advances in Meteoroid and Meteor Science. New York, NY: Springer, pp. 357–363. DOI: https://doi.org/10.1007/978-0-387-78419-9_506. EDWARDS, W. N., 2010. Meteor Generated Infrasound: Theory and Observation. In: A. LE PICHON, E. BLANC, and A. HAUCHECORNE, eds Infrasound Monitoring for Atmospheric Studies. Dordrecht, Heidelberg, London, New York: Springer Int. Publ., P. 361–414. DOI: https://doi.org/10.1007/978-1-4020-9508-5_127. ENS, T. A., BROWN, P. G., EDWARDS, W. N. and SILBER, E. A., 2012. Infrasound production by bolides: A global statistical study. J. Atmos. Sol.-Terr. Phys. vol. 80, pp. 208–229. DOI: https://doi.org/10.1016/j.jastp.2012.01.0188. CHERNOGOR, L. F. and BARABASH, V. V., 2014. Ionosphere disturbances accompanying the flight of the Chelyabinsk body. Kinemat. Phys. Celest. Bodies. vol. 30, is. 3, pp. 126–136. DOI: https://doi.org/10.3103/S08845913140300399. CHERNOGOR, L. F., 2017. Chelyabinsk Meteoroid Acoustic Effects. Radio Phys. Radio Astron. vol. 22, no. 1, pp. 53–66. (in Russian). DOI: https://doi.org/10.15407/rpra22.01.05310. LAZORENKO, O. V. and CHERNOGOR, L. F., 2017. System Spectral Analysis of Infrasonic Signal Generated by Chelyabinsk Meteoroid. Radioelectron. Commun. Syst. vol. 60, is. 8, pp. 331–338. DOI: https://doi.org/10.3103/S073527271708001511. CHERNOGOR, L. F. and LIASHCHUK, O. I., 2017. Parameters of Infrasonic Waves Generated by the Chelyabinsk Meteoroid on February 15, 2013. Kinemat. Phys. Celest. Bodies. vol. 33, is. 2, pp. 79–87. DOI: https://doi.org/10.3103/S088459131702002712. CHERNOGOR, L. F. and SHEVELEV, N. B., 2018. Characteristics of the Infrasound SignalGenerated by Chelyabinsk Celestial Body: Global Statistics. Radio Phys. Radio Astron. vol. 23, no. 1, pp. 24–35. (in Russian). DOI: https://doi.org/10.15407/rpra23.01.02413. CHERNOGOR, L. F., 2020. Statistical Analysis of Infrasonic Parameters Generated by the Chelyabinsk Meteoroid. Kinemat. Phys. Celest. Bodies. vol. 36, is. 4, pp. 171–185. DOI: https://doi.org/10.3103/S088459132004002914. CAMPBELL, W. H. and YOUNG, J. M., 1963. Auroral-zone observations of infrasonic pressure waves related to ionospheric disturbances and geomagnetic activity. J. Geophy. Res. vol. 68, is. 21, pp. 5909–5916. DOI: https://doi.org/10.1029/JZ068i021p0590915. MAEDA, K. and WATANABE, T., 1964. Pulsating Aurorae and Infrasonic Waves in the Polar Atmosphere. J. Atmos. Sci. vol. 21, is. 1, pp. 15–29. DOI: https://doi.org/10.1175/1520-0469(1964)021<0015:PAAIWI>2.0.CO;216. CHIMONAS, G., 1970. Infrasonic waves generated by auroral currents. Planet. Space Sci. vol. 18, is. 4, pp. 591–598. DOI: https://doi.org/10.1016/0032-0633(70)90134-017. ERUSHCHENKOV, A. I. and DOVBNYA, B. V., 1977. On the relationship between high frequency infrasound and geomagnetic pulsations in the auroral zone. Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa. vol. 43, pp. 142–146. (in Russian).18. SUZUKI, Y., 1979. Auroral infrasonic waves and the auroral electrojet. J. Atmos. Terr. Phys. vol. 41, is. 1, pp. 11–23. DOI: https://doi.org/10.1016/0021-9169(79)90042-419. SUZUKI, Y., 1979. Temporal and spatial changes of polar substorms and infrasonic wave emissions. Planet. Space Sci. vol. 27, is. 9, pp. 1195–1208. DOI: https://doi.org/10.1016/0032-0633(79)90139-920. WILSON, C. R., SZUBERLA, C. A. L. and OLSON, J. V., 2010. High-latitude Observations of Infrasound from Alaska and Antarctica: Mountain Associated Waves and Geomagnetic/Auroral Infrasonic Signals. In: A. LE PICHON, E. BLANC, and A. HAUCHECORNE, eds. Infrasound Monitoring for Atmospheric Studies. Dordrecht, Heidelberg, London, New York: Springer Int. Publ. P. 415–454. DOI: https://doi.org/10.1007/978-1-4020-9508-5_1321. CHIMONAS, G. and HINES, C. O., 1970. Atmospheric gravity waves induced by a solar eclipse. J. Geophys. Res. vol. 75, is. 4, p. 875. DOI: https://doi.org/10.1029/JA075i004p0087522. DAVIS, M. J. and DA ROSA, A. V., 1970. Possible Detection of Atmospheric Gravity Waves generated by the Solar Eclipse. Nature. vol. 226, no. 5251, p. 1123. DOI: https://doi.org/10.1038/2261123a023. ICHINOSE, T. and OGAWA, T., 1976. Internal gravity waves deduced from the HF Doppler data during the April 19, 1958, solar eclipse. J. Geophys. Res. vol. 81, is. 13, pp. 2401–2404 DOI: https://doi.org/10.1029/JA081i013p0240124. BROCHE, P., CROCHET, M. and DE MAISTRE, J. C., 1976. Gravity waves generated by the 30 June 1973 solar eclipse in Africa. J. Atmos. Terr. Phys. vol. 38, is. 12, pp. 1361–1364. DOI: https://doi.org/10.1016/0021-9169(76)90147-125. BERTIN, F., HUGHES, K. A. and KERSLEY, L., 1977. Atmospheric waves induced by the solar eclipse of 30 June 1973. J. Atmos. Terr. Phys. vol. 39, is. 4, pp. 457–461. DOI: https://doi.org/10.1016/0021-9169(77)90153-226. JONES, T. B., WRIGHT, D. M., MILNER, J., YEOMAN, T. K., REID, T., CHAPMAN, P. J. and SENIOR, A., 2004. The detection of atmospheric waves produced by the total solar eclipse of 11 August 1999. J. Atmos. Sol.-Terr. Phys. vol. 66, is. 5, pp. 363–374. DOI: https://doi.org/10.1016/j.jastp.2004.01.02927. BUTCHER, E. C., DOWNING, A. M. and Cole, K. D., 1979. Wavelike variations in the F-region in the path of totality of the eclipseb of 23 October 1976. J. Atmos. Terr. Phys. vol. 41, is. 5, pp. 439–444. DOI: https://doi.org/10.1016/0021-9169(79)90068-028. CHERNOGOR, L. F., 2010. Variations in the Amplitude and Phase of VLF Radiowaves in the Ionosphere during the August 1, 2008, Solar Eclipse. Geomagn. Aeron. vol. 50, is. 1, pp. 96–106. DOI: https://doi.org/10.1134/S001679321001011129. CHERNOGOR, L. F., 2010. Wave Response of the Ionosphere to the Partial Solar Eclipse of August 1, 2008. Geomagn. Aeron. vol. 50, is. 3, pp. 346–361. DOI: https://doi.org/10.1134/S001679321003009630. CHERNOGOR, L. F., 2012. Effects of solar eclipses in the ionosphere: Results of Doppler sounding: 1. Experimental data. Geomagn. Aeron. vol. 52, is. 6, pp. 768–778. DOI: https://doi.org/10.1134/S001679321205003931. CHERNOGOR, L. F., 2012. Effects of Solar Eclipses in the Ionosphere: Doppler Sounding Results: 2. Spectral Analysis. Geomagn. Aeron. vol. 52, is. 6, pp. 779–792. DOI: https://doi.org/10.1134/S001679321205004032. BURMAKA, V. P. and CHERNOGOR, L. F., 2013. Solar Eclipse of August 1, 2008, above Kharkov: 2. Observation Results of Wave Disturbances in the Ionosphere. Geomagn. Aeron. vol. 53, is. 4, pp. 479–491. DOI: https://doi.org/10.1134/S001679321304004X33. CHERNOGOR, L. F., 2013. Physical Processes in the Middle Ionosphere Accompanying the Solar Eclipse of January 4, 2011, in Kharkov. Geomagn. Aeron. vol. 53, is. 1, pp. 19–31. DOI: https://doi.org/10.1134/S001679321301005234. CHERNOGOR, L. F., 2013. Physical effects of solar eclipses in atmosphere and geospace: monograph. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).35. PUSHIN, V. F. and CHERNOGOR, L. F., 2013. Infrasonic effect of solar eclipses. Radio Phys. Radio Astron. vol. 18, no. 2, pp. 127–137. (in Russian).36. CHERNOGOR, L. F. and GARMASH, K. P., 2017. Magneto-Ionospheric Effects of the Solar Eclipse of March 20, 2015, over Kharkov. Geomagn. Aeron. vol. 57, is. 1, pp. 72–83. DOI: https://doi.org/10.1134/S001679321606006237. STANKOV, S. M., BERGEOT, N., BERGHMANS, D., BOLSÉE, D., BRUYNINX, C., CHEVALIER, J.-M., CLETTE, F., DE BACKER, H., DE KEYSER, J., D’HUYS, E., DOMINIQUE, M., LEMAIRE, J. F., MAGDALENIĆ, J., MARQUÉ, C., PEREIRA, N., PIERRARD, V., SAPUNDJIEV, D., SEATON, D. B., STEGEN, K., VAN DER LINDEN, R., VERHULST, T. G. W. and WEST, M. J., 2017. Multi-instrument observations of the solar eclipse on 20 March 2015 and its effects on the ionosphere over Belgium and Europe. J. Space Weather Space Clim. vol. 7, id. A19 DOI: https://doi.org/10.1051/swsc/201701738. NYKIEL, G., ZANIMONSKIY, Y. M., YAMPOLSKI, Y. M. and FIGURSKI, M., 2017. Efficient Usage of Dense GNSS Networks in Central Europe for the Visualization and Investigation of Ionospheric TEC Variations. Sensors. vol. 17, is. 10, id. 2298. DOI: https://doi.org/10.3390/s1710229839. MOŠNA, Z., BOŠKA, J., KNÍŽOVÁ, P. K., ŠINDELÁŘOVÁ, T., KOUBA, D., CHUM, J., REJFEK, L., POTUŽNÍKOVÁ, K., ARIKAN, F. and TOKER, C., 2018. Observation of the solar eclipse of 20 March 2015 at the Pruhonice station. J. Atmos. Sol.-Terr. Phys. vol. 171, pp. 277–284. DOI: https://doi.org/10.1016/j.jastp.2017.07.01140. PANASENKO, S. V., OTSUKA, Y., VAN DE KAMP, M., CHERNOGOR, L. F., SHINBORI, A., TSUGAWA, T. and NISHIOKA, M., 2019. Observation and characterization of traveling ionospheric disturbances induced by solar eclipse of 20 March 2015 using incoherent scatter radars and GPS networks. J. Atmos. Sol.-Terr. Phys. vol. 191, id. 105051. DOI: https://doi.org/10.1016/j.jastp.2019.05.01541. GUO, Q., CHERNOGOR, L. F., GARMASH, K. P., ROZUMENKO, V. T. and ZHENG, Y., 2020. Radio Monitoring of Dynamic Processes in the Ionosphere Over China During the Partial Solar Eclipse of 11 August 2018. Radio Sci. vol. 55, is. 2, id. e2019RS006866. DOI: https://doi.org/10.1029/2019RS00686642. SOMSIKOV, V. M. 1983. Solar terminator and dynamic phenomena in the astrosphere. Alma-Ata, Kazakhstan: Nauka Publ. (in Russian). 43. SOMSIKOV, V. M., 1991 Waves in the Atmosphere Caused by the Solar Terminator: A Review, Geomagnetizm i Aeronomiia. vol. 31, no. 1, pp. 1–12. (in Russian)44. BURMAKA, V. P., TARAN, V. I. and CHERNOGOR, L. F., 2004. Ionospheric Wave Disturbances Accompanied by Rocket Launches against a Background of Natural Transient Processes. Geomag. Aeron. vol. 44, no. 4, pp. 476–491.45. CHERNOGOR, L. F. and SHAMOTA, M. A., 2009. Geomagnetic pulsations associated with solar terminators near Kharkiv city. 1. Spectral analysis. Space Sci. Tech. vol. 15, no. 5, pp. 43–51. (in Russian). DOI: https://doi.org/10.15407/knit2009.05.04346. CHERNOGOR, L. F. and SHAMOTA, M. A., 2009. Geomagnetic pulsations associated with solar terminators near Kharkiv city. 2. Statistical analysis. Space Sci. Tech. vol. 15, no. 6, pp. 14–19. (in Russian). DOI: https://doi.org/10.15407/knit2009.06.01447. CHERNOGOR, L. F., 2012. Geomagnetic pulsations accompanied the solar terminator moving through magnetoconjugate region. Radio Phys. Radio Astron. vol. 17, no. 1, pp. 57–66. (in Russian).48. SOLOVIEV, S. P., RYBNOV, YU. S. and KHARLAMOV, V. A., 2015. The synchronic disturbances of the acoustic and electric fields caused by artificial and natural sources. In: V. V. ADUSHKIN and G. G. KOCHERYAN, eds. Trigger effects in geosystems. Proceedings of the 3rd All-Russia Meeting. Moskow, Russia: GEOS Publ., pp. 317–326. (in Russian).49. CHERNOGOR, L. F., 2006. The tropical cyclone as an element of the Earth – atmosphere – ionosphere – magnetosphere system. Space Sci. Tech. vol. 12, no. 2-3, pp. 16–36. (in Russian). DOI: https://doi.org/10.15407/knit2006.02.01650. HETZER, C. H., WAXLER, R., GILBERT, K. E., TALMADGE, C. L. and BASS, H. E., 2008. Infrasound from hurricanes: Dependence on the ambient ocean surface wave field. Geophys. Res. Lett. vol. 35, is. 14, id: L14609. DOI: https://doi.org/10.1029/2008GL03461451. HETZER, C. H., GILBERT, K. E., WAXLER, R. and TALMADGE, C. L., 2010. Generation of Microbaroms by Deep-Ocean Hurricanes. In: A. LE PICHON, E. BLANC, and A. HAUCHECORNE, eds. Infrasound Monitoring for Atmospheric Studies. Dordrecht: Springer. DOI: https://doi.org/10.1007/978-1-4020-9508-5_852. NISHIOKA, M., TSUGAWA, T., KUBOTA, M. and ISHII, M., 2013. Concentric waves and short-period oscillations observed in the ionosphere after the 2013 Moore EF5 tornado. Geophys. Res. Lett. vol. 40, is. 21, pp. 5581–5586. DOI: https://doi.org/10.1002/2013GL05796353. CHOU, M.-Y., LIN, C. C. H., YUE, J., CHANG, L. C., TSAI, H.-F. and CHEN, C.-H., 2017. Medium-scale traveling ionospheric disturbances triggered by Super Typhoon Nepartak (2016). Geophys. Res. Lett. vol. 44, is. 15, pp. 7569–7577. DOI: https://doi.org/10.1002/2017GL07396154. SPIVAK, A. A., RYBNOV, YU. S. and KHARLAMOV, V. A., 2018. Variations in Geophysical Fields during Hurricanes and Squalls. Dokl. Earth Sci. vol. 480, pp. 788–791. DOI: https://doi.org/10.1134/S1028334X1806019355. RICHARDS, A. F., 1963. Volcanic sounds: Investigation and analysis. J. Geophys. Res. vol. 68, is. 3, pp. 919–928. DOI: https://doi.org/10.1029/JZ068i003p0091956. GOERKE, V. H., YOUNG, J. M. and COOK, R. K., 1965. Infrasonic observations of the May 16, 1963, volcanic explosion on the island of Bali. J. Geophys. Res. vol. 70, is. 24, pp. 6017–6022. DOI: https://doi.org/10.1029/JZ070i024p0601757. BOLT, B. A. and TANIMOTO, T., 1981. Atmospheric oscillations after the May 18, 1980 eruption of Mount St. Helens. Eos. vol. 62, is. 23, pp. 529–530. DOI: https://doi.org/10.1029/EO062i023p0052958. KIEFFER, S. W., 1981. Blast dynamics at Mount St Helens on 18 May 1980. Nature. vol. 291, no. 5816, pp. 568–570. DOI: https://doi.org/10.1038/291568a059. BANISTER, J. R., 1984. Pressure wave generated by the Mount St. Helens eruption. J. Geophys. Res. vol. 89, is. D3, pp. 4895–4904. DOI: https://doi.org/10.1029/JD089iD03p0489560. REED, J. W., 1987. Air pressure waves from Mount St. Helens eruptions. J. Geophys. Res. vol. 92, is. D10, pp. 11979–11992. DOI: https://doi.org/10.1029/JD092iD10p1197961. YAMASATO, H., 1997. Quantitative Analysis of Pyroclastic Flows Using Infrasonic and Seismic Data at Unzen Volcano, Japan. J. Phys. Earth. vol. 45, is. 6, pp. 397–416. DOI: https://doi.org/10.4294/jpe1952.45.39762. RIPEPE, M., CILIBERTO, S. and DELLA SCHIAVA, M., 2001. Time constraints for modeling source dynamics of volcanic explosions at Stromboli. J. Geophys. Res.: Solid Earth. vol. 106, is. B5, pp. 8713–8727. DOI: https://doi.org/10.1029/2000JB90037463. RIPEPE, M., HARRIS, A. J. L. and CARNIEL, R., 2002. Thermal, seismic and infrasonic evidences of variable degassing rates at Stromboli volcano. J. Volcanol. Geotherm. Res. vol. 118, is. 3-4, pp. 285–297. DOI: https://doi.org/10.1016/S0377-0273(02)00298-664. EVERS, L. G. and Haak, H. W., 2005. The detectability of infrasound in The Netherlands from the Italian volcano Mt. Etna. J. Atmos. Sol.-Terr. Phys. vol. 67, is. 3, pp. 259–268. DOI: https://doi.org/10.1016/j.jastp.2004.09.00265. CHERNOGOR, L. F., 2012. Physics and Ecology of Disasters. Kharkiv: V. N. Karazin Kharkiv National University Publ. (in Russian).66. DANIELS, F. B., 1962. Generation of Infrasound by Ocean Waves. J. Acoust. Soc. Am. vol. 34, is. 3, pp. 352–353. DOI: https://doi.org/10.1121/1.192812867. DONN, W. L. and POSMENTIER, E. S., 1967. Infrasonic waves from the marine storm of April 7, 1966. J. Geophys. Res. vol. 72, is. 8, pp. 2053–2061. DOI: https://doi.org/10.1029/JZ072i008p0205368. BREKHOVSKIKH, L. M., GONCHAROV, V. V, KURTEPOV, V. M. and NAUGOLNYKH, K. A., 1973. The radiation of infrasound into the atmosphere by surface waves in the ocean. Izv. Atmos. Ocean Phys. vol. 9, no. 9, pp. 899–907. (in Russan).69. ARENDT, S. and FRITTS, D. C., 2000. Acoustic radiation by ocean surface waves. J. Fluid Mech. vol. 415, pp. 1–21. DOI: https://doi.org/10.1017/S002211200000863670. GARCÉS, M., WILLIS, M., HETZER, C., LE PICHON, A. and DROB, D., 2004. On using ocean swells for continuous infrasonic measurements of winds and temperature in the lower, middle, and upper atmosphere. Geophys. Res. Lett. vol. 31, is. 19, id. L19304. DOI: https://doi.org/10.1029/2004GL02069671. LE PICHON, A., MAURER, V., RAYMOND, D. and HYVERNAUD, O., 2004. Infrasound from ocean waves observed in Tahiti. Geophys. Res. Lett. vol. 31, is. 19, id. L19103. DOI: https://doi.org/10.1029/2004GL02067672. WAXLER, R. and Gilbert, K. E., 2006. The radiation of atmospheric microbaroms by ocean waves. J. Acoust. Soc. Am. vol. 119, is. 5, pp. 2651–2664. DOI: https://doi.org/10.1121/1.219160773. GARCÉS, M., WILLIS, M. and LE PICHON, A., 2010. Infrasonic Observations of Open Ocean Swells in the Pacific: Deciphering the Song of the Sea. In: A. LE PICHON, E. BLANC, A. HAUCHECORNE, eds. Infrasound Monitoring for Atmospheric Studies. Dordrecht: Springer, 235–248. DOI: https://doi.org/10.1007/978-1-4020-9508-5_774. HETZER, C. H., GILBERT, K. E., WAXLER, R., and TALMADGE, C. L., 2010. Generation of Microbaroms by Deep-Ocean Hurricanes. In: A. LE PICHON, E. BLANC, A. HAUCHECORNE, eds. Infrasound Monitoring for Atmospheric Studies. Dordrecht: Springer, pp. 249–262. DOI: https://doi.org/10.1007/978-1-4020-9508-5_875. GOSTINTSEV, YU. A., IVANOV, E. A., KOPYLOV, N. P. and SHATSKIKH YU. V., 1983. Wave disturbances of the atmosphere due to large fires. Combust., Explos. Shock Waves. vol. 19, is. 4, pp. 427–429. DOI: https://doi.org/10.1007/BF0078363976. SPIVAK, A. A., RIABOVA, S. A. and KHARLAMOV, V. A., 2019. The Electric Field in the Surface Atmosphere of the Megapolis of Moscow. Geomagn. Aeron. vol. 59, no. 4, pp. 467–478. DOI: https://doi.org/10.1134/S001679321904016977. DONN, W. L. and POSMENTIER, E. S., 1964. Ground-coupled air waves from the Great Alaskan Earthquake. J. Geophys. Res. vol. 69, is. 24, pp. 5357–5361. DOI: https://doi.org/10.1029/JZ069i024p0535778. BOWMAN, G. G. and SHRESTHA, K. L., 1965. Atmospheric pressure waves from the Japanese earthquake on 16 June 1964. Q. J. R. Meteorol. Soc. vol. 91, is. 388, pp. 223–224. DOI: https://doi.org/10.1002/qj.4970913881379. DAVIES, K. and BAKER, D. M., 1965. Ionospheric effects observed around the time of the Alaskan earthquake of March 28, 1964. J. Geophys. Res. vol. 70, is. 9, pp. 2251–2253. DOI: https://doi.org/10.1029/JZ070i009p0225180. ROW, R. V., 1966. Evidence of long-period acoustic-gravity waves launched into theFregion by the Alaskan earthquake of March 28, 1964. J. Geophys. Res. vol. 71, is. 1, pp. 343–345. DOI: https://doi.org/10.1029/JZ071i001p0034381. MIKUMO, T., 1968. Atmospheric pressure waves and tectonic deformation associated with the Alaskan earthquake of March 28, 1964. J. Geophys. Res. vol. 73, is. 6, pp. 2009–2025. DOI: https://doi.org/10.1029/JB073i006p0200982. COOK, R. K. and BEDARD JR, A. J., 1971. On the Measurement of Infrasound. Geophys. J. R. Astron. Soc. vol. 26, is. 1-4, pp. 5–11. DOI: https://doi.org/10.1111/j.1365-246X.1971.tb03378.x83. YOUNG, J. M. and GREENE, G. E., 1982. Anomalous infrasound generated by the Alaskan earthquake of 28 March 1964. J. Acoust. Soc. Am. vol. 71, is. 2, pp. 334–339. DOI: https://doi.org/10.1121/1.38745784. KELLEY, M. C., LIVINGSTON, R. and MCCREADY, M., 1985. Large amplitude thermospheric oscillations induced by an earthquake. Geophys. Res. Lett. vol. 12, is. 9, pp. 577–580. DOI: https://doi.org/10.1029/GL012i009p0057785. OLSON, J. V., WILSON, C. R. and HANSEN, R. A., 2003. Infrasound associated with the 2002 Denali fault earthquake, Alaska. Geophys. Res. Lett. vol. 30, is. 23, id. 2195. DOI: https://doi.org/10.1029/2003GL01856886. GARCÉS, M., CARON, P., HETZER, C., LE PICHON, A., BASS, H., DROB, D. and BHATTACHARYYA, J., 2005. Deep infrasound radiated by the Sumatra earthquake and tsunami. Eos. vol. 86, is. 35, pp. 317–320. DOI: https://doi.org/10.1029/2005EO35000287. LE PICHON, A., HERRY, P., MIALLE, P., VERGOZ, J., BRACHET, N., GARCÉS, M., DROB, D. and CERANNA, L., 2005. Infrasound associated with 2004–2005 large Sumatra earthquakes and tsunami. Geophys. Res. Lett. vol. 32, is. 19, id. L19802. DOI: https://doi.org/10.1029/2005GL02389388. MUTSCHLECNER, J. P. and WHITAKER, R. W., 2005. Infrasound from earthquakes. J. Geophys. Res: Atmospheres. vol. 110, is. D1, id: D01108. DOI: https://doi.org/10.1029/2004JD00506789. MIKUMO, T., SHIBUTANI, T., LE PICHON, A., GARCÉS, M., FEE, D., TSUYUKI, T., WATADA, S. and MORII, W., 2008. Low-frequency acoustic-gravity waves from coseismic vertical deformation associated with the 2004 Sumatra-Andaman earthquake (Mw=9.2). J. Geophys. Res: Solid Earth. vol. 113, is. B12, id: B12402. DOI: https://doi.org/10.1029/2008JB00571090. GUO, Q., CHERNOGOR, L. F., GARMASH, K. P., ROZUMENKO, V. T. and ZHENG, YU., 2019. Dynamical processes in the ionosphere following the moderate earthquake in Japan on 7 July 2018. J. Atmos. Sol.-Terr. Phys. vol. 186, pp. 88–103. DOI: https://doi.org/10.1016/j.jastp.2019.02.00391. LUO, Y., GUO, Q., ZHENG, Y., GARMASH, K. P., CHERNOGOR, L. F. and SHULGA, S. M., 2019. HF radio-wave characteristic variations over China during moderate earthquake in Japan on September 5, 2018. Visnyk of V. N. Karazin Kharkiv National University, series “Radio Physics and Electronics”. vol. 30, pp. 16–26. (in Russian). DOI: https://doi.org/10.26565/2311-0872-2019-30-0292. LUO, Y., CHERNOGOR, L. F., GARMASH, K. P., GUO, Q. and ZHENG, YU. Seismic-ionospheric effects: results of radio soundings at oblique incidence. Radio Physics and Radio Astronomy. vol. 25, no. 3, pp. 218–230. (in Ukrainian). DOI: https://doi.org/10.15407/rpra25.03.21893. GARCÉS, M., CARON, P., HETZER, C., LE PICHON, A., BASS, H., DROB, D. and BHATTACHARYYA, J., 2005. Deep infrasound radiated by the Sumatra earthquake and tsunami. Eos. vol. 86, is. 35, pp. 317–320. DOI: https://doi.org/10.1029/2005EO35000294. BALACHANDRAN, N. K., 1979. Infrasonic signals from thunder. J. Geophys. Res.: Oceans vol. 84, is. C4, pp. 1735–1745. DOI: https://doi.org/10.1029/JC084iC04p0173595. BALACHANDRAN, N. K., 1983. Acoustic and electric signals from lightning. J. Geophys. Res.: Oceans. vol. 88, is. C6, pp. 3879–3884. DOI: https://doi.org/10.1029/JC088iC06p0387996. FARGES, T., BLANC, E., LE PICHON, A., NEUBERT, T. and ALLIN, T. H., 2005. Identification of infrasound produced by sprites during the Sprite2003 campaign. Geophys. Res. Lett. vol. 32, is. 1. Id. L01813. DOI: https://doi.org/10.1029/2004GL02121297. LIN, T.-L. and LANGSTON, C. A., 2007. Infrasound from thunder: A natural seismic source. Geophys. Res. Lett. vol. 34, is. 14, id. L14304. https://doi.org/10.1029/2007GL03040498. FARGES, T. and BLANC, E., 2010. Characteristics of infrasound from lightning and sprites near thunderstorm areas. J. Geophys. Res.: Space Physics. vol. 115, is. A6, id. A00E31. DOI: https://doi.org/10.1029/2009JA01470099. BLANC, E., FARGES, T., LE PICHON, A. and HEINRICH, P., 2014. Ten year observations of gravity waves from thunderstorms in western Africa. J. Geophys. Res.: Atmospheres. vol. 119, is. 11, pp. 6409–6418. DOI: https://doi.org/10.1002/2013JD020499100. SPIVAK, A. A., RYBNOV, YU. S., SOLOVIEV, S. P. and KHARLAMOV, V. A., 2017. Acoustic and electric precursors of heavy thunderstorm under megalopolis conditions. Geophysical processes and biosphere. vol. 16, no. 4, pp. 81–91. (in Russian). DOI: https://doi.org/10.21455/GPB2017.4-7101. ROSE, G., OKSMAN, J. and KATAJA, E., 1961. Round-the-World Sound Waves produced by the Nuclear Explosion on October 30, 1961, and their Effect on the Ionosphere at Sodankylä. Nature. vol. 192, no. 4808, pp. 1173–1174. DOI: https://doi.org/10.1038/1921173a0102. DONN, W. L. and EWING, M., 1962. Atmospheric waves from nuclear explosions. J. Geophys. Res. vol. 67, is. 5, pp. 1855–1866. DOI: https://doi.org/10.1029/JZ067i005p01855103. DONN, W. L. and EWING, M., 1962. Atmospheric Waves from Nuclear Explosions – Part II: The Soviet Test of 30 October 1961. J. Atmos. Sci. vol. 19, is. 3, pp. 264–273. DOI: https://doi.org/10.1175/1520-0469(1962)019<0264:AWFNEI>2.0.CO;2104. FARKAS, E., 1962. Transit of Pressure Waves through New Zealand from the Soviet 50 Megaton Bomb Explosion. Nature. vol. 193, no. 4817, pp. 765–766. DOI: https://doi.org/10.1038/193765a0105. GARDINER, G. W., 1962. Effects of the nuclear explosion of 30 October 1961. J. Atmos. Terr. Phys. vol. 24, is. 11, pp. 990–993. DOI: https://doi.org/10.1016/0021-9169(62)90146-0106. PFEFFER, R. L. and ZARICHNY, J., 1962. Acoustic-Gravity Wave Propagation from Nuclear Explosions in the Earth’s Atmosphere. J. Atmos. Sci. vol. 19, is. 3, pp. 256–263. DOI: https://doi.org/10.1175/1520-0469(1962)019<0256:AGWPFN>2.0.CO;2107. WEXLER, H. and HASS, W. A., 1962. Global atmospheric pressure effects of the October 30, 1961, explosion. J. Geophys. Res. vol. 67, is. 10, pp. 3875–3887. DOI: https://doi.org/10.1029/JZ067i010p03875108. DONN, W. L., PFEFFER, R. L. and EWING, M., 1963. Propagation of Air Waves from Nuclear Explosions: Nuclear explosions provide data on the relation of air-wave propagation to atmospheric structure. Science. vol. 139, is. 3552, pp. 307–317. DOI: https://doi.org/10.1126/science.139.3552.307109. WEBB, H. D. and DANIELS, F. B., 1964. Ionospheric oscillations following a nuclear explosion. J. Geophys. Res. vol. 69, is. 3, pp. 545–546. DOI: https://doi.org/10.1029/JZ069i003p00545110. OKSMAN, J. and KIVINEN, M., 1965. Ionospheric gravity waves caused by nuclear explosions. Geophysica. vol. 9, pp. 119–129.111. MCCRORY, R. A., 1967. Atmospheric Pressure Waves from Nuclear Explosions. J. Atmos. Sci. vol. 24, is. 4, pp. 443–447. DOI: https://doi.org/10.1175/1520-0469(1967)024<0443:APWFNE>2.0.CO;2112. ROW, R. V., 1967. Acoustic-gravity waves in the upper atmosphere due to a nuclear detonation and an earthquake. J. Geophys. Res. vol. 72, is. 5, pp. 1599–1610. DOI: https://doi.org/10.1029/JZ072i005p01599113. CHE, I.-Y., PARK, J., KIM, I., KIM, T. S. and LEE, H.-I., 2014. Infrasound signals from the underground nuclear explosions of North Korea. Geophys. J. Int. vol. 198, is. 1, pp. 495–503. DOI: https://doi.org/10.1093/gji/ggu150114. KULICHKOV, S. N., 1992. Long-range sound propagation in the atmosphere (Review). Izv. Acad. Nauk SSSR, Fiz. Atmos. Okeana. vol. 28, no. 4, pp. 3–20.115. BUSH, G. A., IVANOV, E. A., KULICHKOV, S. N. and PEDANOV, M. V., 1997. Some Results of Recording Acoustic Signals From High-Altitude Explosions. Izv. Atmos. Ocean. Phys. vol. 33, no. 1, pp. 59–63.116. CALAIS, E., MINSTER, J. B., HOFTON, M. A. and HEDLIN, M. A. H., 1998. Ionospheric Signature of Surface Mine Blasts from Global Positioning System Measurements. Geophys. J. Int. vol. 132, is. 1, pp. 191–202. DOI: https://doi.org/10.1046/j.1365-246x.1998.00438.x117. CHERNOGOR, L. F., 2004. Geophysical effects and geoecological consequences of multiple chemical explosions at ammunition dumps in Artemovsk. Geofizicheskiy Zhurnal. vol. 26, no. 4, 31–44. (in Russian).118. CHERNOGOR, L. F., 2004. Geophysical Effects and Ecological Consequences of Fire and Explosions of Ammunitions at a Military Base Near Melitopol. Geofizicheskiy Zhurnal. vol. 26, no. 6, 61–73. (in Russian).119. GIBBONS, S. J., RINGDAL, F. and KVÆRNA, T., 2007. Joint seismic-infrasonic processing of recordings from a repeating source of atmospheric explosions. J. Acoust. Soc. Am. vol. 122, is. 5, id. EL158. DOI: https://doi.org/10.1121/1.2784533120. CHERNOGOR, L. F. and GARMASH, K. P., 2018. Magnetospheric and Ionospheric Effects Accompanying the Strongest Technogenic Catastrophe. Geomagn. Aeron. vol. 58, is. 5, pp. 673–685. DOI: https://doi.org/10.1134/S0016793218050031121. CHERNOGOR, L. F., LIASHCHUK, O. I. and SHEVELEV, M. B., 2018. Parameters of infrasonic signals generated in the atmosphere by multiple explosions at an ammunition depot. Radio Phys. Radio Astron. vol. 23, no. 4, pp. 280–293. (in Russian). DOI: https://doi.org/10.15407/rpra23.04.280122. DONN, W. L., POSMENTIER, E., FEHR, U. and BALACHANDRAN, N. K., 1968. Infrasound at Long Range from Saturn V, 1967. Science. vol. 162, is. 3858, pp. 1116–1120. DOI: https://doi.org/10.1126/science.162.3858.1116123. KASCHAK, G. R., 1969. Long-range supersonic propagation of infrasonic noise generated by missiles. J. Geophys. Res. vol. 74, is. 3, pp. 914–918. DOI: https://doi.org/10.1029/JA074i003p00914124. BALACHANDRAN, N. K., DONN, W. L. and KASCHAK, G., 1971. On the Propagation of Infrasound from Rockets: Effects of Winds. J. Acoust. Soc. Am. vol. 50, is. 2A, pp. 397–404. DOI: https://doi.org/10.1121/1.1912649125. COTTEN, D. and DONN, W. L., 1971. Sound from Apollo rockets in space. Science. vol. 171, is. 3971, pp. 565–567. DOI: https://doi.org/10.1126/science.171.3971.565126. DONN, W. L., BALACHANDRAN, N. K. and RIND, D., 1975. Tidal wind control of long-range rocket infrasound. J. Geophys. Res. vol. 80, is. 12, pp. 1662–1664. . DOI: https://doi.org/10.1029/JC080i012p01662127. NOBLE, S. T., 1990. A large-amplitude traveling ionospheric disturbance excited by the space shuttle during launch. J. Geophys. Res.: Space Physics. vol. 95, is. A11, pp. 19037–19044. DOI: https://doi.org/10.1029/JA095iA11p19037128. LI, Y. Q., JACOBSON, A. R., CARLOS, R. C., MASSEY, R. S., TARANENKO, Y. N. and WU, G., 1994. The blast wave of the Shuttle plume at ionospheric heights. Geophys. Res. Lett. vol. 21, is. 24, pp. 2737–2740. DOI: https://doi.org/10.1029/94GL02548129. CHERNOGOR, L. F., 2009. Radiophysical and Geomagnetic Effects of Rocket Engine Burn: Monograph. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).130. CHERNOGOR, L. F. and BLAUNSTEIN, N., 2014. Radiophysical and Geomagnetic Effects of Rocket Burn and Launch in the Near-the-Earth Environment. Boca Raton, London, New York: CRC Press. Taylor & Francis Group.131. KAKINAMI, Y., YAMAMOTO, M., CHEN, C.-H., WATANABE, S., LIN, C., LIU, J.-Y. and HABU, H., 2013. Ionospheric disturbances induced by a missile launched from North Korea on 12 December 2012. J. Geophys. Res.: Space Physics. vol. 118, is. 8, pp. 5184–5189. DOI: https://doi.org/10.1002/jgra.50508132. LIN, C. H., LIN, J. T., CHEN, C. H., LIU, J. Y., SUN, Y. Y., KAKINAMI, Y., MATSUMURA, M., CHEN, W. H., LIU, H. and RAU, R. J., 2014. Ionospheric shock waves triggered by rockets. Ann. Geophys. vol. 32, no. 9, pp. 1145–1152. DOI: https://doi.org/10.5194/angeo-32-1145-2014133. DING, F., WAN, W., MAO, T., WANG, M., NING, B., ZHAO, B. and XIONG, B., 2014. Ionospheric response to the shock and acoustic waves excited by the launch of the Shenzhou 10 spacecraft. Geophys. Res. Lett. vol. 41, is. 10, pp. 3351–3358. DOI: https://doi.org/10.1002/2014GL060107134. LIN, C. C. H., SHEN, M.-H., CHOU, M.-Y., CHEN, C.-H., YUE, J., CHEN, P.-C. and MATSUMURA, M., 2017. Concentric traveling ionospheric disturbances triggered by the launch of a SpaceX Falcon 9 rocket. Geophys. Res. Lett. vol. 44, is. 15, pp. 7578–7586. DOI: https://doi.org/10.1002/2017GL074192135. CHOU, M.-Y., SHEN, M.-H., LIN, C. C. H., YUE, J., CHEN, C.-H., LIU, J.-Y. and LIN, J.-T., 2018. Gigantic Circular Shock Acoustic Waves in the Ionosphere Triggered by the Launch of FORMOSAT-5 Satellite. Space Weather. vol. 16, is. 2, pp. 172–184. DOI: https://doi.org/10.1002/2017SW001738136. CHOU, M.-Y., LIN, C. C. H., SHEN, M.-H., YUE, J., HUBA, J. D. and CHEN, C.-H., 2018. Ionospheric Disturbances Triggered by SpaceX Falcon Heavy. Geophys. Res. Lett. vol. 45, is. 13, pp. 6334–6342. DOI: https://doi.org/10.1029/2018GL078088137. GARMASH, K. P. and CHERNOGOR, L. F., 1998. Near-Earth effects which accompanied high-powerful radio emission action. Zarubezhnaya radioelectronika. Uspekhi sovremennoi radioelektroniki. no. 6, pp. 17–40. (in Russian).138. GARMASH, K. P. and CHERNOGOR, L. F., 1998. Electromagnetic and geophysics effects in near-Earth plasma, which accompanied high-powerful radio emission action. Electromagnitnye yavleniya. vol. 1, no. 1, pp. 90–110. (in Russian).139. BURMAKA, V. P., DOMNIN, I. F., URYADOV, V. P. and CHERNOGOR, L. F., 2009. Variations in the Parameters of Scattered Signals and the Ionosphere Connected with Plasma Modification by High-Power Radio Waves. Radiophys. Quantum Electron. vol. 52, is. 11, pp. 774–795. DOI: https://doi.org/10.1007/s11141-010-9191-2140. CHERNOGOR, L. F., VERTOGRADOV, G. G., URYADOV, V. P., VERTOGRADOVA, E. G. and SHAMOTA, M. A., 2011. Consistent Quasi-Periodic Variations of the Geomagnetic Pulsation Level and Doppler Frequency Shift of Decametric Radio Waves Aspect-Scattered by Artificial Field-Aligned Ionospheric Irregularities. Radiophys. Quantum Electron. vol. 53, is. 12, pp. 688–705. DOI: https://doi.org/10.1007/s11141-011-9262-z141. CHERNOGOR, L. F., FROLOV, V. L., KOMRAKOV, G. P. and PUSHIN, V. F., 2011. Variations in the ionospheric wave perturbation spectrum during periodic heating of the plasma by high-power high-frequency radio waves. Radiophys. Quantum Electron. vol. 54, no. 2, pp. 75–88. DOI: https://doi.org/10.1007/s11141-011-9272-x142. DOMNIN, I. F., PANASENKO, S. V., URYADOV, V. P. and CHERNOGOR, L. F., 2012. Results of radiophysical studies of the wave processes in the ionospheric plasma during its heating by high-power radio emission of the Sura facility. Radiophys. Quantum Electron. vol. 55, is. 4, pp. 253–265. DOI: https://doi.org/10.1007/s11141-012-9364-2143. CHERNOGOR, L. F. and FROLOV, V. L., 2012. Traveling ionospheric disturbances generated due to periodic plasma heating by high-power high-frequency radiation. Radiophys. Quantum Electron. vol. 55, is. 1-2, pp. 13–32. DOI: https://doi.org/10.1007/s11141-012-9346-4144. CHERNOGOR, L. F., FROLOV, V. L. and PUSHIN V. F., 2012. Infrasound oscillations in the ionosphere affected by high-power radio waves. Radiophys. Quantum Electron. vol. 55, is. 5, pp. 296–308. DOI: https://doi.org/10.1007/s11141-012-9369-x145. CHERNOGOR, L. F. and FROLOV, V. L., 2013. Features of Propagation of the Acoustic-Gravity Waves Generated by High-Power Periodic Radiation. Radiophys. Quantum Electron. 2013. vol. 56, is. 4, pp. 197–215. DOI: https://doi.org/10.1007/s11141-013-9426-0146. CHERNOGOR, L. F. and FROLOV, V. L., 2014. Geomagnetic Pulsation Amplitude and Spectrum Variations Accompanying the Ionospheric Heating by High-Power Radio waves from the Sura Facility. Radiophys. Quantum Electron. vol. 57, is. 5, pp. 340–359. DOI: https://doi.org/10.1007/s11141-014-9518-5147. CHERNOGOR, L. F., 2014. Physics of High-Power Radio Emissions in Geospace: Monograph. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).148. CHERNOGOR, L. F., PANASENKO, S. V., FROLOV, V. L. and DOMNIN, I. F., 2015. Observations of the Ionospheric Wave Disturbances Using the Kharkov Incoherent Scatter Radar upon RF Heating of the Near-Earth Plasma. Radiophys. Quantum Electron. vol. 58, is. 2, pp. 79–91. DOI: https://doi.org/10.1007/s11141-015-9583-4149. CHERNOGOR, L. F., GARMASH, K. P. and FROLOV, V. L., 2019. Large-scale disturbances in the lower and middle ionosphere accompanying its modification by the Sura heater. Radiophys. Quantum Electron. vol. 62, is. 6, pp. 395–411. DOI: https://doi.org/10.1007/s11141-019-09986-7150. BALACHANDRAN, N. K., DONN, W. L. and RIND, D. H., 1977. Concorde Sonic Booms as an Atmospheric Probe. Science. vol. 197, is. 4298, pp. 47–49. DOI: https://doi.org/10.1126/science.197.4298.47151. DONN, W. L., 1978. Exploring the Atmosphere with Sonic Booms: Or How I Learned to Love the Concorde. Am. Sci. vol 66, is. 6, pp. 724–733.152. DONN, W. L. and RIND, D., 1979. Monitoring Stratospheric Winds with Concorde-Generated Infrasound. J. Appl. Meteor. vol. 18, is. 7, pp. 945–952. DOI: https://doi.org/10.1175/1520-0450(1979)018<0945:MSWWCG>2.0.CO;2153. AFANASIEVA, N. A., PLYATSUK, L. D., FILATOV, L. G. and TRUNOVA, I. A., 2014. Pulse infrasound signal produced by a wind turbine. Principles of assessment. Eastern-European Journal of Enterprise Technologies. vol. 6, no. 10(72), pp. 13–19. (in Russian). DOI: https://doi.org/10.15587/1729-4061.2014.30979154. SPIVAK, A. A., LOKTEV, D. N., RYBNOV, YU. S., SOLOVIEV, S. P. and KHARLAMOV, V. A., 2016. Geophysical fields of a megalopolis. Izv. Atmos. Ocean. Phys. vol. 52, is. 8, pp. 841–852. DOI: https://doi.org/10.1134/S0001433816080107155. CHERNOGOR, L. F., 2017. Electric and magnetic effects of infrasound in the atmosphere. In: Proceedings of 3rd All-Russian Conference on Global electric circuit. Borok geophysical observatory of Shmidt Institute of Physics of the Earth, RAS. Yaroslavl’, Russia: Filigran’ Publ., pp. 11–12. (in Russian).156. KANAMORI, H., MORI, J., ANDERSON, D. L. and HEATON, T. H., 1991. Seismic excitation by the space shuttle Columbia. Nature. vol. 349, no. 6312, pp. 781–782. DOI: https://doi.org/10.1038/349781a0157. YAMPOLSKI, YU. M., ZALIZOVSKI, A. V., LITVINENKO, L. M., LIZUNOV, G. V., GROVES, K. and MOLDWIN, M., 2004. Magnetic Field Variations in Antarctica and the Conjugate Region (New England) Stimulated by Cyclone Activity. Radio Phys. Radio Astron. vol. 9, no. 2, pp. 130–152. (in Russian).158. CHEKRYZHOV, V. M., SVIRKUNOV, P. N. and KOZLOV, S. V., 2019. The Influence of Cyclonic Activity on the Geomagnetic Field Disturbance. Geomagn. Aeron. vol. 59, is. 1, pp. 53–61. DOI: https://doi.org/10.1134/S0016793219010031159. SOLOVIEV, S. P., RYBNOV, YU. S. and KHARLAMOV, V. A., 2015. The synchronic disturbances of the acoustic and electric fields caused by artificial and natural sources. In: V. V. ADUSHKIN and G. G. KOCHERYAN, eds. Abstracts of 3rd All-Russian Seminar–Meeting on Trigger Effects in Geosystems. Moscow, Russia: GEOS Publ. p. 71. (in Russian).160. SURKOV, V. V., 2000. Electromagnetic Effects Caused by Earthquakes and Explosions. Moscow, Russia: MEPhI Press. (in Russian).161. CHERNOGOR, L. F., 2018. Physical effects of the Romanian meteoroid. 2. Space Sci. Technol. vol. 24, no. 2, pp. 18–35. (in Russian). DOI: https://doi.org/10.15407/knit2018.02.018162. CHERNOGOR, L. F., 2019. Physical Effects of the Lipetsk Meteoroid: 3. Kinemat. Phys. Celest. Bodies. vol. 35, is. 6, pp. 271–285. DOI: https://doi.org/10.3103/S0884591319060023163. CHALMERS, J A., 1967. Atmospheric electricity. Oxford, New York: Pergamon Press. DOI: https://doi.org/10.1016/B978-0-08-012005-8.50019-7 Purpose: Acoustic and atmospheric gravity waves (AAGW) are generated by many natural and anthropogenic sources. The AAGW propagation at ionospheric heights is accompanied by the generation of disturbances in the magnetic and electric fields. The plasma presence plays a crucial role. The mechanisms for generating electrical and magnetic disturbances in the near-Earth atmosphere by the AAGW have been studied much worse. Therefore, the validation of the capability to generate electromagnetic disturbances in the near-Earth atmosphere by the AAGW is an urgent problem. The purpose of this paper is to describe the mechanism for generating disturbances in the electric and magneticfields in the near-Earth atmosphere under the action of AAGW and to estimate the amplitudes of these disturbances for various AAGW sources.Design/methodology/approach: The impact of a series of highenergysources often results in the generation of synchronous disturbances in the acoustic and geoelectric (atmospheric) fields, when an approximate proportionality between the pressure amplitude and the amplitude of the disturbances in the atmospheric electric field is observed to occur. Based on the observational data and making use of the Maxwell equations, the theoretical estimates of the disturbances in the electric and magneticfields have been obtained.Findings: Simplified expressions have been obtained for estimating the amplitudes of the electric and magnetic fields under the action of the AAGW generated by natural and manmade sources. The amplitudes of the electric and magnetic fields generated by the AAGW of natural and manmade origin, which travel in the near-Earth atmosphere, have been calculated. The amplitudes of the AAGW generated electric and magneticfields are shown to be large enough to be detected with the existing electrometers and fluxmeter magnetometers. The magnitudes of the amplitudes of the electric and magnetic fields generated in the near-Earth atmosphere under the action of AAGW are large enough to trigger coupling between the subsystems in the Earth–atmosphere–ionosphere–magnetosphere system.Conclusions: The estimates and not numerous observations are in good agreement.Key words: acoustic and atmospheric gravity waves, near-Earth atmosphere, volume charge, atmospheric pressure disturbances, electric field, magnetic fieldManuscript submitted 12.09.2020Radio phys. radio astron. 2020, 25(4): 290-307REFERENCES1. GOSSARD, E. E. and HOOKE, W. H., 1975. Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves: Their Generation and Propagation. 2. Developments in Atmospheric Science. Amsterdam: Elsevier Scientific.2. PARROT, C. J., 2002. An Introduction to Atmospheric Gravity Waves. San Diego, CA, USA; London, UK: Academic Press.3. LE PICHON, A., BLANC, E. and HAUCHECORNE, A., eds., 2019. Infrasound monitoring for atmospheric studies. Switzerland: Springer Int. Publ. DOI: 10.1007/978-3-319-75140-54. REVELLE, D. O., 1976. On meteor-generated infrasound. J. Geophys. Res. vol. 81, is. 7, pp. 1217–1240. DOI: 10.1029/JA081i007p012175. ARROWSMITH, S. J., REVELLE, D., EDWARDS, W. and BROWN, P., 2007. Global Detection of Infrasonic Signals from Three Large Bolides. In: J. M. TRIGO-RODRÍGUEZ, F. J. M. RIETMEIJER, J. LLORCA, and D. JANCHES, eds. Advances in Meteoroid and Meteor Science. New York, NY: Springer, pp. 357–363. DOI: 10.1007/978-0-387-78419-9_506. EDWARDS, W. N., 2010. Meteor Generated Infrasound: Theory and Observation. In: A. LE PICHON, E. BLANC, and A. HAUCHECORNE, eds Infrasound Monitoring for Atmospheric Studies. Dordrecht, Heidelberg, London, New York: Springer Int. Publ., P. 361–414. DOI: 10.1007/978-1-4020-9508-5_127. ENS, T. A., BROWN, P. G., EDWARDS, W. N. and SILBER, E. A., 2012. Infrasound production by bolides: A global statistical study. J. Atmos. Sol.-Terr. Phys. vol. 80, pp. 208–229. DOI: 10.1016/j.jastp.2012.01.0188. CHERNOGOR, L. F. and BARABASH, V. V., 2014. Ionosphere disturbances accompanying the flight of the Chelyabinsk body. Kinemat. Phys. Celest. Bodies. vol. 30, is. 3, pp. 126–136. DOI: 10.3103/S08845913140300399. CHERNOGOR, L. F., 2017. Chelyabinsk Meteoroid Acoustic Effects. Radio Phys. Radio Astron. vol. 22, no. 1, pp. 53–66. (in Russian). DOI: 10.15407/rpra22.01.05310. LAZORENKO, O. V. and CHERNOGOR, L. F., 2017. System Spectral Analysis of Infrasonic Signal Generated by Chelyabinsk Meteoroid. Radioelectron. Commun. Syst. vol. 60, is. 8, pp. 331–338. DOI: 10.3103/S073527271708001511. CHERNOGOR, L. F. and LIASHCHUK, O. I., 2017. Parameters of Infrasonic Waves Generated by the Chelyabinsk Meteoroid on February 15, 2013. Kinemat. Phys. Celest. Bodies. vol. 33, is. 2, pp. 79–87. DOI: 10.3103/S088459131702002712. CHERNOGOR, L. F. and SHEVELEV, N. B., 2018. Characteristics of the Infrasound SignalGenerated by Chelyabinsk Celestial Body: Global Statistics. Radio Phys. Radio Astron. vol. 23, no. 1, pp. 24–35. (in Russian). DOI: 10.15407/rpra23.01.02413. CHERNOGOR, L. F., 2020. Statistical Analysis of Infrasonic Parameters Generated by the Chelyabinsk Meteoroid. Kinemat. Phys. Celest. Bodies. vol. 36, is. 4, pp. 171–185. DOI: 10.3103/S088459132004002914. CAMPBELL, W. H. and YOUNG, J. M., 1963. Auroral-zone observations of infrasonic pressure waves related to ionospheric disturbances and geomagnetic activity. J. Geophy. Res. vol. 68, is. 21, pp. 5909–5916. DOI: 10.1029/JZ068i021p0590915. MAEDA, K. and WATANABE, T., 1964. Pulsating Aurorae and Infrasonic Waves in the Polar Atmosphere. J. Atmos. Sci. vol. 21, is. 1, pp. 15–29. DOI: 10.1175/1520-0469(1964)021%3C0015:PAAIWI%3E2.0.CO;216. CHIMONAS, G., 1970. Infrasonic waves generated by auroral currents. Planet. Space Sci. vol. 18, is. 4, pp. 591–598. DOI: 10.1016/0032-0633(70)90134-017. ERUSHCHENKOV, A. I. and DOVBNYA, B. V., 1977. On the relationship between high frequency infrasound and geomagnetic pulsations in the auroral zone. Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa. vol. 43, pp. 142–146. (in Russian).18. SUZUKI, Y., 1979. Auroral infrasonic waves and the auroral electrojet. J. Atmos. Terr. Phys. vol. 41, is. 1, pp. 11–23. DOI: 10.1016/0021-9169(79)90042-419. SUZUKI, Y., 1979. Temporal and spatial changes of polar substorms and infrasonic wave emissions. Planet. Space Sci. vol. 27, is. 9, pp. 1195–1208. DOI: 10.1016/0032-0633(79)90139-920. WILSON, C. R., SZUBERLA, C. A. L. and OLSON, J. V., 2010. High-latitude Observations of Infrasound from Alaska and Antarctica: Mountain Associated Waves and Geomagnetic/Auroral Infrasonic Signals. In: A. LE PICHON, E. BLANC, and A. HAUCHECORNE, eds. Infrasound Monitoring for Atmospheric Studies. Dordrecht, Heidelberg, London, New York: Springer Int. Publ. P. 415–454. DOI: 10.1007/978-1-4020-9508-5_1321. CHIMONAS, G. and HINES, C. O., 1970. Atmospheric gravity waves induced by a solar eclipse. J. Geophys. Res. vol. 75, is. 4, p. 875. DOI: 10.1029/JA075i004p0087522. DAVIS, M. J. and DA ROSA, A. V., 1970. Possible Detection of Atmospheric Gravity Waves generated by the Solar Eclipse. Nature. vol. 226, no. 5251, p. 1123. DOI: 10.1038/2261123a023. ICHINOSE, T. and OGAWA, T., 1976. Internal gravity waves deduced from the HF Doppler data during the April 19, 1958, solar eclipse. J. Geophys. Res. vol. 81, is. 13, pp. 2401–2404 DOI: 10.1029/JA081i013p0240124. BROCHE, P., CROCHET, M. and DE MAISTRE, J. C., 1976. Gravity waves generated by the 30 June 1973 solar eclipse in Africa. J. Atmos. Terr. Phys. vol. 38, is. 12, pp. 1361–1364. DOI: 10.1016/0021-9169(76)90147-125. BERTIN, F., HUGHES, K. A. and KERSLEY, L., 1977. Atmospheric waves induced by the solar eclipse of 30 June 1973. J. Atmos. Terr. Phys. vol. 39, is. 4, pp. 457–461. DOI: 10.1016/0021-9169(77)90153-226. JONES, T. B., WRIGHT, D. M., MILNER, J., YEOMAN, T. K., REID, T., CHAPMAN, P. J. and SENIOR, A., 2004. The detection of atmospheric waves produced by the total solar eclipse of 11 August 1999. J. Atmos. Sol.-Terr. Phys. vol. 66, is. 5, pp. 363–374. DOI: 10.1016/j.jastp.2004.01.02927. BUTCHER, E. C., DOWNING, A. M. and Cole, K. D., 1979. Wavelike variations in the F-region in the path of totality of the eclipseb of 23 October 1976. J. Atmos. Terr. Phys. vol. 41, is. 5, pp. 439–444. DOI: 10.1016/0021-9169(79)90068-028. CHERNOGOR, L. F., 2010. Variations in the Amplitude and Phase of VLF Radiowaves in the Ionosphere during the August 1, 2008, Solar Eclipse. Geomagn. Aeron. vol. 50, is. 1, pp. 96–106. DOI: 10.1134/S001679321001011129. CHERNOGOR, L. F., 2010. Wave Response of the Ionosphere to the Partial Solar Eclipse of August 1, 2008. Geomagn. Aeron. vol. 50, is. 3, pp. 346–361. DOI: 10.1134/S001679321003009630. CHERNOGOR, L. F., 2012. Effects of solar eclipses in the ionosphere: Results of Doppler sounding: 1. Experimental data. Geomagn. Aeron. vol. 52, is. 6, pp. 768–778. DOI: 10.1134/S001679321205003931. CHERNOGOR, L. F., 2012. Effects of Solar Eclipses in the Ionosphere: Doppler Sounding Results: 2. Spectral Analysis. Geomagn. Aeron. vol. 52, is. 6, pp. 779–792. DOI: 10.1134/S001679321205004032. BURMAKA, V. P. and CHERNOGOR, L. F., 2013. Solar Eclipse of August 1, 2008, above Kharkov: 2. Observation Results of Wave Disturbances in the Ionosphere. Geomagn. Aeron. vol. 53, is. 4, pp. 479–491. DOI: 10.1134/S001679321304004X33. CHERNOGOR, L. F., 2013. Physical Processes in the Middle Ionosphere Accompanying the Solar Eclipse of January 4, 2011, in Kharkov. Geomagn. Aeron. vol. 53, is. 1, pp. 19–31. DOI: 10.1134/S001679321301005234. CHERNOGOR, L. F., 2013. Physical effects of solar eclipses in atmosphere and geospace: monograph. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).35. PUSHIN, V. F. and CHERNOGOR, L. F., 2013. Infrasonic effect of solar eclipses. Radio Phys. Radio Astron. vol. 18, no. 2, pp. 127–137. (in Russian).36. CHERNOGOR, L. F. and GARMASH, K. P., 2017. Magneto-Ionospheric Effects of the Solar Eclipse of March 20, 2015, over Kharkov. Geomagn. Aeron. vol. 57, is. 1, pp. 72–83. DOI: 10.1134/S001679321606006237. STANKOV, S. M., BERGEOT, N., BERGHMANS, D., BOLSÉE, D., BRUYNINX, C., CHEVALIER, J.-M., CLETTE, F., DE BACKER, H., DE KEYSER, J., D’HUYS, E., DOMINIQUE, M., LEMAIRE, J. F., MAGDALENIĆ, J., MARQUÉ, C., PEREIRA, N., PIERRARD, V., SAPUNDJIEV, D., SEATON, D. B., STEGEN, K., VAN DER LINDEN, R., VERHULST, T. G. W. and WEST, M. J., 2017. Multi-instrument observations of the solar eclipse on 20 March 2015 and its effects on the ionosphere over Belgium and Europe. J. Space Weather Space Clim. vol. 7, id. A19 DOI: 10.1051/swsc/201701738. NYKIEL, G., ZANIMONSKIY, Y. M., YAMPOLSKI, Y. M. and FIGURSKI, M., 2017. Efficient Usage of Dense GNSS Networks in Central Europe for the Visualization and Investigation of Ionospheric TEC Variations. Sensors. vol. 17, is. 10, id. 2298. DOI: 10.3390%2Fs1710229839. MOŠNA, Z., BOŠKA, J., KNÍŽOVÁ, P. K., ŠINDELÁŘOVÁ, T., KOUBA, D., CHUM, J., REJFEK, L., POTUŽNÍKOVÁ, K., ARIKAN, F. and TOKER, C., 2018. Observation of the solar eclipse of 20 March 2015 at the Pruhonice station. J. Atmos. Sol.-Terr. Phys. vol. 171, pp. 277–284. DOI: 10.1016/j.jastp.2017.07.01140. PANASENKO, S. V., OTSUKA, Y., VAN DE KAMP, M., CHERNOGOR, L. F., SHINBORI, A., TSUGAWA, T. and NISHIOKA, M., 2019. Observation and characterization of traveling ionospheric disturbances induced by solar eclipse of 20 March 2015 using incoherent scatter radars and GPS networks. J. Atmos. Sol.-Terr. Phys. vol. 191, id. 105051. DOI: 10.1016/j.jastp.2019.05.01541. GUO, Q., CHERNOGOR, L. F., GARMASH, K. P., ROZUMENKO, V. T. and ZHENG, Y., 2020. Radio Monitoring of Dynamic Processes in the Ionosphere Over China During the Partial Solar Eclipse of 11 August 2018. Radio Sci. vol. 55, is. 2, id. e2019RS006866. DOI: 10.1029/2019RS00686642. SOMSIKOV, V. M., 1983. Solar terminator and dynamic phenomena in the atmosphere. Alma-Ata, Kazakhstan: Nauka Publ. (in Russian).43. SOMSIKOV, V. M., 1991 Waves in the Atmosphere Caused by the Solar Terminator: A Review, Geomagnetizm i Aeronomiia. vol. 31, no. 1, pp. 1–12. (in Russian)44. BURMAKA, V. P., TARAN, V. I. and CHERNOGOR, L. F., 2004. Ionospheric Wave Disturbances Accompanied by Rocket Launches against a Background of Natural Transient Processes. Geomag. Aeron. vol. 44, no. 4, pp. 476–491.45. CHERNOGOR, L. F. and SHAMOTA, M. A., 2009. Geomagnetic pulsations associated with solar terminators near Kharkiv city. 1. Spectral analysis. Space Sci. Tech. vol. 15, no. 5, pp. 43–51. (in Russian). DOI: 10.15407/knit2009.05.04346. CHERNOGOR, L. F. and SHAMOTA, M. A., 2009. Geomagnetic pulsations associated with solar terminators near Kharkiv city. 2. Statistical analysis. Space Sci. Tech. vol. 15, no. 6, pp. 14–19. (in Russian). DOI: 10.15407/knit2009.06.01447. CHERNOGOR, L. F., 2012. Geomagnetic pulsations accompanied the solar terminator moving through magnetoconjugate region. Radio Phys. Radio Astron. vol. 17, no. 1, pp. 57–66. (in Russian).48. SOLOVIEV, S. P., RYBNOV, YU. S. and KHARLAMOV, V. A., 2015. The synchronic disturbances of the acoustic and electric fields caused by artificial and natural sources. In: V. V. ADUSHKIN and G. G. KOCHERYAN, eds. Trigger effects in geosystems. Proceedings of the 3rd All-Russia Meeting. Moskow, Russia: GEOS Publ., pp. 317–326. (in Russian).49. CHERNOGOR, L. F., 2006. The tropical cyclone as an element of the Earth – atmosphere – ionosphere – magnetosphere system. Space Sci. Tech. vol. 12, no. 2-3, pp. 16–36. (in Russian). DOI: 10.15407/knit2006.02.01650. HETZER, C. H., WAXLER, R., GILBERT, K. E., TALMADGE, C. L. and BASS, H. E., 2008. Infrasound from hurricanes: Dependence on the ambient ocean surface wave field. Geophys. Res. Lett. vol. 35, is. 14, id: L14609. DOI: 10.1029/2008GL03461451. HETZER, C. H., GILBERT, K. E., WAXLER, R. and TALMADGE, C. L., 2010. Generation of Microbaroms by Deep-Ocean Hurricanes. In: A. LE PICHON, E. BLANC, and A. HAUCHECORNE, eds. Infrasound Monitoring for Atmospheric Studies. Dordrecht: Springer. DOI: 10.1007/978-1-4020-9508-5_852. NISHIOKA, M., TSUGAWA, T., KUBOTA, M. and ISHII, M., 2013. Concentric waves and short-period oscillations observed in the ionosphere after the 2013 Moore EF5 tornado. Geophys. Res. Lett. vol. 40, is. 21, pp. 5581–5586. DOI: 10.1002/2013GL05796353. CHOU, M.-Y., LIN, C. C. H., YUE, J., CHANG, L. C., TSAI, H.-F. and CHEN, C.-H., 2017. Medium-scale traveling ionospheric disturbances triggered by Super Typhoon Nepartak (2016). Geophys. Res. Lett. vol. 44, is. 15, pp. 7569–7577. DOI: 10.1002/2017GL07396154. SPIVAK, A. A., RYBNOV, YU. S. and KHARLAMOV, V. A., 2018. Variations in Geophysical Fields during Hurricanes and Squalls. Dokl. Earth Sci. vol. 480, pp. 788–791. DOI: 10.1134/S1028334X1806019355. RICHARDS, A. F., 1963. Volcanic sounds: Investigation and analysis. J. Geophys. Res. vol. 68, is. 3, pp. 919–928. DOI: 10.1029/JZ068i003p0091956. GOERKE, V. H., YOUNG, J. M. and COOK, R. K., 1965. Infrasonic observations of the May 16, 1963, volcanic explosion on the island of Bali. J. Geophys. Res. vol. 70, is. 24, pp. 6017–6022. DOI: 10.1029/JZ070i024p0601757. BOLT, B. A. and TANIMOTO, T., 1981. Atmospheric oscillations after the May 18, 1980 eruption of Mount St. Helens. Eos. vol. 62, is. 23, pp. 529–530. DOI: 10.1029/EO062i023p0052958. KIEFFER, S. W., 1981. Blast dynamics at Mount St Helens on 18 May 1980. Nature. vol. 291, no. 5816, pp. 568–570. DOI: 10.1038/291568a059. BANISTER, J. R., 1984. Pressure wave generated by the Mount St. Helens eruption. J. Geophys. Res. vol. 89, is. D3, pp. 4895–4904. DOI: 10.1029/JD089iD03p0489560. REED, J. W., 1987. Air pressure waves from Mount St. Helens eruptions. J. Geophys. Res. vol. 92, is. D10, pp. 11979–11992. DOI: 10.1029/JD092iD10p1197961. YAMASATO, H., 1997. Quantitative Analysis of Pyroclastic Flows Using Infrasonic and Seismic Data at Unzen Volcano, Japan. J. Phys. Earth. vol. 45, is. 6, pp. 397–416. DOI: 10.4294/jpe1952.45.39762. RIPEPE, M., CILIBERTO, S. and DELLA SCHIAVA, M., 2001. Time constraints for modeling source dynamics of volcanic explosions at Stromboli. J. Geophys. Res.: Solid Earth. vol. 106, is. B5, pp. 8713–8727. DOI: 10.1029/2000JB90037463. RIPEPE, M., HARRIS, A. J. L. and CARNIEL, R., 2002. Thermal, seismic and infrasonic evidences of variable degassing rates at Stromboli volcano. J. Volcanol. Geotherm. Res. vol. 118, is. 3-4, pp. 285–297. DOI: 10.1016/S0377-0273(02)00298-664. EVERS, L. G. and Haak, H. W., 2005. The detectability of infrasound in The Netherlands from the Italian volcano Mt. Etna. J. Atmos. Sol.-Terr. Phys. vol. 67, is. 3, pp. 259–268. DOI: 10.1016/j.jastp.2004.09.00265. CHERNOGOR, L. F., 2012. Physics and Ecology of Disasters. Kharkiv: V. N. Karazin Kharkiv National University Publ. (in Russian).66. DANIELS, F. B., 1962. Generation of Infrasound by Ocean Waves. J. Acoust. Soc. Am. vol. 34, is. 3, pp. 352–353. DOI: 10.1121/1.192812867. DONN, W. L. and POSMENTIER, E. S., 1967. Infrasonic waves from the marine storm of April 7, 1966. J. Geophys. Res. vol. 72, is. 8, pp. 2053–2061. DOI: 10.1029/JZ072i008p0205368. BREKHOVSKIKH, L. M., GONCHAROV, V. V, KURTEPOV, V. M. and NAUGOLNYKH, K. A., 1973. The radiation of infrasound into the atmosphere by surface waves in the ocean. Izv. Atmos. Ocean Phys. vol. 9, no. 9, pp. 899–907. (in Russan).69. ARENDT, S. and FRITTS, D. C., 2000. Acoustic radiation by ocean surface waves. J. Fluid Mech. vol. 415, pp. 1–21. DOI: 10.1017/S002211200000863670. GARCÉS, M., WILLIS, M., HETZER, C., LE PICHON, A. and DROB, D., 2004. On using ocean swells for continuous infrasonic measurements of winds and temperature in the lower, middle, and upper atmosphere. Geophys. Res. Lett. vol. 31, is. 19, id. L19304. DOI: 10.1029/2004GL02069671. LE PICHON, A., MAURER, V., RAYMOND, D. and HYVERNAUD, O., 2004. Infrasound from ocean waves observed in Tahiti. Geophys. Res. Lett. vol. 31, is. 19, id. L19103. DOI: 10.1029/2004GL02067672. WAXLER, R. and Gilbert, K. E., 2006. The radiation of atmospheric microbaroms by ocean waves. J. Acoust. Soc. Am. vol. 119, is. 5, pp. 2651–2664. DOI: 10.1121/1.219160773. GARCÉS, M., WILLIS, M. and LE PICHON, A., 2010. Infrasonic Observations of Open Ocean Swells in the Pacific: Deciphering the Song of the Sea. In: A. LE PICHON, E. BLANC, A. HAUCHECORNE, eds. Infrasound Monitoring for Atmospheric Studies. Dordrecht: Springer, 235–248. DOI: 10.1007/978-1-4020-9508-5_774. HETZER, C. H., GILBERT, K. E., WAXLER, R., and TALMADGE, C. L., 2010. Generation of Microbaroms by Deep-Ocean Hurricanes. In: A. LE PICHON, E. BLANC, A. HAUCHECORNE, eds. Infrasound Monitoring for Atmospheric Studies. Dordrecht: Springer, pp. 249–262. DOI:10.1007/978-1-4020-9508-5_875. GOSTINTSEV, YU. A., IVANOV, E. A., KOPYLOV, N. P. and SHATSKIKH YU. V., 1983. Wave disturbances of the atmosphere due to large fires. Combust., Explos. Shock Waves. vol. 19, is. 4, pp. 427–429. DOI: 10.1007/BF0078363976. SPIVAK, A. A., RIABOVA, S. A. and KHARLAMOV, V. A., 2019. The Electric Field in the Surface Atmosphere of the Megapolis of Moscow. Geomagn. Aeron. vol. 59, no. 4, pp. 467–478. DOI: 10.1134/S001679321904016977. DONN, W. L. and POSMENTIER, E. S., 1964. Ground-coupled air waves from the Great Alaskan Earthquake. J. Geophys. Res. vol. 69, is. 24, pp. 5357–5361. DOI: 10.1029/JZ069i024p0535778. BOWMAN, G. G. and SHRESTHA, K. L., 1965. Atmospheric pressure waves from the Japanese earthquake on 16 June 1964. Q. J. R. Meteorol. Soc. vol. 91, is. 388, pp. 223–224. DOI: 10.1002/qj.4970913881379. DAVIES, K. and BAKER, D. M., 1965. Ionospheric effects observed around the time of the Alaskan earthquake of March 28, 1964. J. Geophys. Res. vol. 70, is. 9, pp. 2251–2253. DOI: 10.1029/JZ070i009p0225180. ROW, R. V., 1966. Evidence of long-period acoustic-gravity waves launched into theFregion by the Alaskan earthquake of March 28, 1964. J. Geophys. Res. vol. 71, is. 1, pp. 343–345. DOI: 10.1029/JZ071i001p0034381. MIKUMO, T., 1968. Atmospheric pressure waves and tectonic deformation associated with the Alaskan earthquake of March 28, 1964. J. Geophys. Res. vol. 73, is. 6, pp. 2009–2025. DOI: 10.1029/JB073i006p0200982. COOK, R. K. and BEDARD JR, A. J., 1971. On the Measurement of Infrasound. Geophys. J. R. Astron. Soc. vol. 26, is. 1-4, pp. 5–11. DOI: 10.1111/j.1365-246X.1971.tb03378.x83. YOUNG, J. M. and GREENE, G. E., 1982. Anomalous infrasound generated by the Alaskan earthquake of 28 March 1964. J. Acoust. Soc. Am. vol. 71, is. 2, pp. 334–339. DOI: 10.1121/1.38745784. KELLEY, M. C., LIVINGSTON, R. and MCCREADY, M., 1985. Large amplitude thermospheric oscillations induced by an earthquake. Geophys. Res. Lett. vol. 12, is. 9, pp. 577–580. DOI: 10.1029/GL012i009p0057785. OLSON, J. V., WILSON, C. R. and HANSEN, R. A., 2003. Infrasound associated with the 2002 Denali fault earthquake, Alaska. Geophys. Res. Lett. vol. 30, is. 23, id. 2195. DOI: 10.1029/2003GL01856886. GARCÉS, M., CARON, P., HETZER, C., LE PICHON, A., BASS, H., DROB, D. and BHATTACHARYYA, J., 2005. Deep infrasound radiated by the Sumatra earthquake and tsunami. Eos. vol. 86, is. 35, pp. 317–320. DOI: 10.1029/2005EO35000287. LE PICHON, A., HERRY, P., MIALLE, P., VERGOZ, J., BRACHET, N., GARCÉS, M., DROB, D. and CERANNA, L., 2005. Infrasound associated with 2004–2005 large Sumatra earthquakes and tsunami. Geophys. Res. Lett. vol. 32, is. 19, id. L19802. DOI: 10.1029/2005GL02389388. MUTSCHLECNER, J. P. and WHITAKER, R. W., 2005. Infrasound from earthquakes. J. Geophys. Res: Atmospheres. vol. 110, is. D1, id: D01108. 10.1029/2004JD00506789. MIKUMO, T., SHIBUTANI, T., LE PICHON, A., GARCÉS, M., FEE, D., TSUYUKI, T., WATADA, S. and MORII, W., 2008. Low-frequency acoustic-gravity waves from coseismic vertical deformation associated with the 2004 Sumatra-Andaman earthquake (Mw=9.2). J. Geophys. Res: Solid Earth. vol. 113, is. B12, id: B12402. DOI: 10.1029/2008JB00571090. GUO, Q., CHERNOGOR, L. F., GARMASH, K. P., ROZUMENKO, V. T. and ZHENG, YU., 2019. Dynamical processes in the ionosphere following the moderate earthquake in Japan on 7 July 2018. J. Atmos. Sol.-Terr. Phys. vol. 186, pp. 88–103. DOI: 10.1016/j.jastp.2019.02.00391. LUO, Y., GUO, Q., ZHENG, Y., GARMASH, K. P., CHERNOGOR, L. F. and SHULGA, S. M., 2019. HF radio-wave characteristic variations over China during moderate earthquake in Japan on September 5, 2018. Visnyk of V. N. Karazin Kharkiv National University, series “Radio Physics and Electronics”. vol. 30, pp. 16–26. (in Russian). DOI: 10.26565/2311-0872-2019-30-0292. LUO, Y., CHERNOGOR, L. F., GARMASH, K. P., GUO, Q. and ZHENG, YU. Seismic-ionospheric effects: results of radio soundings at oblique incidence. Radio Physics and Radio Astronomy. vol. 25, no. 3, pp. 218–230. (in Ukrainian). DOI: 10.15407/rpra25.03.21893. GARCÉS, M., CARON, P., HETZER, C., LE PICHON, A., BASS, H., DROB, D. and BHATTACHARYYA, J., 2005. Deep infrasound radiated by the Sumatra earthquake and tsunami. Eos. vol. 86, is. 35, pp. 317–320. DOI: 10.1029/2005EO35000294. BALACHANDRAN, N. K., 1979. Infrasonic signals from thunder. J. Geophys. Res.: Oceans vol. 84, is. C4, pp. 1735–1745. DOI: 10.1029/JC084iC04p0173595. BALACHANDRAN, N. K., 1983. Acoustic and electric signals from lightning. J. Geophys. Res.: Oceans. vol. 88, is. C6, pp. 3879–3884. DOI: 10.1029/JC088iC06p0387996. FARGES, T., BLANC, E., LE PICHON, A., NEUBERT, T. and ALLIN, T. H., 2005. Identification of infrasound produced by sprites during the Sprite2003 campaign. Geophys. Res. Lett. vol. 32, is. 1. Id. L01813. DOI: 10.1029/2004GL02121297. LIN, T.-L. and LANGSTON, C. A., 2007. Infrasound from thunder: A natural seismic source. Geophys. Res. Lett. vol. 34, is. 14, id. L14304. 10.1029/2007GL03040498. FARGES, T. and BLANC, E., 2010. Characteristics of infrasound from lightning and sprites near thunderstorm areas. J. Geophys. Res.: Space Physics. vol. 115, is. A6, id. A00E31. DOI: 10.1029/2009JA01470099. BLANC, E., FARGES, T., LE PICHON, A. and HEINRICH, P., 2014. Ten year observations of gravity waves from thunderstorms in western Africa. J. Geophys. Res.: Atmospheres. vol. 119, is. 11, pp. 6409–6418. DOI: 10.1002/2013JD020499100. SPIVAK, A. A., RYBNOV, YU. S., SOLOVIEV, S. P. and KHARLAMOV, V. A., 2017. Acoustic and electric precursors of heavy thunderstorm under megalopolis conditions. Geophysical processes and biosphere. vol. 16, no. 4, pp. 81–91. (in Russian). DOI: 10.21455/GPB2017.4-7101. ROSE, G., OKSMAN, J. and KATAJA, E., 1961. Round-the-World Sound Waves produced by the Nuclear Explosion on October 30, 1961, and their Effect on the Ionosphere at Sodankylä. Nature. vol. 192, no. 4808, pp. 1173–1174. DOI: 10.1038/1921173a0102. DONN, W. L. and EWING, M., 1962. Atmospheric waves from nuclear explosions. J. Geophys. Res. vol. 67, is. 5, pp. 1855–1866. DOI: 10.1029/JZ067i005p01855103. DONN, W. L. and EWING, M., 1962. Atmospheric Waves from Nuclear Explosions – Part II: The Soviet Test of 30 October 1961. J. Atmos. Sci. vol. 19, is. 3, pp. 264–273. DOI: 10.1175/1520-0469(1962)019%3C0264:AWFNEI%3E2.0.CO;2104. FARKAS, E., 1962. Transit of Pressure Waves through New Zealand from the Soviet 50 Megaton Bomb Explosion. Nature. vol. 193, no. 4817, pp. 765–766. DOI: 10.1038/193765a0105. GARDINER, G. W., 1962. Effects of the nuclear explosion of 30 October 1961. J. Atmos. Terr. Phys. vol. 24, is. 11, pp. 990–993. DOI: 10.1016/0021-9169(62)90146-0106. PFEFFER, R. L. and ZARICHNY, J., 1962. Acoustic-Gravity Wave Propagation from Nuclear Explosions in the Earth’s Atmosphere. J. Atmos. Sci. vol. 19, is. 3, pp. 256–263. DOI: 10.1175/1520-0469(1962)019%3C0256:AGWPFN%3E2.0.CO;2107. WEXLER, H. and HASS, W. A., 1962. Global atmospheric pressure effects of the October 30, 1961, explosion. J. Geophys. Res. vol. 67, is. 10, pp. 3875–3887. DOI: 10.1029/JZ067i010p03875108. DONN, W. L., PFEFFER, R. L. and EWING, M., 1963. Propagation of Air Waves from Nuclear Explosions: Nuclear explosions provide data on the relation of air-wave propagation to atmospheric structure. Science. vol. 139, is. 3552, pp. 307–317. DOI: 10.1126/science.139.3552.307109. WEBB, H. D. and DANIELS, F. B., 1964. Ionospheric oscillations following a nuclear explosion. J. Geophys. Res. vol. 69, is. 3, pp. 545–546. DOI: 10.1029/JZ069i003p00545110. OKSMAN, J. and KIVINEN, M., 1965. Ionospheric gravity waves caused by nuclear explosions. Geophysica. vol. 9, pp. 119–129.111. MCCRORY, R. A., 1967. Atmospheric Pressure Waves from Nuclear Explosions. J. Atmos. Sci. vol. 24, is. 4, pp. 443–447. DOI: 10.1175/1520-0469(1967)024%3C0443:APWFNE%3E2.0.CO;2112. ROW, R. V., 1967. Acoustic-gravity waves in the upper atmosphere due to a nuclear detonation and an earthquake. J. Geophys. Res. vol. 72, is. 5, pp. 1599–1610. DOI: 10.1029/JZ072i005p01599113. CHE, I.-Y., PARK, J., KIM, I., KIM, T. S. and LEE, H.-I., 2014. Infrasound signals from the underground nuclear explosions of North Korea. Geophys. J. Int. vol. 198, is. 1, pp. 495–503. DOI: 10.1093/gji/ggu150114. KULICHKOV, S. N., 1992. Long-range sound propagation in the atmosphere (Review). Izv. Acad. Nauk SSSR, Fiz. Atmos. Okeana. vol. 28, no. 4, pp. 3–20.115. BUSH, G. A., IVANOV, E. A., KULICHKOV, S. N. and PEDANOV, M. V., 1997. Some Results of Recording Acoustic Signals From High-Altitude Explosions. Izv. Atmos. Ocean. Phys. vol. 33, no. 1, pp. 59–63.116. CALAIS, E., MINSTER, J. B., HOFTON, M. A. and HEDLIN, M. A. H., 1998. Ionospheric Signature of Surface Mine Blasts from Global Positioning System Measurements. Geophys. J. Int. vol. 132, is. 1, pp. 191–202. DOI: 10.1046/j.1365-246x.1998.00438.x117. CHERNOGOR, L. F., 2004. Geophysical effects and geoecological consequences of multiple chemical explosions at ammunition dumps in Artemovsk. Geofizicheskiy Zhurnal. vol. 26, no. 4, 31–44. (in Russian).118. CHERNOGOR, L. F., 2004. Geophysical Effects and Ecological Consequences of Fire and Explosions of Ammunitions at a Military Base Near Melitopol. Geofizicheskiy Zhurnal. vol. 26, no. 6, 61–73. (in Russian).119. GIBBONS, S. J., RINGDAL, F. and KVÆRNA, T., 2007. Joint seismic-infrasonic processing of recordings from a repeating source of atmospheric explosions. J. Acoust. Soc. Am. vol. 122, is. 5, id. EL158. DOI: 10.1121/1.2784533120. CHERNOGOR, L. F. and GARMASH, K. P., 2018. Magnetospheric and Ionospheric Effects Accompanying the Strongest Technogenic Catastrophe. Geomagn. Aeron. vol. 58, is. 5, pp. 673–685. DOI: 10.1134/S0016793218050031121. CHERNOGOR, L. F., LIASHCHUK, O. I. and SHEVELEV, M. B., 2018. Parameters of infrasonic signals generated in the atmosphere by multiple explosions at an ammunition depot. Radio Phys. Radio Astron. vol. 23, no. 4, pp. 280–293. (in Russian). DOI: 10.15407/rpra23.04.280122. DONN, W. L., POSMENTIER, E., FEHR, U. and BALACHANDRAN, N. K., 1968. Infrasound at Long Range from Saturn V, 1967. Science. vol. 162, is. 3858, pp. 1116–1120. DOI: 10.1126/science.162.3858.1116123. KASCHAK, G. R., 1969. Long-range supersonic propagation of infrasonic noise generated by missiles. J. Geophys. Res. vol. 74, is. 3, pp. 914–918. DOI: 10.1029/JA074i003p00914124. BALACHANDRAN, N. K., DONN, W. L. and KASCHAK, G., 1971. On the Propagation of Infrasound from Rockets: Effects of Winds. J. Acoust. Soc. Am. vol. 50, is. 2A, pp. 397–404. DOI: 10.1121/1.1912649125. COTTEN, D. and DONN, W. L., 1971. Sound from Apollo rockets in space. Science. vol. 171, is. 3971, pp. 565–567. DOI: 10.1126/science.171.3971.565126. DONN, W. L., BALACHANDRAN, N. K. and RIND, D., 1975. Tidal wind control of long-range rocket infrasound. J. Geophys. Res. vol. 80, is. 12, pp. 1662–1664. . DOI: 10.1029/JC080i012p01662127. NOBLE, S. T., 1990. A large-amplitude traveling ionospheric disturbance excited by the space shuttle during launch. J. Geophys. Res.: Space Physics. vol. 95, is. A11, pp. 19037–19044. DOI: 10.1029/JA095iA11p19037128. LI, Y. Q., JACOBSON, A. R., CARLOS, R. C., MASSEY, R. S., TARANENKO, Y. N. and WU, G., 1994. The blast wave of the Shuttle plume at ionospheric heights. Geophys. Res. Lett. vol. 21, is. 24, pp. 2737–2740. DOI: 10.1029/94GL02548129. CHERNOGOR, L. F., 2009. Radiophysical and Geomagnetic Effects of Rocket Engine Burn: Monograph. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).130. CHERNOGOR, L. F. and BLAUNSTEIN, N., 2014. Radiophysical and Geomagnetic Effects of Rocket Burn and Launch in the Near-the-Earth Environment. Boca Raton, London, New York: CRC Press. Taylor & Francis Group.131. KAKINAMI, Y., YAMAMOTO, M., CHEN, C.-H., WATANABE, S., LIN, C., LIU, J.-Y. and HABU, H., 2013. Ionospheric disturbances induced by a missile launched from North Korea on 12 December 2012. J. Geophys. Res.: Space Physics. vol. 118, is. 8, pp. 5184–5189. DOI: 10.1002/jgra.50508132. LIN, C. H., LIN, J. T., CHEN, C. H., LIU, J. Y., SUN, Y. Y., KAKINAMI, Y., MATSUMURA, M., CHEN, W. H., LIU, H. and RAU, R. J., 2014. Ionospheric shock waves triggered by rockets. Ann. Geophys. vol. 32, no. 9, pp. 1145–1152. DOI: 10.5194/angeo-32-1145-2014133. DING, F., WAN, W., MAO, T., WANG, M., NING, B., ZHAO, B. and XIONG, B., 2014. Ionospheric response to the shock and acoustic waves excited by the launch of the Shenzhou 10 spacecraft. Geophys. Res. Lett. vol. 41, is. 10, pp. 3351–3358. DOI: 10.1002/2014GL060107134. LIN, C. C. H., SHEN, M.-H., CHOU, M.-Y., CHEN, C.-H., YUE, J., CHEN, P.-C. and MATSUMURA, M., 2017. Concentric traveling ionospheric disturbances triggered by the launch of a SpaceX Falcon 9 rocket. Geophys. Res. Lett. vol. 44, is. 15, pp. 7578–7586. DOI: 10.1002/2017GL074192135. CHOU, M.-Y., SHEN, M.-H., LIN, C. C. H., YUE, J., CHEN, C.-H., LIU, J.-Y. and LIN, J.-T., 2018. Gigantic Circular Shock Acoustic Waves in the Ionosphere Triggered by the Launch of FORMOSAT-5 Satellite. Space Weather. vol. 16, is. 2, pp. 172–184. DOI: 10.1002/2017SW001738136. CHOU, M.-Y., LIN, C. C. H., SHEN, M.-H., YUE, J., HUBA, J. D. and CHEN, C.-H., 2018. Ionospheric Disturbances Triggered by SpaceX Falcon Heavy. Geophys. Res. Lett. vol. 45, is. 13, pp. 6334–6342. DOI: 10.1029/2018GL078088137. GARMASH, K. P. and CHERNOGOR, L. F., 1998. Near-Earth effects which accompanied high-powerful radio emission action. Zarubezhnaya radioelectronika. Uspekhi sovremennoi radioelektroniki. no. 6, pp. 17–40. (in Russian).138. GARMASH, K. P. and CHERNOGOR, L. F., 1998. Electromagnetic and geophysics effects in near-Earth plasma, which accompanied high-powerful radio emission action. Electromagnitnye yavleniya. vol. 1, no. 1, pp. 90–110. (in Russian).139. BURMAKA, V. P., DOMNIN, I. F., URYADOV, V. P. and CHERNOGOR, L. F., 2009. Variations in the Parameters of Scattered Signals and the Ionosphere Connected with Plasma Modification by High-Power Radio Waves. Radiophys. Quantum Electron. vol. 52, is. 11, pp. 774–795. DOI: 10.1007/s11141-010-9191-2140. CHERNOGOR, L. F., VERTOGRADOV, G. G., URYADOV, V. P., VERTOGRADOVA, E. G. and SHAMOTA, M. A., 2011. Consistent Quasi-Periodic Variations of the Geomagnetic Pulsation Level and Doppler Frequency Shift of Decametric Radio Waves Aspect-Scattered by Artificial Field-Aligned Ionospheric Irregularities. Radiophys. Quantum Electron. vol. 53, is. 12, pp. 688–705. DOI: 10.1007/s11141-011-9262-z141. CHERNOGOR, L. F., FROLOV, V. L., KOMRAKOV, G. P. and PUSHIN, V. F., 2011. Variations in the ionospheric wave perturbation spectrum during periodic heating of the plasma by high-power high-frequency radio waves. Radiophys. Quantum Electron. vol. 54, no. 2, pp. 75–88. DOI: 10.1007/s11141-011-9272-x142. DOMNIN, I. F., PANASENKO, S. V., URYADOV, V. P. and CHERNOGOR, L. F., 2012. Results of radiophysical studies of the wave processes in the ionospheric plasma during its heating by high-power radio emission of the Sura facility. Radiophys. Quantum Electron. vol. 55, is. 4, pp. 253–265. DOI: 10.1007/s11141-012-9364-2143. CHERNOGOR, L. F. and FROLOV, V. L., 2012. Traveling ionospheric disturbances generated due to periodic plasma heating by high-power high-frequency radiation. Radiophys. Quantum Electron. vol. 55, is. 1-2, pp. 13–32. DOI: 10.1007/s11141-012-9346-4144. CHERNOGOR, L. F., FROLOV, V. L. and PUSHIN V. F., 2012. Infrasound oscillations in the ionosphere affected by high-power radio waves. Radiophys. Quantum Electron. vol. 55, is. 5, pp. 296–308. DOI: 10.1007/s11141-012-9369-x145. CHERNOGOR, L. F. and FROLOV, V. L., 2013. Features of Propagation of the Acoustic-Gravity Waves Generated by High-Power Periodic Radiation. Radiophys. Quantum Electron. 2013. vol. 56, is. 4, pp. 197–215. DOI: 10.1007/s11141-013-9426-0146. CHERNOGOR, L. F. and FROLOV, V. L., 2014. Geomagnetic Pulsation Amplitude and Spectrum Variations Accompanying the Ionospheric Heating by High-Power Radio waves from the Sura Facility. Radiophys. Quantum Electron. vol. 57, is. 5, pp. 340–359. DOI: 10.1007/s11141-014-9518-5147. CHERNOGOR, L. F., 2014. Physics of High-Power Radio Emissions in Geospace: Monograph. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).148. CHERNOGOR, L. F., PANASENKO, S. V., FROLOV, V. L. and DOMNIN, I. F., 2015. Observations of the Ionospheric Wave Disturbances Using the Kharkov Incoherent Scatter Radar upon RF Heating of the Near-Earth Plasma. Radiophys. Quantum Electron. vol. 58, is. 2, pp. 79–91. DOI: 10.1007/s11141-015-9583-4149. CHERNOGOR, L. F., GARMASH, K. P. and FROLOV, V. L., 2019. Large-scale disturbances in the lower and middle ionosphere accompanying its modification by the Sura heater. Radiophys. Quantum Electron. vol. 62, is. 6, pp. 395–411. DOI: 10.1007/s11141-019-09986-7150. BALACHANDRAN, N. K., DONN, W. L. and RIND, D. H., 1977. Concorde Sonic Booms as an Atmospheric Probe. Science. vol. 197, is. 4298, pp. 47–49. DOI: 10.1126/science.197.4298.47151. DONN, W. L., 1978. Exploring the Atmosphere with Sonic Booms: Or How I Learned to Love the Concorde. Am. Sci. vol 66, is. 6, pp. 724–733.152. DONN, W. L. and RIND, D., 1979. Monitoring Stratospheric Winds with Concorde-Generated Infrasound. J. Appl. Meteor. vol. 18, is. 7, pp. 945–952. DOI: 10.1175/1520-0450(1979)018%3C0945:MSWWCG%3E2.0.CO;2153. AFANASIEVA, N. A., PLYATSUK, L. D., FILATOV, L. G. and TRUNOVA, I. A., 2014. Pulse infrasound signal produced by a wind turbine. Principles of assessment. Eastern-European Journal of Enterprise Technologies. vol. 6, no. 10(72), pp. 13–19. (in Russian). DOI: 10.15587/1729-4061.2014.30979154. SPIVAK, A. A., LOKTEV, D. N., RYBNOV, YU. S., SOLOVIEV, S. P. and KHARLAMOV, V. A., 2016. Geophysical fields of a megalopolis. Izv. Atmos. Ocean. Phys. vol. 52, is. 8, pp. 841–852. DOI: 10.1134/S0001433816080107155. CHERNOGOR, L. F., 2017. Electric and magnetic effects of infrasound in the atmosphere. In: Proceedings of 3rd All-Russian Conference on Global electric circuit. Borok geophysical observatory of Shmidt Institute of Physics of the Earth, RAS. Yaroslavl’, Russia: Filigran’ Publ., pp. 11–12. (in Russian).156. KANAMORI, H., MORI, J., ANDERSON, D. L. and HEATON, T. H., 1991. Seismic excitation by the space shuttle Columbia. Nature. vol. 349, no. 6312, pp. 781–782. DOI: 10.1038/349781a0157. YAMPOLSKI, YU. M., ZALIZOVSKI, A. V., LITVINENKO, L. M., LIZUNOV, G. V., GROVES, K. and MOLDWIN, M., 2004. Magnetic Field Variations in Antarctica and the Conjugate Region (New England) Stimulated by Cyclone Activity. Radio Phys. Radio Astron. vol. 9, no. 2, pp. 130–152. (in Russian).158. CHEKRYZHOV, V. M., SVIRKUNOV, P. N. and KOZLOV, S. V., 2019. The Influence of Cyclonic Activity on the Geomagnetic Field Disturbance. Geomagn. Aeron. vol. 59, is. 1, pp. 53–61. DOI: 10.1134/S0016793219010031159. SOLOVIEV, S. P., RYBNOV, YU. S. and KHARLAMOV, V. A., 2015. The synchronic disturbances of the acoustic and electric fields caused by artificial and natural sources. In: V. V. ADUSHKIN and G. G. KOCHERYAN, eds. Abstracts of 3rd All-Russian Seminar–Meeting on Trigger Effects in Geosystems. Moscow, Russia: GEOS Publ. p. 71. (in Russian).160. SURKOV, V. V., 2000. Electromagnetic Effects Caused by Earthquakes and Explosions. Moscow, Russia: MEPhI Press. (in Russian).161. CHERNOGOR, L. F., 2018. Physical effects of the Romanian meteoroid. 2. Space Sci. Technol. vol. 24, no. 2, pp. 18–35. (in Russian). DOI: 10.15407/knit2018.02.018162. CHERNOGOR, L. F., 2019. Physical Effects of the Lipetsk Meteoroid: 3. Kinemat. Phys. Celest. Bodies. vol. 35, is. 6, pp. 271–285. DOI: 10.3103/S0884591319060023163. CHALMERS, J A., 1967. Atmospheric electricity. Oxford, New York: Pergamon Press. Предмет і мета роботи: Акустико-гравітаційні хвилі (АГХ) являють собою сукупність акустичних і гравітаційних хвиль. Джерелами АГХ є багато природних та техногенних явищ. Рух АГХ на висотах іоносфери супроводжується генерацією збурень магнітного й електричного полів. Основну роль відіграє наявність плазми. Механізми генерації магнітних і електричних збурень в приземній атмосфері, які викликаються АГХ, вивчені значно гірше. Обґрунтування можливості генерації електромагнітних збурень у приземній атмосфері під дією АГХ є актуальною задачею. Мета цієї роботи – опис механізму генерації збурень електричного та магнітного полів у приземній атмосфері під дією АГХ і оцінка амплітуд цих збурень для різних джерел АГХ.Методи і методологія. Вплив на геосфери цілої низки високоенергійних джерел часто призводить до генерації синхронних збурень акустичного та геоелектричного (атмосферного) полів. Водночас спостерігається приблизна пропорційність амплітуди збурень атмосферного електричного поля й амплітуди тиску. За даними спостережень з використанням рівняння Максвела виконано теоретичні оцінки збурень електричного та магнітного полів.Результати. Отримано прості співвідношення, які дозволяють оцінити амплітуди електричного та магнітного полів під дією АГХ, що генеруються природними та техногенними джерелами. Виконано оцінки амплітуди електричного та магнітного полів, генерованих в приземній атмосфері внаслідок руху АГХ природного та техногенного походження. Показано, що амплітуди електричного та магнітного полів, генерованих АГХ, є достатніми для реєстрації існуючимиелектрометрами-флюксметрами та магнітометрами-флюксметрами. Значення амплітуд електричного та магнітного полів, генерованих в приземній атмосфері під дією АГХ, є достатні для активізації взаємодії підсистем у системі Земля – атмосфера – іоносфера – магнітосфера.Висновок: Результати оцінок добре відповідають результатам нечисленних спостережень.Ключові слова: акустико-гравітаційні хвилі, приземна атмосфера, об’ємний заряд, збурення атмосферного тиску, електричне поле, магнітне полеСтаття надійшла до редакції 12.09.2020Radio phys. radio astron. 2020, 25(4): 290-307СПИСОК ЛІТЕРАТУРИ 1. Госсард Э. Э., Хук У. Х. Волны в атмосфере. Москва: Мир, 1978. 532 с.2. Parrot C. J. An Introduction to Atmospheric Gravity Waves. San Diego, CA, USA; London, UK: Academic Press, 2002. 400 p.3. Infrasound monitoring for atmospheric studies. A. Le Pichon, E. Blanc, and A. Hauchecorne, eds. Switzerland: Springer Int. Publ., 2019. 1167 p. DOI: 10.1007/978-3-319-75140-54. ReVelle D. O. On meteor-generated infrasound. J. Geophys. Res. 1976. Vol. 81, Is. 7. P. 1217–1240. DOI: 10.1029/JA081i007p012175. Arrowsmith S. J., ReVelle D., Edwards W., and Brown P. Global Detection of Infrasonic Signals from Three Large Bolides. In: J. M. Trigo-Rodríguez, F. J. M. Rietmeijer, J. Llorca, and D. Janches, eds. Advances in Meteoroid and Meteor Science. New York, NY: Springer, 2007. P. 357–363. DOI: 10.1007/978-0-387-78419-9_506. Edwards W. N. Meteor Generated Infrasound: Theory and Observation. In: A. Le Pichon, E. Blanc, and A. Hauchecorne, eds Infrasound Monitoring for Atmospheric Studies. Dordrecht, Heidelberg, London, New York: Springer Int. Publ., 2010. P. 361–414. DOI: 10.1007/978-1-4020-9508-5_127. Ens T. A., Brown P. G., Edwards W. N., and Silber E. A. Infrasound production by bolides: A global statistical study. J. Atmos. Sol.-Terr. Phys. 2012. Vol. 80. P. 208–229. DOI: 10.1016/j.jastp.2012.01.0188. Черногор Л. Ф., Барабаш В. В. Ионосферные возмущения, сопровождавшие пролет Челябинского тела. Кинематика и физика небесных тел. 2014. Т. 30, № 3. С. 27–42.9. Черногор Л. Ф. Акустические эффекты Челябинского метеороида. Радиофизика и радиоастрономия. 2017. Т. 22, № 1. С. 53–66. DOI: 10.15407/rpra22.01.05310. Лазоренко О. В., Черногор Л. Ф. Системный спектральный анализ инфразвукового сигнала, сгенерированного Челябинским метеороидом. Известия вузов. Радиоэлектроника. 2017. № 8. С. 427–436. DOI: 10.20535/S002134701708001511. Черногор Л. Ф., Лящук А. И. Параметры инфразвуковых волн, сгенерированных Челябинским метеороидом 15 февраля 2013 г. Кинематика и физика небесных тел. 2017. Т. 33, № 2. С. 60–72.12. Черногор Л. Ф., Шевелев Н. Б. Характеристики инфразвукового сигнала, сгенерированного Челябинским космическим телом: глобальная статистика. Радиофизика и радиоастрономия. 2018. Т. 23, № 1. С. 24–35. DOI: 10.15407/rpra23.01.02413. Чорногор Л. Ф. Статистичний аналіз параметрів інфразвуку, згенерованого Челябінським метеороїдом. Кінематика і фізика небесних тіл. 2020. Т. 36, № 4. С. 35–57.14. Campbell W. H. and Young J. M. Auroral-zone observations of infrasonic pressure waves related to ionospheric disturbances and geomagnetic activity. J. Geophy. Res. 1963. Vol. 68, Is. 21. P. 5909–5916. DOI: 10.1029/JZ068i021p0590915. Maeda K. and Watanabe T. Pulsating Aurorae and Infrasonic Waves in the Polar Atmosphere. J. Atmos. Sci. 1964. Vol. 21, Is. 1. P. 15–29. DOI: 10.1175/1520-0469(1964)021%3C0015:PAAIWI%3E2.0.CO;216. Chimonas G. Infrasonic waves generated by auroral currents. Planet. Space Sci. 1970. Vol. 18, Is. 4. P. 591–598. DOI: 10.1016/0032-0633(70)90134-017. Ерущенков А. И., Довбня Б. В. О связи высокочастотного инфразвука и геомагнитных пульсаций в авроральной зоне. Исследования по геомагнетизму, аэрономии и физике Солнца. 1977. Вып. 43. С. 142–146.18. Suzuki Y. Auroral infrasonic waves and the auroral electrojet. J. Atmos. Terr. Phys. 1979. Vol. 41, Is. 1. P. 11–23. DOI: 10.1016/0021-9169(79)90042-419. Suzuki Y. Temporal and spatial changes of polar substorms and infrasonic wave emissions. Planet. Space Sci. 1979. Vol. 27, Is. 9. P. 1195–1208. DOI: 10.1016/0032-0633(79)90139-920. Wilson C. R., Szuberla C. A. L., and Olson J. V. High-latitude Observations of Infrasound from Alaska and Antarctica: Mountain Associated Waves and Geomagnetic/Auroral Infrasonic Signals. In: A. Le Pichon, E. Blanc, and A. Hauchecorne, eds. Infrasound Monitoring for Atmospheric Studies. Dordrecht, Heidelberg, London, New York: Springer Int. Publ., 2010. P. 415–454. DOI: 10.1007/978-1-4020-9508-5_1321. Chimonas G. and Hines C. O. Atmospheric gravity waves induced by a solar eclipse. J. Geophys. Res. 1970. Vol. 75, Is. 4. P. 875. DOI: 10.1029/JA075i004p0087522. Davis M. J. and da Rosa A. V. Possible Detection of Atmospheric Gravity Waves generated by the Solar Eclipse. Nature. 1970. Vol. 226, No. 5251. P. 1123. DOI: 10.1038/2261123a023. Ichinose T. and Ogawa T. Internal gravity waves deduced from the HF Doppler data during the April 19, 1958, solar eclipse. J. Geophys. Res. 1976. Vol. 81, Is. 13. P. 2401–2404. DOI: 10.1029/JA081i013p0240124. Broche P., Crochet M. and de Maistre J. C. Gravity waves generated by the 30 June 1973 solar eclipse in Africa. J. Atmos. Terr. Phys. 1976. Vol. 38, Is. 12. P. 1361–1364. DOI: 10.1016/0021-9169(76)90147-125. Bertin F., Hughes K. A., and Kersley L. Atmospheric waves induced by the solar eclipse of 30 June 1973. J. Atmos. Terr. Phys. 1977. Vol. 39, Is. 4. P. 457–461. DOI: 10.1016/0021-9169(77)90153-226. Jones T. B., Wright D. M., Milner J., Yeoman T. K., Reid T., Chapman P. J., and Senior A. The detection of atmospheric waves produced by the total solar eclipse of 11 August 1999. J. Atmos. Sol.-Terr. Phys. 2004. Vol. 66, Is. 5. P. 363–374. DOI: 10.1016/j.jastp.2004.01.02927. Butcher E. C., Downing A. M., and Cole K. D. Wavelike variations in the F-region in the path of totality of the eclipseb of 23 October 1976. J. Atmos. Terr. Phys. 1979. Vol. 41, Is. 5. P. 439–444. DOI: 10.1016/0021-9169(79)90068-028. Черногор Л. Ф. Вариации амплитуды и фазы ОНЧ радиоволн в ионосфере в период солнечного затмения 1 августа 2008 г. Геомагнетизм и аэрономия. 2010. Т. 50, № 1. С. 100–110.29. Черногор Л. Ф. Волновой отклик ионосферы на частное солнечное затмение 1 августа 2008 г. Геомагнетизм и аэрономия. 2010. Т. 50, № 3. С. 361–376.30. Черногор Л. Ф. Эффекты солнечных затмений в ионосфере: результаты доплеровского зондирования. 1. Экспериментальные данные. Геомагнетизм и аэрономия. 2012. Т. 52, № 6. С. 807–817.31. Черногор Л. Ф. Эффекты солнечных затмений в ионосфере: результаты доплеровского зондирования. 2. Спектральный анализ. Геомагнетизм и аэрономия. 2012. Т. 52, № 6. С. 818–831.32. Бурмака В. П., Черногор Л. Ф. Солнечное затмение 1 августа 2008 г. над Харьковом. 2. Результаты наблюдений волновых возмущений в ионосфере. Геомагнетизм и аэрономия. 2013. Т. 53, №4. С. 509–521.33. Черногор Л. Ф. Физические процессы в средней ионосфере, сопровождавшие солнечное затмение в Харькове 4 января 2011 г. Геомагнетизм и аэрономия. 2013. Т. 53, № 1. С. 22–34.34. Черногор Л. Ф. Физические эффекты солнечных затмений в атмосфере и геокосмосе: монография. Харьков: ХНУ имени В. Н. Каразина, 2013. 480 с.35. Пушин В. Ф., Черногор Л. Ф. Инфразвуковой эффект солнечных затмений. Радіофізика і радіоастрономія. 2013. Т. 18, № 2. С. 127–137.36. Черногор Л.Ф., Гармаш К.П. Магнито-ионосферные эффекты солнечного затмения 20 марта 2015 г. над Харьковом. Геомагнетизм и аэрономия. 2017. Т. 57, № 1. С. 79–90.37. Stankov S. M., Bergeot N., Berghmans D., Bolsée D., Bruyninx C., Chevalier J.-M., Clette F., De Backer H., De Keyser J., D’Huys E., Dominique M., Lemaire J. F., Magdalenić J., Marqué C., Pereira N., Pierrard V., Sapundjiev D., Seaton D. B., Stegen K., Van der Linden R., Verhulst T. G. W., and West M. J. Multi-instrument observations of the solar eclipse on 20 March 2015 and its effects on the ionosphere over Belgium and Europe. J. Space Weather Space Clim. 2017. Vol. 7. id. A19. DOI: 10.1051/swsc/201701738. Nykiel G., Zanimonskiy Y. M., Yampolski Y. M., and Figurski M. Efficient Usage of Dense GNSS Networks in Central Europe for the Visualization and Investigation of Ionospheric TEC Variations. Sensors. 2017. Vol. 17, Is. 10. id. 2298. DOI: 10.3390%2Fs1710229839. Mošna Z., Boška J., Knížová P. K., Šindelářová T., Kouba D., Chum J., Rejfek L., Potužníková K., Arikan F., and Toker C. Observation of the solar eclipse of 20 March 2015 at the Pruhonice station. J. Atmos. Sol.-Terr. Phys. 2018. Vol. 171. P. 277–284. DOI: 10.1016/j.jastp.2017.07.01140. Panasenko S. V., Otsuka Y., van de Kamp M., Chernogor L. F., Shinbori A., Tsugawa T., and Nishioka M. Observation and characterization of traveling ionospheric disturbances induced by solar eclipse of 20 March 2015 using incoherent scatter radars and GPS networks. J. Atmos. Sol.-Terr. Phys. 2019. Vol. 191. id. 105051. DOI: 10.1016/j.jastp.2019.05.01541. Guo Q., Chernogor L. F., Garmash K. P., Rozumenko V. T., and Zheng Y. Radio Monitoring of Dynamic Processes in the Ionosphere Over China During the Partial Solar Eclipse of 11 August 2018. Radio Sci. 2020. Vol. 55, Is. 2. id. e2019RS006866. DOI: 10.1029/2019RS00686642. Сомсиков В. М. Солнечный терминатор и динамика атмосферы. Алма-Ата: Наука, 1983. 192 с.43. Сомсиков В. М. Волны в атмосфере, обусловленные солнечным, терминатором. Обзор. Геомагнетизм и аэрономия. 1991. Т. 31, № 1, С. 1–12.44. Бурмака В. П., Таран В. И., Черногор Л. Ф. Волновые возмущения в ионосфере, сопутствовавшие стартам ракет на фоне естественных переходных процессов. Геомагнетизм и аэрономия. 2004. Т. 44, № 4. С. 518–34.45. Черногор Л. Ф., Шамота М. А. Геомагнитные пульсации вблизи г. Харькова, сопутствовавшие прохождению солнечного терминатора. 1. Результаты спектрального анализа. Космічна наука і технологія. 2009. Т. 15, № 5. С. 43–51. DOI: 10.15407/knit2009.05.04346. Черногор Л. Ф., Шамота М. А. Геомагнитные пульсации вблизи г. Харькова, сопутствовавшие прохождению солнечного терминатора. 2. Результаты статистического анализа. Космічна наука і технологія. 2009. Т. 15, № 6. С. 14–19. DOI: 10.15407/knit2009.06.01447. Черногор Л. Ф. Геомагнитные пульсации, сопутствовавшие движению солнечного терминатора через магнитосопряженную область. Радіфізика і радіоастрономія. 2012. Т. 17, № 1. С. 57–66.48. Соловьев С. П., Рыбнов Ю. С., Харламов В. А. Синхронные возмущения акустического и электрического полей, вызванные источниками природного и техногенного происхождений. Триггерные эффекты в геосистемах. Материалы третьего Всероссийского семинара-совещания. Под ред. В. В. Адушкина, Г. Г. Кочеряна. ИДГ РАН. Москва: ГЕОС, 2015. С. 317–326.49. Черногор Л. Ф. Тропический циклон как элемент системы Земля – атмосфера – ионосфера – магнитосфера. Космічна наука і технологія. 2006. Т. 12, № 2-3. С. 16–36. DOI: 10.15407/knit2006.02.01650. Hetzer C. H., Waxler R., Gilbert K. E., Talmadge C. L., and Bass H. E. Infrasound from hurricanes: Dependence on the ambient ocean surface wave field. Geophys. Res. Lett. 2008. Vol. 35, Is. 14. id. L14609. DOI: 10.1029/2008GL03461451. Hetzer C. H., Gilbert K. E., Waxler R., and Talmadge C. L. Generation of Microbaroms by Deep-Ocean Hurricanes. In: A. Le Pichon, E. Blanc, and A. Hauchecorne, eds. Infrasound Monitoring for Atmospheric Studies. Dordrecht: Springer, 2010. P. 249–262. DOI: 10.1007/978-1-4020-9508-5_852. Nishioka M., Tsugawa T., Kubota M., and Ishii M. Concentric waves and short-period oscillations observed in the ionosphere after the 2013 Moore EF5 tornado. Geophys. Res. Lett. 2013. Vol. 40, Is. 21. P. 5581–5586. DOI: 10.1002/2013GL05796353. Chou M.-Y., Lin C. C. H., Yue J., Chang L. C., Tsai H.-F., and Chen C.-H. Medium-scale traveling ionospheric disturbances triggered by Super Typhoon Nepartak (2016). Geophys. Res. Lett. 2017. Vol. 44, Is. 15. P. 7569–7577. DOI: 10.1002/2017GL07396154. Спивак А. А., Рыбнов Ю. С., Харламов В. А. Вариации геофизических полей при ураганах и шквалах. Доклады академии наук. 2018. Т. 480, № 5. С. 592–595. DOI: 10.7868/S0869565255. Richards A. F. Volcanic sounds: Investigation and analysis. J. Geophys. Res. 1963. Vol. 68, Is. 3. P. 919–928. DOI: 10.1029/JZ068i003p0091956. Goerke V. H., Young J. M., and Cook R. K. Infrasonic observations of the May 16, 1963, volcanic explosion on the island of Bali. J. Geophys. Res. 1965. Vol. 70, Is. 24. P. 6017–6022. DOI: 10.1029/JZ070i024p0601757. Bolt B. A. and Tanimoto T. Atmospheric oscillations after the May 18, 1980 eruption of Mount St. Helens. Eos. 1981. Vol. 62, Is. 23. P. 529–530. DOI: 10.1029/EO062i023p0052958. Kieffer S. W. Blast dynamics at Mount St Helens on 18 May 1980. Nature. 1981. Vol. 291, No. 5816. P. 568–570. DOI: 10.1038/291568a059. Banister J. R. Pressure wave generated by the Mount St. Helens eruption. J. Geophys. Res. 1984. Vol. 89, Is. D3. P. 4895–4904. DOI: 10.1029/JD089iD03p0489560. Reed J. W. Air pressure waves from Mount St. Helens eruptions. J. Geophys. Res. 1987. Vol. 92, Is. D10. P. 11979–11992. DOI: 10.1029/JD092iD10p1197961. Yamasato H. Quantitative Analysis of Pyroclastic Flows Using Infrasonic and Seismic Data at Unzen Volcano, Japan. J. Phys. Earth. 1997. Vol. 45, Is. 6. P. 397–416. DOI: 10.4294/jpe1952.45.39762. Ripepe M., Ciliberto S., and Della Schiava M. Time constraints for modeling source dynamics of volcanic explosions at Stromboli. J. Geophys. Res.: Solid Earth. 2001. Vol. 106, Is. B5. P. 8713–8727. DOI: 10.1029/2000JB90037463. Ripepe M., Harris A. J. L., and Carniel R. Thermal, seismic and infrasonic evidences of variable degassing rates at Stromboli volcano. J. Volcanol. Geotherm. Res. 2002. Vol. 118, Is. 3-4. P. 285–297. DOI: 10.1016/S0377-0273(02)00298-664. Evers L. G. and Haak H. W. The detectability of infrasound in The Netherlands from the Italian volcano Mt. Etna. J. Atmos. Sol.-Terr. Phys. 2005. Vol. 67, Is. 3. P. 259–268. DOI: 10.1016/j.jastp.2004.09.00265. Черногор Л. Ф. Физика и экология катастроф: монография. Харьков: ХНУ имени В. Н. Каразина, 2012. 556 с.66. Daniels F. B. Generation of Infrasound by Ocean Waves. J. Acoust. Soc. Am. 1962. Vol. 34, Is. 3. P. 352–353. DOI: 10.1121/1.192812867. Donn W. L. and Posmentier E. S. Infrasonic waves from the marine storm of April 7, 1966. J. Geophys. Res. 1967. Vol. 72, Is. 8. P. 2053–2061. DOI: 10.1029/JZ072i008p0205368. Бреховских Л. М., Гончаров В. В., Куртепов В. М., Наугольных К. А. К вопросу об излучении инфразвука в атмосферу поверхностными волнами в океане. Изв. АН СССР. Физика атмосферы и океана. 1973. Т. 9, № 9. С. 899–907.69. Arendt S. and Fritts D. C. Acoustic radiation by ocean surface waves. J. Fluid Mech. 2000. Vol. 415. P. 1–21. DOI: 10.1017/S002211200000863670. Garcés M., Willis M., Hetzer C., Le Pichon A., and Drob D. On using ocean swells for continuous infrasonic measurements of winds and temperature in the lower, middle, and upper atmosphere. Geophys. Res. Lett. 2004. Vol. 31, Is. 19. id. L19304. DOI: 10.1029/2004GL02069671. Le Pichon A., Maurer V., Raymond D., and Hyvernaud O. Infrasound from ocean waves observed in Tahiti. Geophys. Res. Lett. 2004. Vol. 31, Is. 19. id. L19103. DOI: 10.1029/2004GL02067672. Waxler R. amd Gilbert K. E. The radiation of atmospheric microbaroms by ocean waves. J. Acoust. Soc. Am. 2006. Vol. 119, Is. 5. P. 2651–2664. DOI: 10.1121/1.219160773. Garcés M., Willis M., and Le Pichon A. Infrasonic Observations of Open Ocean Swells in the Pacific: Deciphering the Song of the Sea. In: A. Le Pichon, E. Blanc, and A. Hauchecorne, eds. Infrasound Monitoring for Atmospheric Studies. Dordrecht: Springer, 2010. P. 235–248. DOI: 10.1007/978-1-4020-9508-5_774. Hetzer C. H., Gilbert K. E., Waxler R., and Talmadge C. L. Generation of Microbaroms by Deep-Ocean Hurricanes. In: A. Le Pichon, E. Blanc, and A. Hauchecorne, eds. Infrasound Monitoring for Atmospheric Studies. Dordrecht: Springer, 2010. P. 249–262. DOI:10.1007/978-1-4020-9508-5_875. Гостинцев Ю. А., Иванов Е. А., Копылов Н. П., Шацких Ю. В. Волновые возмущения атмосферы при больших пожарах. Физика горения и взрыва. 1983. Т. 19, № 4. С. 62–64.76. Спивак А. А., Рябова С. А., Харламов В. А. Электрическое поле в приземной атмосфере московского мегаполиса. Геомагнетизм и аэрономия. 2019. Т. 59, № 4. С. 501–513. DOI: 10.1134/S001679401904016377. Donn W. L. and Posmentier E. S. Ground-coupled air waves from the Great Alaskan Earthquake. J. Geophys. Res. 1964. Vol. 69, Is. 24. P. 5357–5361. DOI: 10.1029/JZ069i024p0535778. Bowman G. G. and Shrestha K. L. Atmospheric pressure waves from the Japanese earthquake on 16 June 1964. Q. J. R. Meteorol. Soc. 1965. Vol. 91, Is. 388. P. 223–224. DOI: 10.1002/qj.4970913881379. Davies K. and Baker D. M. Ionospheric effects observed around the time of the Alaskan earthquake of March 28, 1964. J. Geophys. Res. 1965. Vol. 70, Is. 9. P. 2251–2253. DOI: 10.1029/JZ070i009p0225180. Row R. V. Evidence of long-period acoustic-gravity waves launched into the F region by the Alaskan earthquake of March 28, 1964. J. Geophys. Res. 1966. Vol. 71, Is. 1. P. 343–345. DOI: 10.1029/JZ071i001p0034381. Mikumo T. Atmospheric pressure waves and tectonic deformation associated with the Alaskan earthquake of March 28, 1964. J. Geophys. Res. 1968. Vol. 73, Is. 6. P. 2009–2025. DOI: 10.1029/JB073i006p0200982. Cook R. K. and Bedard A. J., Jr. On the Measurement of Infrasound. Geophys. J. R. Astron. Soc. 1971. Vol. 26, Is. 1-4. P. 5–11. DOI: 10.1111/j.1365-246X.1971.tb03378.x83. Young J. M. and Greene G. E. Anomalous infrasound generated by the Alaskan earthquake of 28 March 1964. J. Acoust. Soc. Am. 1982. Vol. 71, Is. 2. P. 334–339. DOI: 10.1121/1.38745784. Kelley M. C., Livingston R., and McCready M. Large amplitude thermospheric oscillations induced by an earthquake. Geophys. Res. Lett. 1985. Vol. 12, Is. 9. P. 577–580. DOI: 10.1029/GL012i009p0057785. Olson J. V., Wilson C. R., and Hansen R. A. Infrasound associated with the 2002 Denali fault earthquake, Alaska. Geophys. Res. Lett. 2003. Vol. 30, Is. 23. id. 2195. DOI: 10.1029/2003GL01856886. Garcés M., Caron P., Hetzer C., Le Pichon A., Bass H., Drob D., and Bhattacharyya J. Deep infrasound radiated by the Sumatra earthquake and tsunami. Eos. 2005. Vol. 86, Is. 35. P. 317–320. DOI: 10.1029/2005EO35000287. Le Pichon A., Herry P., Mialle P., Vergoz J., Brachet N., Garcés M., Drob D., and Ceranna L. Infrasound associated with 2004–2005 large Sumatra earthquakes and tsunami. Geophys. Res. Lett. 2005. Vol. 32, Is. 19. id. L19802. DOI: 10.1029/2005GL02389388. Mutschlecner J. P. and Whitaker R. W. Infrasound from earthquakes. J. Geophys. Res: Atmospheres. 2005. Vol. 110, Is. D1. id. D01108. DOI: 10.1029/2004JD00506789. Mikumo T., Shibutani T., Le Pichon A., Garcés M., Fee D., Tsuyuki T., Watada S., and Morii W. Low-frequency acoustic-gravity waves from coseismic vertical deformation associated with the 2004 Sumatra-Andaman earthquake (Mw=9.2). J. Geophys. Res: Solid Earth. 2008. Vol. 113, Is. B12. id. B12402. DOI: 10.1029/2008JB00571090. Guo Q., Chernogor L. F., Garmash K. P., Rozumenko V. T., and Zheng Yu. Dynamical processes in the ionosphere following the moderate earthquake in Japan on 7 July 2018. J. Atmos. Sol.-Terr. Phys. 2019. Vol. 186. P. 88–103. DOI: 10.1016/j.jastp.2019.02.00391. Luo Y., Guo Q., Zheng Y., Гармаш К. П., Черногор Л. Ф., Шульга С. Н. Вариации характеристик радиоволн ВЧ диапазона над Китаем, сопровождавшие умеренное землетрясение в Японии 5 сентября 2018 г. Вісник Харківського національного університету імені В. Н. Каразіна. Радіофізика та електроніка. 2019. Вып. 30. С. 16–26. DOI: 10.26565/2311-0872-2019-30-0292. Luo Y., Чорногор Л. Ф., Гармаш К. П., Guo Q., Zheng Yu. Сейсмо-іоносферні ефекти: результати похилого радіозондування іоносфери. Радіофізика і радіоастрономія. 2020. Т. 25, № 3. С. 218–230. DOI: 10.15407/rpra25.03.21893. Garcés M., Caron P., Hetzer C., Le Pichon A., Bass H., Drob D., and Bhattacharyya J. Deep infrasound radiated by the Sumatra earthquake and tsunami. Eos. 2005. Vol. 86, Is. 35. P. 317–320. DOI: 10.1029/2005EO35000294. Balachandran N. K. Infrasonic signals from thunder. J. Geophys. Res.: Oceans. 1979. Vol. 84, Is. C4. P. 1735–1745. DOI: 10.1029/JC084iC04p0173595. Balachandran N. K. Acoustic and electric signals from lightning. J. Geophys. Res.: Oceans. 1983. Vol. 88, Is. C6. P. 3879–3884. DOI: 10.1029/JC088iC06p0387996. Farges T., Blanc E., Le Pichon A., Neubert T., and Allin T. H. Identification of infrasound produced by sprites during the Sprite2003 campaign. Geophys. Res. Lett. 2005. Vol. 32, Is. 1. id: L01813. DOI: 10.1029/2004GL02121297. Lin T.-L. and Langston C. A. Infrasound from thunder: A natural seismic source. Geophys. Res. Lett. 2007. Vol. 34, Is. 14. id: L14304. DOI: 10.1029/2007GL03040498. Farges T. and Blanc E. Characteristics of infrasound from lightning and sprites near thunderstorm areas. J. Geophys. Res.: Space Physics. 2010. Vol. 115, Is. A6. id. A00E31. DOI: 10.1029/2009JA01470099. Blanc E., Farges T., Le Pichon A., and Heinrich P. Ten year observations of gravity waves from thunderstorms in western Africa. J. Geophys. Res.: Atmospheres. 2014. Vol. 119, Is. 11. P. 6409–6418. DOI: 10.1002/2013JD020499100. Спивак А. А., Рыбнов Ю. С., Соловьев С. П., Харламов В. А. Акустические и электрические предвестники сильных грозовых явлений в условиях мегаполиса. Геофизические процессы и биосфера. 2017. T. 16, № 4. С. 81–91. DOI: 10.21455/GPB2017.4-7101. Rose G., Oksman J., and Kataja E. Round-the-World Sound Waves produced by the Nuclear Explosion on October 30, 1961, and their Effect on the Ionosphere at Sodankylä. Nature. 1961. Vol. 192, No. 4808. P. 1173–1174.102. Donn W. L. and Ewing M. Atmospheric waves from nuclear explosions. J. Geophys. Res. 1962. Vol. 67, Is. 5. P. 1855–1866. DOI: 10.1029/JZ067i005p01855103. Donn W. L. and Ewing M. Atmospheric Waves from Nuclear Explosions – Part II: The Soviet Test of 30 October 1961. J. Atmos. Sci. 1962. Vol. 19, Is. 3. P. 264–273. DOI: 10.1175/1520-0469(1962)019%3C0264:AWFNEI%3E2.0.CO;2104. Farkas E. Transit of Pressure Waves through New Zealand from the Soviet 50 Megaton Bomb Explosion. Nature. 1962. Vol. 193, No. 4817. P. 765–766. DOI: 10.1038/193765a0105. Gardiner G. W. Effects of the nuclear explosion of 30 October 1961. J. Atmos. Terr. Phys. 1962. Vol. 24, Is. 11. P. 990–993. DOI: 10.1016/0021-9169(62)90146-0106. Pfeffer R. L. and Zarichny J. Acoustic-Gravity Wave Propagation from Nuclear Explosions in the Earth’s Atmosphere. J. Atmos. Sci. 1962. Vol. 19, Is. 3. P. 256–263. DOI: 10.1175/1520-0469(1962)019%3C0256:AGWPFN%3E2.0.CO;2107. Wexler H. and Hass W. A. Global atmospheric pressure effects of the October 30, 1961, explosion. J. Geophys. Res. 1962. Vol. 67, Is. 10. P. 3875–3887. DOI: 10.1029/JZ067i010p03875108. Donn W. L., Pfeffer R. L., and Ewing M. Propagation of Air Waves from Nuclear Explosions: Nuclear explosions provide data on the relation of air-wave propagation to atmospheric structure. Science. 1963. Vol. 139, Is. 3552. P. 307–317. DOI: 10.1126/science.139.3552.307109. Webb H. D. and Daniels F. B. Ionospheric oscillations following a nuclear explosion. J. Geophys. Res. 1964. Vol. 69, Is. 3. P. 545–546. DOI: 10.1029/JZ069i003p00545110. Oksman J. and Kivinen M. Ionospheric gravity waves caused by nuclear explosions. Geophysica. 1965. Vol. 9. P. 119–129.111. McCrory R. A. Atmospheric Pressure Waves from Nuclear Explosions. J. Atmos. Sci. 1967. Vol. 24, Is. 4. P. 443–447. DOI: 10.1175/1520-0469(1967)024%3C0443:APWFNE%3E2.0.CO;2112. Row R. V. Acoustic-gravity waves in the upper atmosphere due to a nuclear detonation and an earthquake. J. Geophys. Res. 1967. Vol. 72, Is. 5. P. 1599–1610. DOI: 10.1029/JZ072i005p01599113. Che I.-Y., Park J., Kim I., Kim T. S., and Lee H.-I. Infrasound signals from the underground nuclear explosions of North Korea. Geophys. J. Int. 2014. Vol. 198, Is. 1. P. 495–503. DOI: 10.1093/gji/ggu150114. Куличков С. Н. Дальнее распространение звука в атмосфере (Обзор). Известия РАН. Физика атмосферы и океана. 1992. Т. 28, № 4. С. 339–360.115. Буш Г. А., Иванов Е. А., Куличков С. Н., Педанов М. В. Об опыте регистрации акустических сигналов от высотных взрывов. Известия АН. Физика атмосферы и океана. 1997. Т. 33, № 1. С. 67–71.116. Calais E., Minster J. B., Hofton M. A., and Hedlin M. A. H. Ionospheric signature of surface mine blasts from Global Positioning System measurements. Geophys. J. Int. 1998. Vol. 132, Is. 1. P. 191–202. DOI: 10.1046/j.1365-246x.1998.00438.x117. Черногор Л. Ф. Геофизические эффекты и геоэкологические последствия массовых химических взрывов на военных складах в г. Артемовске. Геофизический журнал. 2004. Т. 26, № 4. С. 31–44.118. Черногор Л. Ф. Геофизические эффекты и экологические последствия пожара и взрывов на военной базе вблизи г. Мелитополь. Геофизический журнал. 2004. Т. 26, № 6. С. 61–73.119. Gibbons S. J., Ringdal F., and Kværna T. Joint seismic-infrasonic processing of recordings from a repeating source of atmospheric explosions. J. Acoust. Soc. Am. 2007. Vol. 122, Is. 5. id. EL158. DOI: 10.1121/1.2784533120. Черногор Л. Ф., Гармаш К. П. Магнито-ионосферные эффекты, сопровождавшие сильнейшую техногенную катастрофу. Геомагнетизм и аэрономия. 2018. Т. 58, № 5. С. 700–712. DOI: 10.1134/S0016794018050036121. Черногор Л. Ф., Лящук А. И., Шевелев Н. Б. Параметры инфразвуковых сигналов в атмосфере, сгенерированных массовыми взрывами на арсенале боеприпасов. Радиофизика и радиоастрономия. 2018. Т. 23, № 4. С. 280–293. DOI: 10.15407/rpra23.04.280122. Donn W. L., Posmentier E., Fehr U. and Balachandran N. K. Infrasound at Long Range from Saturn V, 1967. Science. 1968. Vol. 162, Is. 3858. P. 1116–1120. DOI: 10.1126/science.162.3858.1116123. Kaschak G. R. Long-range supersonic propagation of infrasonic noise generated by missiles. J. Geophys. Res. 1969. Vol. 74, Is. 3. P. 914–918. DOI: 10.1029/JA074i003p00914124. Balachandran N. K., Donn W. L., and Kaschak G. On the Propagation of Infrasound from Rockets: Effects of Winds. J. Acoust. Soc. Am. 1971. Vol. 50, Is. 2A. P. 397–404. DOI: 10.1121/1.1912649125. Cotten D. and Donn W. L. Sound from Apollo Rockets in Space. Science. 1971. Vol. 171, Is. 3971. P. 565–567. DOI: 10.1126/science.171.3971.565126. Donn W. L., Balachandran N. K., and Rind D. Tidal wind control of long-range rocket infrasound. J. Geophys. Res. 1975. Vol. 80, Is. 12. P. 1662–1664. DOI: 10.1029/JC080i012p01662127. Noble S. T. A large-amplitude traveling ionospheric disturbance excited by the space shuttle during launch. J. Geophys. Res.: Space Physics. 1990. Vol. 95, Is. A11. P. 19037–19044. DOI: 10.1029/JA095iA11p19037128. Li Y. Q., Jacobson A. R., Carlos R. C., Massey R. S., Taranenko Y. N., and Wu G. The blast wave of the Shuttle plume at ionospheric heights. Geophys. Res. Lett. 1994. Vol. 21, Is. 24. P. 2737–2740. DOI: 10.1029/94GL02548129. Черногор Л. Ф. Радиофизические и геомагнитные эффекты стартов ракет: монография. Харьков: ХНУ имени В. Н. Каразина, 2009. 386 с.130. Chernogor L. F. and Blaunstein N. Radiophysical and Geomagnetic Effects of Rocket Burn and Launch in the Near-the-Earth Environment. Boca Raton, London, New York: CRC Press. Taylor & Francis Group, 2014. 542 p.131. Kakinami Y., Yamamoto M., Chen C.-H., Watanabe S., Lin C., Liu J.-Y., and Habu H. Ionospheric disturbances induced by a missile launched from North Korea on 12 December 2012. J. Geophys. Res.: Space Physics. 2013. Vol. 118, Is. 8. P. 5184–5189. DOI: 10.1002/jgra.50508132. Lin C. H., Lin J. T., Chen C. H., Liu J. Y., Sun Y. Y., Kakinami Y., Matsumura M., Chen W. H., Liu H., and Rau R. J. Ionospheric shock waves triggered by rockets. Ann. Geophys. 2014. Vol. 32, Is. 9. P. 1145–1152. DOI: 10.5194/angeo-32-1145-2014133. Ding F., Wan W., Mao T., Wang M., Ning B., Zhao B., and Xiong B. Ionospheric response to the shock and acoustic waves excited by the launch of the Shenzhou 10 spacecraft. Geophys. Res. Lett. 2014. Vol. 41, Is. 10. P. 3351–3358. DOI: 10.1002/2014GL060107134. Lin C. C. H., Shen M.-H., Chou M.-Y., Chen C.-H., Yue J., Chen P.-C., and Matsumura M. Concentric traveling ionospheric disturbances triggered by the launch of a SpaceX Falcon 9 rocket. Geophys. Res. Lett. 2017. Vol. 44, Is. 15. P. 7578–7586. DOI: 10.1002/2017GL074192135. Chou M.-Y., Shen M.-H., Lin C. C. H., Yue J., Chen C.-H., Liu J.-Y., and Lin J.-T. Gigantic Circular Shock Acoustic Waves in the Ionosphere Triggered by the Launch of FORMOSAT-5 Satellite. Space Weather. 2018. Vol. 16, Is. 2. P. 172–184. DOI: 10.1002/2017SW001738136. Chou M.-Y., Lin C. C. H., Shen M.-H., Yue J., Huba J. D., and Chen C.-H. Ionospheric Disturbances Triggered by SpaceX Falcon Heavy. Geophys. Res. Lett. 2018. Vol. 45, Is. 13. P. 6334–6342. DOI: 10.1029/2018GL078088137. Гармаш К. П., Черногор Л. Ф. Эффекты в околоземной плазме, стимулированные воздействием мощного радиоизлучения. Зарубежная радиоэлектроника. Успехи современной радиоэлектроники. 1998. № 6. С. 17–40.138. Гармаш К. П., Черногор Л. Ф. Электромагнитные и геофизические эффекты в околоземной плазме, стимулированные воздействием мощного радиоизлучения. Электромагнитные явления. 1998. Т. 1, № 1. С. 90–110.139. Бурмака В. П., Домнин И. Ф., Урядов В. П., Черногор Л. Ф. Вариации параметров рассеянных сигналов и ионосферы, сопутствовавшие воздействию на плазму мощным радиоизлучением. Известия вузов. Радиофизика. 2009. Т. 52, № 11. С. 859–880.140. Черногор Л. Ф., Вертоградов Г. Г., Урядов В. П., Вертоградова Е. Г., Шамота М. А. Согласованные квазипериодические вариации уровня геомагнитных пульсаций и доплеровского смещения частоты ракурсно-рассеянных искусственными ионосферными неоднородностями радиоволн декаметрового диапазона. Изв. вузов. Радиофизика. 2010. Т. 53, № 12. С. 766–785.141. Черногор Л. Ф., Фролов В. Л., Комраков Г. П., Пушин В. Ф. Вариации спектра ионосферных волновых возмущений при периодическом нагреве плазмы мощным высокочастотным радиоизлучением. Изв. вузов. Радиофизика. 2011. Т. 54, № 2. С. 81–96.142. Домнин И. Ф., Панасенко С. В., Урядов В. П., Черногор Л. Ф. Результаты радиофизических исследований волновых процессов в ионосферной плазме в период ее нагрева мощным радиоизлучением стенда “Сура”. Изв. вузов. Радиофизика. 2012. Т. 55, № 4. С. 280–293.143. Черногор Л. Ф., Фролов В. Л. Перемещающиеся ионосферные возмущения, генерируемые периодическим нагревом плазмы мощным высокочастотным радиоизлучением. Изв. вузов. Радиофизика. 2012. Т. 55, № 1-2. С. 14–35.144. Черногор Л. Ф., Фролов В. Л., Пушин В. Ф. Колебания инфразвукового диапазона в ионосфере при воздействии на нее мощным радиоизлучением. Изв. вузов. Радиофизика. 2012. Т. 55, № 5. С. 327–340.145. Черногор Л. Ф., Фролов В. Л. Особенности распространения акустико-гравитационных волн, генерируемых мощным периодическим радиоизлучением. Изв. вузов. Радиофизика. 2013. Т. 56, № 4. С. 219–239.146. Черногор Л. Ф., Фролов В. Л. Вариации уровня и спектра геомагнитных пульсаций, сопровождавшие воздействие на ионосферу мощным радиоизлучением стенда “Сура”. Изв. вузов. Радиофизика. 2014. Т. 57, № 5. С. 378–399.147. Черногор Л. Ф. Физика мощного радиоизлучения в геокосмосе: монография. Харьков: ХНУ имени В. Н. Каразина, 2014. 448 с.148. Черногор Л. Ф., Панасенко С. В., Фролов В. Л., Домнин И. Ф. Наблюдения волновых возмущений в ионосфере на харьковском радаре некогерентного рассеяния при воздействии на околоземную плазму мощным радиоизлучением. Изв. вузов. Радиофизика. 2015. Т. 58, № 2. С. 85–99.149. Черногор Л. Ф., Гармаш К. П., Фролов В. Л. Крупномасштабные возмущения в нижней и средней ионосфере, сопровождавшие воздействие на нее радиоизлучением стенда “Сура”. Известия вузов. Радиофизика. 2019. Т. 62, № 6. С. 440–459.150. Balachandran N. K., Donn W. L., and Rind D. H. Concorde Sonic Booms as an Atmospheric Probe. Science. 1977. Vol. 197, Is. 4298. P. 47–49. DOI: 10.1126/science.197.4298.47151. Donn W. L. Exploring the Atmosphere with Sonic Booms: Or How I Learned to Love the Concorde. Am. Sci. 1978. Vol. 66, Is. 6. P. 724–733.152. Donn W. L. and Rind D. Monitoring Stratospheric Winds with Concorde-Generated Infrasound. J. Appl. Meteor. 1979. Vol. 18, Is. 7. P. 945–952. DOI: 10.1175/1520-0450(1979)018%3C0945:MSWWCG%3E2.0.CO;2153. Афанасьева Н. А., Пляцук Л. Д., Филатов Л. Г., Трунова И. А. Импульсный инфразвуковой сигнал, производимый ветроэнергетической установкой. Принципы оценки. Восточно-Европейский журнал передовых технологий. 2014. Т. 6, № 10(72). С. 13–19. DOI: 10.15587/1729-4061.2014.30979154. Спивак А. А., Локтев Д. Н., Рыбнов Ю. С., Соловьев С. П., Харламов В. А. Геофизические поля мегаполиса. Геофизические процессы и биосфера. 2016. Т. 15, № 2. С. 39–54.155. Черногор Л. Ф. Электрический и магнитный эффекты инфразвука в атмосфере. Глобальная электрическая цепь: материалы третьей Всероссийской конференции. Геофизическая обсерватория “Борок” – филиал Института физики Земли им. О. Ю. Шмидта РАН. Ярославль: Филигрань, 2017. С. 11–12.156. Kanamori H., Mori J., Anderson D. L., and Heaton T. H. Seismic excitation by the space shuttle Columbia. Nature. 1991. Vol. 349, No. 6312. P. 781–782. DOI: 10.1038/349781a0157. Ямпольский Ю. М., Зализовский А. В., Литвиненко Л. Н., Лизунов Г. В., Гровс K., Молдвин M. Вариации магнитного поля в Антарктике и сопряженном регионе (Новая Англия), стимулированные циклонической активностью. Радіофізика і радіоастрономія. 2004. Т. 9, № 2. С. 130–152.158. Чекрыжов В. М., Свиркунов П. Н., Козлов С. В. Влияние циклонической активности на возмущение геомагнитного поля. Геомагнетизм и аэрономия. 2019. Т. 59, № 1. С. 59–68. DOI: 10.1134/S0016794019010036159. Соловьев С. П., Рыбнов Ю. С., Харламов В. А. Синхронные возмущения акустического и электрического полей, вызванные источниками природного и техногенного происхождений. Триггерные эффекты в геосистемах. Тезисы докладов третьего Всероссийского семинара-совещания. Под ред. В. В. Адушкина, Г. Г. Кочеряна. ИДГ РАН. Москва: ГЕОС, 2015. С. 71.160. Сурков В. В. Электромагнитные эффекты при землетрясениях и взрывах. Москва: МИФИ, 2000. 448 с.161. Черногор Л. Ф. Физические эффекты Румынского метеороида. 2. Космічна наука і технологія. 2018. Т. 24, № 2. С. 18–35. DOI: 10.15407/knit2018.02.018162. Черногор Л. Ф. Физические эффекты Липецкого метеороида. 3. Кінематика і фізика небесних тіл. 2019. Т. 35, № 6. С. 34–61. DOI: 10.15407/kfnt2019.06.034163. Чалмерс Дж. А. Атмосферное электричество. Ленинград: Гидрометеоиздат, 1974. 421 с. Видавничий дім «Академперіодика» 2020-11-30 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1342 10.15407/rpra25.04.290 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 25, No 4 (2020); 290 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 25, No 4 (2020); 290 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 25, No 4 (2020); 290 2415-7007 1027-9636 10.15407/rpra25.04 uk http://rpra-journal.org.ua/index.php/ra/article/view/1342/pdf Copyright (c) 2020 RADIO PHYSICS AND RADIO ASTRONOMY |