FUNCTIONAL DAMAGE OF RADIO ELECTRONIC SYSTEMS
Purpose: The most important problem of any state is protection of the control and management systems used for the country, national armed forces, high-risk facilities (nuclear power plants, large chemical plants, airports, etc.). Here, the fact that the means of attack can be deployed on ballistic a...
Збережено в:
Дата: | 2021 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Видавничий дім «Академперіодика»
2021
|
Теми: | |
Онлайн доступ: | http://rpra-journal.org.ua/index.php/ra/article/view/1373 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Radio physics and radio astronomy |
Репозитарії
Radio physics and radio astronomyid |
oai:ri.kharkov.ua:article-1373 |
---|---|
record_format |
ojs |
institution |
Radio physics and radio astronomy |
collection |
OJS |
language |
Ukrainian |
topic |
functional damage avionics critical energy Moore’s law functional damage equation radiolocation equation detection and destruction range functional damage avionics critical energy Moore’s law functional damage equation radiolocation equation detection and destruction range функціональне ураження радіоелектронні системи критична енергія закон Мура рівняння функціонального ураження рівняння радіолокації дальність виявлення й ураження |
spellingShingle |
functional damage avionics critical energy Moore’s law functional damage equation radiolocation equation detection and destruction range functional damage avionics critical energy Moore’s law functional damage equation radiolocation equation detection and destruction range функціональне ураження радіоелектронні системи критична енергія закон Мура рівняння функціонального ураження рівняння радіолокації дальність виявлення й ураження Chernogor, L. F. FUNCTIONAL DAMAGE OF RADIO ELECTRONIC SYSTEMS |
topic_facet |
functional damage avionics critical energy Moore’s law functional damage equation radiolocation equation detection and destruction range functional damage avionics critical energy Moore’s law functional damage equation radiolocation equation detection and destruction range функціональне ураження радіоелектронні системи критична енергія закон Мура рівняння функціонального ураження рівняння радіолокації дальність виявлення й ураження |
format |
Article |
author |
Chernogor, L. F. |
author_facet |
Chernogor, L. F. |
author_sort |
Chernogor, L. F. |
title |
FUNCTIONAL DAMAGE OF RADIO ELECTRONIC SYSTEMS |
title_short |
FUNCTIONAL DAMAGE OF RADIO ELECTRONIC SYSTEMS |
title_full |
FUNCTIONAL DAMAGE OF RADIO ELECTRONIC SYSTEMS |
title_fullStr |
FUNCTIONAL DAMAGE OF RADIO ELECTRONIC SYSTEMS |
title_full_unstemmed |
FUNCTIONAL DAMAGE OF RADIO ELECTRONIC SYSTEMS |
title_sort |
functional damage of radio electronic systems |
title_alt |
FUNCTIONAL DAMAGE OF RADIO ELECTRONIC SYSTEMS ФУНКЦІОНАЛЬНЕ УРАЖЕННЯ РАДІОЕЛЕКТРОННИХ СИСТЕМ |
description |
Purpose: The most important problem of any state is protection of the control and management systems used for the country, national armed forces, high-risk facilities (nuclear power plants, large chemical plants, airports, etc.). Here, the fact that the means of attack can be deployed on ballistic and cruise missiles, aircraft, and drones should be accounted for. The flight altitude of these vehicles varies from ≈300 km to ≈ 10 m. Any attack vehicle is equipped with complex avionics consisting of circuit elements sensitive to electromagnetic fields. Since the 1980s, a new scientific and engineering direction has been developing, being termed as a “functional damage to avionics”. It is based on the creation of powerful means of electromagnetic radiation possessing the energetic capabilities of incapacitating avionics at significant distances (from ~ 100 m to ~ 1000 km). The purpose of this work is to analyze the possible functional damage to avionics with account for the tendencies in avionics technologies.Design/methodology/approach: The analysis is made on the capability of inflicting functional damage to avionics accounting for the modern trends in developing the powerful means of electromagnetic energy generation in the microwave and shorter wavelength ranges, miniaturization and integration of avionics circuit elements. The regression is constructed for the critical energy time dependence. It has been determined that for decades the critical energy required to damage the circuit elements shows a tendency to decrease. This is due to the further miniaturization and integration of microcircuits according to the Moore’s law, which is still valid for now. For a number of circuit elements, the critical energy is found to be in the range of 10-11–10-10 J. At the same time, a reverse tendency arises to protect avionics from being functionally damaged. In this case, the critical energy makes 10-7–10-6 J and greater. From the derived version of the basic equation of functional damage to avionics, the maximum distance at which the damage is possible with the energetics of the existing radio systems is estimated. For the ground-based facilities, this distance can attain hundreds of kilometers. For mobile vehicles, it can reach 10–100 km. Combining target detection, identification and avionics damage capabilities in one radio system has been validated and advised. The transition from the first mode of operation to the second one occurs at shorter distances with an increase of 2–3 orders of magnitude in the pulse energy.Findings: The regression equation has been obtained for the time dependence of the critical energy required for inflicting functional damage to avionics. Its constant decrease has been confirmed. Such a behavior is closely related to the Moore’s law, which characterizes the degree of miniaturization and integration of avionics circuit elements. It has been predicted that for a number of instruments the critical energy can be smaller than 10-11–10-10 J. A version of the basic equation of functional damage to avionics has been obtained. The maximum distance for a modern radio system to damage the avionics has been shown to attain many hundreds of kilometers. For the radio systems installed on mobile vehicles, this distance makes 10–100 km. Target detection, tracking and identification, as well as avionics damage capabilities, have been proved to be rationally combined in one radio system. To cause damage at a corresponding range, the pulse energy needs to be increased by a factor of 102–103.Conclusions: There are all science and technology prerequisites for developing effective radio systems inflicting functional damage to avionics and for the state defense and protection, armed forces, and high-risk facility controlling systems.Key words: functional damage; avionics; critical energy; Moore’s law; functional damage equation; radiolocation equation; detection and destruction rangeManuscript submitted 07.07.2021Radio phys. radio astron. 2021, 26(4): 358-369REFERENCES1. BARSUKOV, V. S., 2003. Electromagnetic terrorism: protectionand counteraction. Spetsialnaya tekhnika. vol. 6,pp. 25–36. (in Russian).2. BELOUS, V., 2005. The threat of using EMP weapons formilitary and terrorist purposes. Yadernyi control. vol. 11,is. 1(75), pp. 133–140. (in Russian).3. PANOV, V. V. and SARKISYAN, A. P., 1993. Some aspectsof the problem of creating microwave devices for functionaldamage. Zarubezhnaya radioelektronika vol. 10–12,pp. 3–10. (in Russian).4. FLORIG, H. K., 1988. The future battlefi eld: a blast of gigawatts?[microwave-based weapons]. IEEE Spectr. vol. 25,is. 3, pp. 50–54. DOI: https://doi.org/10.1109/6.45235. FLORIG H. K., 1989. High-power microwave coupling andeffects on electronics. Annales de Physique, Colloque.vol. 14, no. 2, Supplement au № 6.6. PROTASEVICH, E. T., 2004. Electromagnetic weapon.Tomsk, Russia: TPU Publ. (in Russian).7. PALYI, A. I. and KUPRIYANOV, A. I., 2006. Essays onthe history of electronic warfare. Moscow, Russia: Vuzovskayakniga Publ. (in Russian).8. KOPP, C., 1996. The Electromagnetic Bomb – a Weapon ofElectrical Mass Destruction [online]. Melbourne, Australia:Monash University Australia. [viewed 5 July 2021]. Availablefrom: https://www.airuniversity.af.edu/Portals/10/ASPJ/journals/Chronicles/apjemp.pdf9. DOBYKIN, V. D., KUPRIYANOV, A. I., PONOMAREV,V. G. and SHUSTOV, L. N., 2007. Electronic warfare.Forceful defeat of electronic systems. Moscow, Russia:Vuzovskaya kniga Publ. (in Russian).10. MAKARENKO, S. I., 2017. Information confrontationand electronic warfare in network-centric wars of the XXIcentury. Monograph. Saint Petersburg, Russia: Naukoemkietekhnologii Publ. (in Russian).11. MIKHAILOV, R. L., 2018. Electronic warfare in the USArmed Forces: a military theoretical work. Saint Petersburg,Russia: Naukoemkie tekhnologii Publ. (in Russian).12. ANIL, K. M., 2018. Directed Energy Weapons. In: Handbookof Defence Electronics and Optronics: Fundamentals,Technologies and Systems. pp. 1013–1105. DOI: https://doi.org/10.1002/9781119184737.ch1213. LAZAROV, L., 2019. Perspectives and Trends for theDevelopment of Electronic Warfare Systems. In: IEEE 2019International Conference on Creative Business for Smartand Sustainable Growth (CREBUS) Proceedings. pp. 1–3.DOI: https://doi.org/10.1109/CREBUS.2019.884007414. KOU, C., TANG, X., SHAO, K. and LIU, J., 2019. Highpower microwave interference effect of radar system. In:2019 IEEE 4th Advanced Information Technology, Electronicand Automation Control Conference (IAEAC) Proceedings.pp. 422–427. DOI: https://doi.org/10.1109/IAEAC47372.2019.899766915. KOCHEROV, A. N., SOLDATOV, V. P. and POLYAKOV,A. O., 2020. High-level design principles of electronicwarfare meansintegrated systems. Radiotekhnika.vol. 84, no. 7(13), pp. 45–52. (in Russian). DOI: 10.18127/j00338486-202007(13)-016. LENSHIN, A. V., 2021. Onboard electronic warfare systemsfor aircraft and helicopters: a textbook. Voronezh, Russia:MESC MAF “MAA” Publ. (in Russian).17. PERUNOV, YU. M., FOMICHEV, K. I. and YUDIN, L. M.,2003. Electronic suppression of information channels ofweapon control systems. Moscow, Russia: RadiotekhnikaPubl. (in Russian).18. ABRAMS, M., 2003. Dawn of the E-Bomb. IEEE Spectr.vol. 40, is. 11, pp. 24–30. DOI: https://doi.org/10.1109/MSPEC.2003.124295319. MERKULOV, V. I., DOBYKIN, V. D. and DROGALIN,V. V., 2006. Functional destroying of radio electronicsystems. Phasotron. is. 3–4. (in Russian).20. KRAVCHENKO, V. I., 2008. Electromagnetic weapon.Kharkiv: NTU “KhPI” Publ. (in Russian).21. KRAVCHENKO, V. I., 2009. Weapons based on unconventionalphysical principles. Electromagnetic weapon.Kharkiv, Ukraine: NTMT Publ. (in Russian).22. ORLYANSKY, V. I. and DULNEV, P. A., 2017. Energyimpact is an important component of the enemy’s complexdestruction. Voennaya mysl’. is. 8, pp. 83–93. (in Russian).23. HAMAMAH, F., AHMAD, W. F. H. W., GOMES, C.,ISA, M. M. and HOMAM, M. J., 2017. High powermicrowave devices: Development since 1880. In: 2017 IEEEAsia Pacifi c Microwave Conference (APMC) Proceedings.pp. 825–828. DOI: https://doi.org/10.1109/APMC.2017.825157624. SYDORENKO, R. G., HRIDIN, V. I., MEGELBEY, G. V.and REZNICHENKO, A. I., 2018. Basic directions of creationof systems of power radio electronic fi ght for defeat ofdifferent types radio electronic facilities. Scientifi c Works ofKharkiv National Air Force University. is. 1(55), pp. 91–96.(in Ukrainian). DOI: https://doi.org/10.30748/zhups.2018.55.1225. SAKHAROV, K. Y., SUKHOV, A. V., UGOLEV, V. L.and GUREVICH, Y. M., 2018. Study of UWB ElectromagneticPulse Impact on Commercial Unmanned AerialVehicle. In: 2018 International Symposium on ElectromagneticCompatibility (EMC EUROPE) Proceedings.pp. 40–43. DOI: https://doi.org/10.1109/EMCEurope.2018.848499226. PERUNOV, Y. M., DMITRIEV, V. G. and KUPRIYANOV,A. I., 2019. Analysis of methods and technicalsolutions of systems of functional destruction of REM.Izvestiya Instituta inzhenernoy phiziki. no. 3(53), pp. 38–42.(in Russian).27. DMITRIEV, V. G., 2020. Functional destroying of radioelectronicequipment is one of the directions of ensuring militarysecurity. In: Actual problems of protection and security.Plenary reports of the XXIII All-Russian scientifi c-practicalconference RARAN. Saint Petersburg, Russia: Russian Academyof Rocket and Artillery Sciences Publ., pp. 150–157.(in Russian).28. MAKARENKO, S. I., 2020. Counter unmanned aerialvehicles. Part 4. Functional destroying with microwaveand laser weapons. Syst. Control Commun. Security. is. 3,pp. 122–157. (in Russian). DOI: 10.24411/2410-9916-2020-1030429. BELOUSOV, A. O. and GAZIZOV, T. R., 2021. Approachesto the methodology creation for ensuring electromagneticcompatibility of technique of functional destruction byelectromagnetic radiation with other radioelectronic techniquesas part of a complex for countering unmanned aerialvehicles. In: XI International Scientifi c and Technical Conferenceon Robotic and Intelligent Aircraft Systems ImprovingChallenges (RIASIC’2020) Poceedings. Moscow, Russia:Editus Publ., pp. 309–313. (in Russian).30. AFONIN, I. E., MAKARENKO, S. I. and PETROV, S. V.,2021. Descriptive model of the electronic warfare subsystemas part aerospace attack means used to suppression elementsof an aerospace defense system. Syst. Control Commun.Security. is. 2, pp. 76–95. (in Russian). DOI: 10.24412/2410-9916-2021-2-76-9531. ANTINONE, R. J., 1994. A Review of the Phenomenologyof High Power Microwave Effects on Electronic Components.In: International Symposium on Electromagnetic Environmentsand Consequence Proceedings. Bordeaux, France,Jan 17–21, 1994. pp. 344–350.32. ANTIPIN, V. V., GODOVITSYN, V. A., GROMOV, D. V.,KOZHEVNIKOV, A. S. and RAVAEV, A. A., 1995. Impactof high-power pulsed microwave interferences on semiconductordevices and integrated circuits. Zarubezhnaya radioelektronika.is. 1, pp. 37–53. (in Russian).33. BERDYSHEV, A. V., IVOYLOV, V. F., ISAYKIN, A. V.,KOZIRATSKIY, YU. L., SHCHERENKOV, V. V. andYARYGIN, A. P., 2000. Experimental studies of the effect ofmicrowave pulses on electronic devices containing microcircuits.Radiotekhnika. no. 6, pp. 85–88. (in Russian).34. DOBYKIN, V. D., 2000. Analysis of the Thermal DegradationMechanism of Semiconductor Structures under IntenseMicrowave Radiation. Radiotekhnika i Electronika.vol. 45, is. 11, pp. 1389–1392. (in Russian).35. VDOVIN, V. A., KULAGIN, V. V. and CHEREPENIN,V. A., 2003. Noises and malfunctions under non-thermalaction of a short electromagnetic pulse on radioelectronicdevices. Elektromagnitnye volny i elektronnye sistemy.no. 1, pp. 64–73. (in Russian).36. VDOVIN, V. A., GULYAEV, Y. V, CHANTURIYA, V.and CHEREPENIN, V. A., 2005. Nonthermal action ofhigh-powered electromagnetic pulses on gold-bearing rock.J. Commun. Technol. Electron. vol. 50, is. 9, pp. 1044–1047.37. DOBYKIN, V. D., 2008. Development of the theory ofthermal damage to semiconductor structures by powerfulmicrowave radiation. J. Commun. Technol. Electron. vol. 53,is. 1, pp. 100–103. DOI: https://doi.org/10.1134/S106422690801012938. KICHOULIYA, R. and THOMAS, M. J., 2016. Interactionof high power electromagnetic pulses with power cables andelectronic systems. In: 2016 IEEE International Symposiumon Electromagnetic Compatibility (EMC) Proceedings.pp. 159–163. DOI: https://doi.org/10.1109/ISEMC.2016.757163639. GADETSKI, N. P., KRAVTSOV, K. A. and MAGDA, I. I.,1999. Personal computer functional disorders under effectof ultra-short duration electromagnetic pulses. In: 1999 9thInternational Crimean Microwave Conference “Microwaveand Telecommunication Technology” Proceedings (IEEECat. No.99EX363). 1999, pp. 326–328, DOI: https://doi.org/10.1109/CRMICO.1999.81525440. GRETSKIKH, D. V., TSYKALOVSKIY, N. M. andGLADCHENKO, E. I., 2016. Application and developmentperspectives of wireless power transmission by microwavebeam. Radiotekhnika. vol. 184, pp. 100–118. (in Russian).41. DIDENKO, A. N., 2003. Microwave energetics: theory andpractice. Moscow, Russia: Nauka Publ. (in Russian).42. MESYATS, G. A., 1974. Generation of powerful nanosecondpulses. Moscow, Russia: Sov. Radio Publ. (inRussian).43. KULAGIN, I. S., MILOSLAVSKIY, P. YU., NOVOZHILOVAYU. V., SMORGONSKIY A. V. and SHMELEV,M. YU., 1986. Relativistic HF electronics. Zarubezhnayaradioelektronika. no. 12, pp. 3–34. (in Russian).44. BENFORD, J., SZE, H., WOO, W., SMITH, R. R. and HARTENECK,B., 1989. Phase Locking of RelativisticMagnetrons. Phys. Rev. Lett. vol. 62, is. 8, pp. 969–971. DOI: https://doi.org/10.1103/PhysRevLett.62.96945. BUGAEV, S. P., KANAVETS, V. I., KOSHELEV, V. I.and CHEREPENIN, V. A., 1991. Relativistic multiwave UHFgenerators. Novosibirsk, Russia: Nauka Publ. (in Russian).46. GINZBURG, N. S., NOVOZHILOVA, YU. V. andSERGEEV, A. S., 1996. Generation of short electromagneticpulses by an electron bunch in a backward-wavetubeslow-wave system. Tech. Phys. Lett. vol. 22, is. 5,pp. 359–361.47. KOROVIN, S. D., MESYATS, G. A., ROSTOV, V. V.,UL’MASKULOV, M. R., SHARYPOV, K. A., SHPAK, V. G.,SHUNAILOV, S. A. and YALANDIN, M. I., 2002. Highefficiency subnanosecond microwave pulse generation in arelativistic backward wave tube. Tech. Phys. Lett. vol. 28,is. 1, pp. 76–79. DOI: https://doi.org/10.1134/1.144865048. KALINUSHKIN, V. P., RUKHADZE, A. A., KUZELEV,M V. and MINAEV, I. M., 1997. Powerful plasmamicroelectronics and its applications perspectives.Prikladnaya fi zika. is. 1, pp. 3–22. (in Russian).49. BROMBORSKY, A., AGEE, F., BOLLEN, M., CAMERON,J., CLARK, C., DAVIS, H., DESTLER, W.,GRAYBILL, S., HUTTLIN G., JUDY, D., KEHS, R.,KRIBEL, R., LIBELO, L., PASOUR, J., PEREIRA, N.,ROGERS, J., RUBUSH, M., RUTH, B., SCHLESIGER,C., SHERWOOD, E., SMUTEK, L., STILL, G.,THODE, L. and WEIDENHEIMER, D., 1988. On ThePath To A Terawatt: High Power Microwave ExperimentsAt Aurora’. In: SPIE Microwave and Particle Sourcesand Propagation Proceedings. vol. 873, pp. 51–61. DOI:https://doi.org/10.1117/12.96508050. FORTOV, V. E., 2002. Explosive-Driven Generators ofPowerful Electric Current Pulses. Cambridge: CambridgeInternational Science Pub.51. YEL’CHANINOV, A. A., KOROVIN, S. D., PEGEL’, I. V.,ROSTOV, V. V., RUKIN, S. N., SHPAK, V. G. andYALANDIN, M. I., 2003. The superradiative condition of arelativistic BWT with high peak power of microwave pulses.Izv. Vyssh. Uchebn. Zaved. Radioelektronika. vol. 46, is. 3,pp. 55–65. (in Russian).52. MESYATS, G. A., 2004. Pulsed power and electronics.Moscow, Russia: Nauka Publ. (in Russian).53. MESYATS, G. A. and YALANDIN, M. I., 2005. High-powerpicosecond electronics. Phys. Uspekhi. vol. 48, is. 3,pp. 211–229. DOI: https://doi.org/10.1070/PU2005v048n03ABEH00211354. KUZELEV, M. V., RUKHADZE, A. A. and STRELKOV,P. S., 2018. Plasma relativistic microwave electronics.Moscow, Russia: Lenand Publ. (in Russian).55. ALAM, N. and ALAM, M., 2020. The trend of differentparameters for designing integrated circuits from 1973 to2019 and linked to Moore’s law. Aust. J. Eng. Innov. Technol.vol. 2, is. 2, pp. 16–23. DOI: https://doi.org/10.34104/ajeit.020.01602356. VELIKHOV, YE. P., 2003. Nanoelectronic instrumentsand engineering processes. Vestnik Rossijskoj akademii nauk.vol. 73, is. 5, pp. 395–399. (in Russian). |
publisher |
Видавничий дім «Академперіодика» |
publishDate |
2021 |
url |
http://rpra-journal.org.ua/index.php/ra/article/view/1373 |
work_keys_str_mv |
AT chernogorlf functionaldamageofradioelectronicsystems AT chernogorlf funkcíonalʹneuražennâradíoelektronnihsistem |
first_indexed |
2024-05-26T06:28:44Z |
last_indexed |
2024-05-26T06:28:44Z |
_version_ |
1802895106657746944 |
spelling |
oai:ri.kharkov.ua:article-13732023-06-19T05:28:33Z FUNCTIONAL DAMAGE OF RADIO ELECTRONIC SYSTEMS FUNCTIONAL DAMAGE OF RADIO ELECTRONIC SYSTEMS ФУНКЦІОНАЛЬНЕ УРАЖЕННЯ РАДІОЕЛЕКТРОННИХ СИСТЕМ Chernogor, L. F. functional damage; avionics; critical energy; Moore’s law; functional damage equation; radiolocation equation; detection and destruction range functional damage; avionics; critical energy; Moore’s law; functional damage equation; radiolocation equation; detection and destruction range функціональне ураження; радіоелектронні системи; критична енергія; закон Мура; рівняння функціонального ураження; рівняння радіолокації; дальність виявлення й ураження Purpose: The most important problem of any state is protection of the control and management systems used for the country, national armed forces, high-risk facilities (nuclear power plants, large chemical plants, airports, etc.). Here, the fact that the means of attack can be deployed on ballistic and cruise missiles, aircraft, and drones should be accounted for. The flight altitude of these vehicles varies from ≈300 km to ≈ 10 m. Any attack vehicle is equipped with complex avionics consisting of circuit elements sensitive to electromagnetic fields. Since the 1980s, a new scientific and engineering direction has been developing, being termed as a “functional damage to avionics”. It is based on the creation of powerful means of electromagnetic radiation possessing the energetic capabilities of incapacitating avionics at significant distances (from ~ 100 m to ~ 1000 km). The purpose of this work is to analyze the possible functional damage to avionics with account for the tendencies in avionics technologies.Design/methodology/approach: The analysis is made on the capability of inflicting functional damage to avionics accounting for the modern trends in developing the powerful means of electromagnetic energy generation in the microwave and shorter wavelength ranges, miniaturization and integration of avionics circuit elements. The regression is constructed for the critical energy time dependence. It has been determined that for decades the critical energy required to damage the circuit elements shows a tendency to decrease. This is due to the further miniaturization and integration of microcircuits according to the Moore’s law, which is still valid for now. For a number of circuit elements, the critical energy is found to be in the range of 10-11–10-10 J. At the same time, a reverse tendency arises to protect avionics from being functionally damaged. In this case, the critical energy makes 10-7–10-6 J and greater. From the derived version of the basic equation of functional damage to avionics, the maximum distance at which the damage is possible with the energetics of the existing radio systems is estimated. For the ground-based facilities, this distance can attain hundreds of kilometers. For mobile vehicles, it can reach 10–100 km. Combining target detection, identification and avionics damage capabilities in one radio system has been validated and advised. The transition from the first mode of operation to the second one occurs at shorter distances with an increase of 2–3 orders of magnitude in the pulse energy.Findings: The regression equation has been obtained for the time dependence of the critical energy required for inflicting functional damage to avionics. Its constant decrease has been confirmed. Such a behavior is closely related to the Moore’s law, which characterizes the degree of miniaturization and integration of avionics circuit elements. It has been predicted that for a number of instruments the critical energy can be smaller than 10-11–10-10 J. A version of the basic equation of functional damage to avionics has been obtained. The maximum distance for a modern radio system to damage the avionics has been shown to attain many hundreds of kilometers. For the radio systems installed on mobile vehicles, this distance makes 10–100 km. Target detection, tracking and identification, as well as avionics damage capabilities, have been proved to be rationally combined in one radio system. To cause damage at a corresponding range, the pulse energy needs to be increased by a factor of 102–103.Conclusions: There are all science and technology prerequisites for developing effective radio systems inflicting functional damage to avionics and for the state defense and protection, armed forces, and high-risk facility controlling systems.Key words: functional damage; avionics; critical energy; Moore’s law; functional damage equation; radiolocation equation; detection and destruction rangeManuscript submitted 07.07.2021Radio phys. radio astron. 2021, 26(4): 358-369REFERENCES1. BARSUKOV, V. S., 2003. Electromagnetic terrorism: protectionand counteraction. Spetsialnaya tekhnika. vol. 6,pp. 25–36. (in Russian).2. BELOUS, V., 2005. The threat of using EMP weapons formilitary and terrorist purposes. Yadernyi control. vol. 11,is. 1(75), pp. 133–140. (in Russian).3. PANOV, V. V. and SARKISYAN, A. P., 1993. Some aspectsof the problem of creating microwave devices for functionaldamage. Zarubezhnaya radioelektronika vol. 10–12,pp. 3–10. (in Russian).4. FLORIG, H. K., 1988. The future battlefi eld: a blast of gigawatts?[microwave-based weapons]. IEEE Spectr. vol. 25,is. 3, pp. 50–54. DOI: https://doi.org/10.1109/6.45235. FLORIG H. K., 1989. High-power microwave coupling andeffects on electronics. Annales de Physique, Colloque.vol. 14, no. 2, Supplement au № 6.6. PROTASEVICH, E. T., 2004. Electromagnetic weapon.Tomsk, Russia: TPU Publ. (in Russian).7. PALYI, A. I. and KUPRIYANOV, A. I., 2006. Essays onthe history of electronic warfare. Moscow, Russia: Vuzovskayakniga Publ. (in Russian).8. KOPP, C., 1996. The Electromagnetic Bomb – a Weapon ofElectrical Mass Destruction [online]. Melbourne, Australia:Monash University Australia. [viewed 5 July 2021]. Availablefrom: https://www.airuniversity.af.edu/Portals/10/ASPJ/journals/Chronicles/apjemp.pdf9. DOBYKIN, V. D., KUPRIYANOV, A. I., PONOMAREV,V. G. and SHUSTOV, L. N., 2007. Electronic warfare.Forceful defeat of electronic systems. Moscow, Russia:Vuzovskaya kniga Publ. (in Russian).10. MAKARENKO, S. I., 2017. Information confrontationand electronic warfare in network-centric wars of the XXIcentury. Monograph. Saint Petersburg, Russia: Naukoemkietekhnologii Publ. (in Russian).11. MIKHAILOV, R. L., 2018. Electronic warfare in the USArmed Forces: a military theoretical work. Saint Petersburg,Russia: Naukoemkie tekhnologii Publ. (in Russian).12. ANIL, K. M., 2018. Directed Energy Weapons. In: Handbookof Defence Electronics and Optronics: Fundamentals,Technologies and Systems. pp. 1013–1105. DOI: https://doi.org/10.1002/9781119184737.ch1213. LAZAROV, L., 2019. Perspectives and Trends for theDevelopment of Electronic Warfare Systems. In: IEEE 2019International Conference on Creative Business for Smartand Sustainable Growth (CREBUS) Proceedings. pp. 1–3.DOI: https://doi.org/10.1109/CREBUS.2019.884007414. KOU, C., TANG, X., SHAO, K. and LIU, J., 2019. Highpower microwave interference effect of radar system. In:2019 IEEE 4th Advanced Information Technology, Electronicand Automation Control Conference (IAEAC) Proceedings.pp. 422–427. DOI: https://doi.org/10.1109/IAEAC47372.2019.899766915. KOCHEROV, A. N., SOLDATOV, V. P. and POLYAKOV,A. O., 2020. High-level design principles of electronicwarfare meansintegrated systems. Radiotekhnika.vol. 84, no. 7(13), pp. 45–52. (in Russian). DOI: 10.18127/j00338486-202007(13)-016. LENSHIN, A. V., 2021. Onboard electronic warfare systemsfor aircraft and helicopters: a textbook. Voronezh, Russia:MESC MAF “MAA” Publ. (in Russian).17. PERUNOV, YU. M., FOMICHEV, K. I. and YUDIN, L. M.,2003. Electronic suppression of information channels ofweapon control systems. Moscow, Russia: RadiotekhnikaPubl. (in Russian).18. ABRAMS, M., 2003. Dawn of the E-Bomb. IEEE Spectr.vol. 40, is. 11, pp. 24–30. DOI: https://doi.org/10.1109/MSPEC.2003.124295319. MERKULOV, V. I., DOBYKIN, V. D. and DROGALIN,V. V., 2006. Functional destroying of radio electronicsystems. Phasotron. is. 3–4. (in Russian).20. KRAVCHENKO, V. I., 2008. Electromagnetic weapon.Kharkiv: NTU “KhPI” Publ. (in Russian).21. KRAVCHENKO, V. I., 2009. Weapons based on unconventionalphysical principles. Electromagnetic weapon.Kharkiv, Ukraine: NTMT Publ. (in Russian).22. ORLYANSKY, V. I. and DULNEV, P. A., 2017. Energyimpact is an important component of the enemy’s complexdestruction. Voennaya mysl’. is. 8, pp. 83–93. (in Russian).23. HAMAMAH, F., AHMAD, W. F. H. W., GOMES, C.,ISA, M. M. and HOMAM, M. J., 2017. High powermicrowave devices: Development since 1880. In: 2017 IEEEAsia Pacifi c Microwave Conference (APMC) Proceedings.pp. 825–828. DOI: https://doi.org/10.1109/APMC.2017.825157624. SYDORENKO, R. G., HRIDIN, V. I., MEGELBEY, G. V.and REZNICHENKO, A. I., 2018. Basic directions of creationof systems of power radio electronic fi ght for defeat ofdifferent types radio electronic facilities. Scientifi c Works ofKharkiv National Air Force University. is. 1(55), pp. 91–96.(in Ukrainian). DOI: https://doi.org/10.30748/zhups.2018.55.1225. SAKHAROV, K. Y., SUKHOV, A. V., UGOLEV, V. L.and GUREVICH, Y. M., 2018. Study of UWB ElectromagneticPulse Impact on Commercial Unmanned AerialVehicle. In: 2018 International Symposium on ElectromagneticCompatibility (EMC EUROPE) Proceedings.pp. 40–43. DOI: https://doi.org/10.1109/EMCEurope.2018.848499226. PERUNOV, Y. M., DMITRIEV, V. G. and KUPRIYANOV,A. I., 2019. Analysis of methods and technicalsolutions of systems of functional destruction of REM.Izvestiya Instituta inzhenernoy phiziki. no. 3(53), pp. 38–42.(in Russian).27. DMITRIEV, V. G., 2020. Functional destroying of radioelectronicequipment is one of the directions of ensuring militarysecurity. In: Actual problems of protection and security.Plenary reports of the XXIII All-Russian scientifi c-practicalconference RARAN. Saint Petersburg, Russia: Russian Academyof Rocket and Artillery Sciences Publ., pp. 150–157.(in Russian).28. MAKARENKO, S. I., 2020. Counter unmanned aerialvehicles. Part 4. Functional destroying with microwaveand laser weapons. Syst. Control Commun. Security. is. 3,pp. 122–157. (in Russian). DOI: 10.24411/2410-9916-2020-1030429. BELOUSOV, A. O. and GAZIZOV, T. R., 2021. Approachesto the methodology creation for ensuring electromagneticcompatibility of technique of functional destruction byelectromagnetic radiation with other radioelectronic techniquesas part of a complex for countering unmanned aerialvehicles. In: XI International Scientifi c and Technical Conferenceon Robotic and Intelligent Aircraft Systems ImprovingChallenges (RIASIC’2020) Poceedings. Moscow, Russia:Editus Publ., pp. 309–313. (in Russian).30. AFONIN, I. E., MAKARENKO, S. I. and PETROV, S. V.,2021. Descriptive model of the electronic warfare subsystemas part aerospace attack means used to suppression elementsof an aerospace defense system. Syst. Control Commun.Security. is. 2, pp. 76–95. (in Russian). DOI: 10.24412/2410-9916-2021-2-76-9531. ANTINONE, R. J., 1994. A Review of the Phenomenologyof High Power Microwave Effects on Electronic Components.In: International Symposium on Electromagnetic Environmentsand Consequence Proceedings. Bordeaux, France,Jan 17–21, 1994. pp. 344–350.32. ANTIPIN, V. V., GODOVITSYN, V. A., GROMOV, D. V.,KOZHEVNIKOV, A. S. and RAVAEV, A. A., 1995. Impactof high-power pulsed microwave interferences on semiconductordevices and integrated circuits. Zarubezhnaya radioelektronika.is. 1, pp. 37–53. (in Russian).33. BERDYSHEV, A. V., IVOYLOV, V. F., ISAYKIN, A. V.,KOZIRATSKIY, YU. L., SHCHERENKOV, V. V. andYARYGIN, A. P., 2000. Experimental studies of the effect ofmicrowave pulses on electronic devices containing microcircuits.Radiotekhnika. no. 6, pp. 85–88. (in Russian).34. DOBYKIN, V. D., 2000. Analysis of the Thermal DegradationMechanism of Semiconductor Structures under IntenseMicrowave Radiation. Radiotekhnika i Electronika.vol. 45, is. 11, pp. 1389–1392. (in Russian).35. VDOVIN, V. A., KULAGIN, V. V. and CHEREPENIN,V. A., 2003. Noises and malfunctions under non-thermalaction of a short electromagnetic pulse on radioelectronicdevices. Elektromagnitnye volny i elektronnye sistemy.no. 1, pp. 64–73. (in Russian).36. VDOVIN, V. A., GULYAEV, Y. V, CHANTURIYA, V.and CHEREPENIN, V. A., 2005. Nonthermal action ofhigh-powered electromagnetic pulses on gold-bearing rock.J. Commun. Technol. Electron. vol. 50, is. 9, pp. 1044–1047.37. DOBYKIN, V. D., 2008. Development of the theory ofthermal damage to semiconductor structures by powerfulmicrowave radiation. J. Commun. Technol. Electron. vol. 53,is. 1, pp. 100–103. DOI: https://doi.org/10.1134/S106422690801012938. KICHOULIYA, R. and THOMAS, M. J., 2016. Interactionof high power electromagnetic pulses with power cables andelectronic systems. In: 2016 IEEE International Symposiumon Electromagnetic Compatibility (EMC) Proceedings.pp. 159–163. DOI: https://doi.org/10.1109/ISEMC.2016.757163639. GADETSKI, N. P., KRAVTSOV, K. A. and MAGDA, I. I.,1999. Personal computer functional disorders under effectof ultra-short duration electromagnetic pulses. In: 1999 9thInternational Crimean Microwave Conference “Microwaveand Telecommunication Technology” Proceedings (IEEECat. No.99EX363). 1999, pp. 326–328, DOI: https://doi.org/10.1109/CRMICO.1999.81525440. GRETSKIKH, D. V., TSYKALOVSKIY, N. M. andGLADCHENKO, E. I., 2016. Application and developmentperspectives of wireless power transmission by microwavebeam. Radiotekhnika. vol. 184, pp. 100–118. (in Russian).41. DIDENKO, A. N., 2003. Microwave energetics: theory andpractice. Moscow, Russia: Nauka Publ. (in Russian).42. MESYATS, G. A., 1974. Generation of powerful nanosecondpulses. Moscow, Russia: Sov. Radio Publ. (inRussian).43. KULAGIN, I. S., MILOSLAVSKIY, P. YU., NOVOZHILOVAYU. V., SMORGONSKIY A. V. and SHMELEV,M. YU., 1986. Relativistic HF electronics. Zarubezhnayaradioelektronika. no. 12, pp. 3–34. (in Russian).44. BENFORD, J., SZE, H., WOO, W., SMITH, R. R. and HARTENECK,B., 1989. Phase Locking of RelativisticMagnetrons. Phys. Rev. Lett. vol. 62, is. 8, pp. 969–971. DOI: https://doi.org/10.1103/PhysRevLett.62.96945. BUGAEV, S. P., KANAVETS, V. I., KOSHELEV, V. I.and CHEREPENIN, V. A., 1991. Relativistic multiwave UHFgenerators. Novosibirsk, Russia: Nauka Publ. (in Russian).46. GINZBURG, N. S., NOVOZHILOVA, YU. V. andSERGEEV, A. S., 1996. Generation of short electromagneticpulses by an electron bunch in a backward-wavetubeslow-wave system. Tech. Phys. Lett. vol. 22, is. 5,pp. 359–361.47. KOROVIN, S. D., MESYATS, G. A., ROSTOV, V. V.,UL’MASKULOV, M. R., SHARYPOV, K. A., SHPAK, V. G.,SHUNAILOV, S. A. and YALANDIN, M. I., 2002. Highefficiency subnanosecond microwave pulse generation in arelativistic backward wave tube. Tech. Phys. Lett. vol. 28,is. 1, pp. 76–79. DOI: https://doi.org/10.1134/1.144865048. KALINUSHKIN, V. P., RUKHADZE, A. A., KUZELEV,M V. and MINAEV, I. M., 1997. Powerful plasmamicroelectronics and its applications perspectives.Prikladnaya fi zika. is. 1, pp. 3–22. (in Russian).49. BROMBORSKY, A., AGEE, F., BOLLEN, M., CAMERON,J., CLARK, C., DAVIS, H., DESTLER, W.,GRAYBILL, S., HUTTLIN G., JUDY, D., KEHS, R.,KRIBEL, R., LIBELO, L., PASOUR, J., PEREIRA, N.,ROGERS, J., RUBUSH, M., RUTH, B., SCHLESIGER,C., SHERWOOD, E., SMUTEK, L., STILL, G.,THODE, L. and WEIDENHEIMER, D., 1988. On ThePath To A Terawatt: High Power Microwave ExperimentsAt Aurora’. In: SPIE Microwave and Particle Sourcesand Propagation Proceedings. vol. 873, pp. 51–61. DOI:https://doi.org/10.1117/12.96508050. FORTOV, V. E., 2002. Explosive-Driven Generators ofPowerful Electric Current Pulses. Cambridge: CambridgeInternational Science Pub.51. YEL’CHANINOV, A. A., KOROVIN, S. D., PEGEL’, I. V.,ROSTOV, V. V., RUKIN, S. N., SHPAK, V. G. andYALANDIN, M. I., 2003. The superradiative condition of arelativistic BWT with high peak power of microwave pulses.Izv. Vyssh. Uchebn. Zaved. Radioelektronika. vol. 46, is. 3,pp. 55–65. (in Russian).52. MESYATS, G. A., 2004. Pulsed power and electronics.Moscow, Russia: Nauka Publ. (in Russian).53. MESYATS, G. A. and YALANDIN, M. I., 2005. High-powerpicosecond electronics. Phys. Uspekhi. vol. 48, is. 3,pp. 211–229. DOI: https://doi.org/10.1070/PU2005v048n03ABEH00211354. KUZELEV, M. V., RUKHADZE, A. A. and STRELKOV,P. S., 2018. Plasma relativistic microwave electronics.Moscow, Russia: Lenand Publ. (in Russian).55. ALAM, N. and ALAM, M., 2020. The trend of differentparameters for designing integrated circuits from 1973 to2019 and linked to Moore’s law. Aust. J. Eng. Innov. Technol.vol. 2, is. 2, pp. 16–23. DOI: https://doi.org/10.34104/ajeit.020.01602356. VELIKHOV, YE. P., 2003. Nanoelectronic instrumentsand engineering processes. Vestnik Rossijskoj akademii nauk.vol. 73, is. 5, pp. 395–399. (in Russian). Purpose: The most important problem of any state is protection of the control and management systems used for the country, national armed forces, high-risk facilities (nuclear power plants, large chemical plants, airports, etc.). Here, the fact that the means of attack can be deployed on ballistic and cruise missiles, aircraft, and drones should be accounted for. The flight altitude of these vehicles varies from ≈300 km to ≈ 10 m. Any attack vehicle is equipped with complex avionics consisting of circuit elements sensitive to electromagnetic fields. Since the 1980s, a new scientific and engineering direction has been developing, being termed as a “functional damage to avionics”. It is based on the creation of powerful means of electromagnetic radiation possessing the energetic capabilities of incapacitating avionics at significant distances (from ~ 100 m to ~ 1000 km). The purpose of this work is to analyze the possible functional damage to avionics with account for the tendencies in avionics technologies.Design/methodology/approach: The analysis is made on the capability of inflicting functional damage to avionics accounting for the modern trends in developing the powerful means of electromagnetic energy generation in the microwave and shorter wavelength ranges, miniaturization and integration of avionics circuit elements. The regression is constructed for the critical energy time dependence. It has been determined that for decades the critical energy required to damage the circuit elements shows a tendency to decrease. This is due to the further miniaturization and integration of microcircuits according to the Moore’s law, which is still valid for now. For a number of circuit elements, the critical energy is found to be in the range of 10-11–10-10 J. At the same time, a reverse tendency arises to protect avionics from being functionally damaged. In this case, the critical energy makes 10-7–10-6 J and greater. From the derived version of the basic equation of functional damage to avionics, the maximum distance at which the damage is possible with the energetics of the existing radio systems is estimated. For the ground-based facilities, this distance can attain hundreds of kilometers. For mobile vehicles, it can reach 10–100 km. Combining target detection, identification and avionics damage capabilities in one radio system has been validated and advised. The transition from the first mode of operation to the second one occurs at shorter distances with an increase of 2–3 orders of magnitude in the pulse energy.Findings: The regression equation has been obtained for the time dependence of the critical energy required for inflicting functional damage to avionics. Its constant decrease has been confirmed. Such a behavior is closely related to the Moore’s law, which characterizes the degree of miniaturization and integration of avionics circuit elements. It has been predicted that for a number of instruments the critical energy can be smaller than 10-11–10-10 J. A version of the basic equation of functional damage to avionics has been obtained. The maximum distance for a modern radio system to damage the avionics has been shown to attain many hundreds of kilometers. For the radio systems installed on mobile vehicles, this distance makes 10–100 km. Target detection, tracking and identification, as well as avionics damage capabilities, have been proved to be rationally combined in one radio system. To cause damage at a corresponding range, the pulse energy needs to be increased by a factor of 102–103.Conclusions: There are all science and technology prerequisites for developing effective radio systems inflicting functional damage to avionics and for the state defense and protection, armed forces, and high-risk facility controlling systems.Key words: functional damage; avionics; critical energy; Moore’s law; functional damage equation; radiolocation equation; detection and destruction rangeManuscript submitted 07.07.2021Radio phys. radio astron. 2021, 26(4): 358-369REFERENCES1. BARSUKOV, V. S., 2003. Electromagnetic terrorism: protectionand counteraction. Spetsialnaya tekhnika. vol. 6,pp. 25–36. (in Russian).2. BELOUS, V., 2005. The threat of using EMP weapons formilitary and terrorist purposes. Yadernyi control. vol. 11,is. 1(75), pp. 133–140. (in Russian).3. PANOV, V. V. and SARKISYAN, A. P., 1993. Some aspectsof the problem of creating microwave devices for functionaldamage. Zarubezhnaya radioelektronika vol. 10–12,pp. 3–10. (in Russian).4. FLORIG, H. K., 1988. The future battlefi eld: a blast of gigawatts?[microwave-based weapons]. IEEE Spectr. vol. 25,is. 3, pp. 50–54. DOI: 10.1109/6.45235. FLORIG H. K., 1989. High-power microwave coupling andeffects on electronics. Annales de Physique, Colloque.vol. 14, no. 2, Supplement au № 6.6. PROTASEVICH, E. T., 2004. Electromagnetic weapon.Tomsk, Russia: TPU Publ. (in Russian).7. PALYI, A. I. and KUPRIYANOV, A. I., 2006. Essays onthe history of electronic warfare. Moscow, Russia: Vuzovskayakniga Publ. (in Russian).8. KOPP, C., 1996. The Electromagnetic Bomb – a Weapon ofElectrical Mass Destruction [online]. Melbourne, Australia:Monash University Australia. [viewed 5 July 2021]. Availablefrom: https://www.airuniversity.af.edu/Portals/10/ASPJ/journals/Chronicles/apjemp.pdf9. DOBYKIN, V. D., KUPRIYANOV, A. I., PONOMAREV,V. G. and SHUSTOV, L. N., 2007. Electronic warfare.Forceful defeat of electronic systems. Moscow, Russia:Vuzovskaya kniga Publ. (in Russian).10. MAKARENKO, S. I., 2017. Information confrontationand electronic warfare in network-centric wars of the XXIcentury. Monograph. Saint Petersburg, Russia: Naukoemkietekhnologii Publ. (in Russian).11. MIKHAILOV, R. L., 2018. Electronic warfare in the USArmed Forces: a military theoretical work. Saint Petersburg,Russia: Naukoemkie tekhnologii Publ. (in Russian).12. ANIL, K. M., 2018. Directed Energy Weapons. In: Handbookof Defence Electronics and Optronics: Fundamentals,Technologies and Systems. pp. 1013–1105. DOI: 10.1002/9781119184737.ch1213. LAZAROV, L., 2019. Perspectives and Trends for theDevelopment of Electronic Warfare Systems. In: IEEE 2019International Conference on Creative Business for Smartand Sustainable Growth (CREBUS) Proceedings. pp. 1–3.DOI: 10.1109/CREBUS.2019.884007414. KOU, C., TANG, X., SHAO, K. and LIU, J., 2019. Highpower microwave interference effect of radar system. In:2019 IEEE 4th Advanced Information Technology, Electronicand Automation Control Conference (IAEAC) Proceedings.pp. 422–427. DOI: 10.1109/IAEAC47372.2019.899766915. KOCHEROV, A. N., SOLDATOV, V. P. and POLYAKOV,A. O., 2020. High-level design principles of electronicwarfare meansintegrated systems. Radiotekhnika.vol. 84, no. 7(13), pp. 45–52. (in Russian). DOI: 10.18127/j00338486-202007(13)-016. LENSHIN, A. V., 2021. Onboard electronic warfare systemsfor aircraft and helicopters: a textbook. Voronezh, Russia:MESC MAF “MAA” Publ. (in Russian).17. PERUNOV, YU. M., FOMICHEV, K. I. and YUDIN, L. M.,2003. Electronic suppression of information channels ofweapon control systems. Moscow, Russia: RadiotekhnikaPubl. (in Russian).18. ABRAMS, M., 2003. Dawn of the E-Bomb. IEEE Spectr.vol. 40, is. 11, pp. 24–30. DOI: 10.1109/MSPEC.2003.124295319. MERKULOV, V. I., DOBYKIN, V. D. and DROGALIN,V. V., 2006. Functional destroying of radio electronicsystems. Phasotron. is. 3–4. (in Russian).20. KRAVCHENKO, V. I., 2008. Electromagnetic weapon.Kharkiv: NTU “KhPI” Publ. (in Russian).21. KRAVCHENKO, V. I., 2009. Weapons based on unconventionalphysical principles. Electromagnetic weapon.Kharkiv, Ukraine: NTMT Publ. (in Russian).22. ORLYANSKY, V. I. and DULNEV, P. A., 2017. Energyimpact is an important component of the enemy’s complexdestruction. Voennaya mysl’. is. 8, pp. 83–93. (in Russian).23. HAMAMAH, F., AHMAD, W. F. H. W., GOMES, C.,ISA, M. M. and HOMAM, M. J., 2017. High powermicrowave devices: Development since 1880. In: 2017 IEEEAsia Pacifi c Microwave Conference (APMC) Proceedings.pp. 825–828. DOI: 10.1109/APMC.2017.825157624. SYDORENKO, R. G., HRIDIN, V. I., MEGELBEY, G. V.and REZNICHENKO, A. I., 2018. Basic directions of creationof systems of power radio electronic fi ght for defeat ofdifferent types radio electronic facilities. Scientifi c Works ofKharkiv National Air Force University. is. 1(55), pp. 91–96.(in Ukrainian). DOI: 10.30748/zhups.2018.55.1225. SAKHAROV, K. Y., SUKHOV, A. V., UGOLEV, V. L.and GUREVICH, Y. M., 2018. Study of UWB ElectromagneticPulse Impact on Commercial Unmanned AerialVehicle. In: 2018 International Symposium on ElectromagneticCompatibility (EMC EUROPE) Proceedings.pp. 40–43. DOI: 10.1109/EMCEurope.2018.848499226. PERUNOV, Y. M., DMITRIEV, V. G. and KUPRIYANOV,A. I., 2019. Analysis of methods and technicalsolutions of systems of functional destruction of REM.Izvestiya Instituta inzhenernoy phiziki. no. 3(53), pp. 38–42.(in Russian).27. DMITRIEV, V. G., 2020. Functional destroying of radioelectronicequipment is one of the directions of ensuring militarysecurity. In: Actual problems of protection and security.Plenary reports of the XXIII All-Russian scientifi c-practicalconference RARAN. Saint Petersburg, Russia: Russian Academyof Rocket and Artillery Sciences Publ., pp. 150–157.(in Russian).28. MAKARENKO, S. I., 2020. Counter unmanned aerialvehicles. Part 4. Functional destroying with microwaveand laser weapons. Syst. Control Commun. Security. is. 3,pp. 122–157. (in Russian). DOI: 10.24411/2410-9916-2020-1030429. BELOUSOV, A. O. and GAZIZOV, T. R., 2021. Approachesto the methodology creation for ensuring electromagneticcompatibility of technique of functional destruction byelectromagnetic radiation with other radioelectronic techniquesas part of a complex for countering unmanned aerialvehicles. In: XI International Scientifi c and Technical Conferenceon Robotic and Intelligent Aircraft Systems ImprovingChallenges (RIASIC’2020) Poceedings. Moscow, Russia:Editus Publ., pp. 309–313. (in Russian).30. AFONIN, I. E., MAKARENKO, S. I. and PETROV, S. V.,2021. Descriptive model of the electronic warfare subsystemas part aerospace attack means used to suppression elementsof an aerospace defense system. Syst. Control Commun.Security. is. 2, pp. 76–95. (in Russian). DOI: 10.24412/2410-9916-2021-2-76-9531. ANTINONE, R. J., 1994. A Review of the Phenomenologyof High Power Microwave Effects on Electronic Components.In: International Symposium on Electromagnetic Environmentsand Consequence Proceedings. Bordeaux, France,Jan 17–21, 1994. pp. 344–350.32. ANTIPIN, V. V., GODOVITSYN, V. A., GROMOV, D. V.,KOZHEVNIKOV, A. S. and RAVAEV, A. A., 1995. Impactof high-power pulsed microwave interferences on semiconductordevices and integrated circuits. Zarubezhnaya radioelektronika.is. 1, pp. 37–53. (in Russian).33. BERDYSHEV, A. V., IVOYLOV, V. F., ISAYKIN, A. V.,KOZIRATSKIY, YU. L., SHCHERENKOV, V. V. andYARYGIN, A. P., 2000. Experimental studies of the effect ofmicrowave pulses on electronic devices containing microcircuits.Radiotekhnika. no. 6, pp. 85–88. (in Russian).34. DOBYKIN, V. D., 2000. Analysis of the Thermal DegradationMechanism of Semiconductor Structures under IntenseMicrowave Radiation. Radiotekhnika i Electronika.vol. 45, is. 11, pp. 1389–1392. (in Russian).35. VDOVIN, V. A., KULAGIN, V. V. and CHEREPENIN,V. A., 2003. Noises and malfunctions under non-thermalaction of a short electromagnetic pulse on radioelectronicdevices. Elektromagnitnye volny i elektronnye sistemy.no. 1, pp. 64–73. (in Russian).36. VDOVIN, V. A., GULYAEV, Y. V, CHANTURIYA, V.and CHEREPENIN, V. A., 2005. Nonthermal action ofhigh-powered electromagnetic pulses on gold-bearing rock.J. Commun. Technol. Electron. vol. 50, is. 9, pp. 1044–1047.37. DOBYKIN, V. D., 2008. Development of the theory ofthermal damage to semiconductor structures by powerfulmicrowave radiation. J. Commun. Technol. Electron. vol. 53,is. 1, pp. 100–103. DOI: 10.1134/S106422690801012938. KICHOULIYA, R. and THOMAS, M. J., 2016. Interactionof high power electromagnetic pulses with power cables andelectronic systems. In: 2016 IEEE International Symposiumon Electromagnetic Compatibility (EMC) Proceedings.pp. 159–163. DOI: 10.1109/ISEMC.2016.757163639. GADETSKI, N. P., KRAVTSOV, K. A. and MAGDA, I. I.,1999. Personal computer functional disorders under effectof ultra-short duration electromagnetic pulses. In: 1999 9thInternational Crimean Microwave Conference “Microwaveand Telecommunication Technology” Proceedings (IEEECat. No.99EX363). 1999, pp. 326–328, DOI: 10.1109/CRMICO.1999.81525440. GRETSKIKH, D. V., TSYKALOVSKIY, N. M. andGLADCHENKO, E. I., 2016. Application and developmentperspectives of wireless power transmission by microwavebeam. Radiotekhnika. vol. 184, pp. 100–118. (in Russian).41. DIDENKO, A. N., 2003. Microwave energetics: theory andpractice. Moscow, Russia: Nauka Publ. (in Russian).42. MESYATS, G. A., 1974. Generation of powerful nanosecondpulses. Moscow, Russia: Sov. Radio Publ. (inRussian).43. KULAGIN, I. S., MILOSLAVSKIY, P. YU., NOVOZHILOVAYU. V., SMORGONSKIY A. V. and SHMELEV,M. YU., 1986. Relativistic HF electronics. Zarubezhnayaradioelektronika. no. 12, pp. 3–34. (in Russian).44. BENFORD, J., SZE, H., WOO, W., SMITH, R. R. and HARTENECK,B., 1989. Phase Locking of RelativisticMagnetrons. Phys. Rev. Lett. vol. 62, is. 8, pp. 969–971.45. BUGAEV, S. P., KANAVETS, V. I., KOSHELEV, V. I.and CHEREPENIN, V. A., 1991. Relativistic multiwave UHFgenerators. Novosibirsk, Russia: Nauka Publ. (in Russian).46. GINZBURG, N. S., NOVOZHILOVA, YU. V. andSERGEEV, A. S., 1996. Generation of short electromagneticpulses by an electron bunch in a backward-wavetubeslow-wave system. Tech. Phys. Lett. vol. 22, is. 5,pp. 359–361.47. KOROVIN, S. D., MESYATS, G. A., ROSTOV, V. V.,UL’MASKULOV, M. R., SHARYPOV, K. A., SHPAK, V. G.,SHUNAILOV, S. A. and YALANDIN, M. I., 2002. Highefficiency subnanosecond microwave pulse generation in arelativistic backward wave tube. Tech. Phys. Lett. vol. 28,is. 1, pp. 76–79. DOI: 10.1134/1.144865048. KALINUSHKIN, V. P., RUKHADZE, A. A., KUZELEV,M V. and MINAEV, I. M., 1997. Powerful plasmamicroelectronics and its applications perspectives.Prikladnaya fi zika. is. 1, pp. 3–22. (in Russian).49. BROMBORSKY, A., AGEE, F., BOLLEN, M., CAMERON,J., CLARK, C., DAVIS, H., DESTLER, W.,GRAYBILL, S., HUTTLIN G., JUDY, D., KEHS, R.,KRIBEL, R., LIBELO, L., PASOUR, J., PEREIRA, N.,ROGERS, J., RUBUSH, M., RUTH, B., SCHLESIGER,C., SHERWOOD, E., SMUTEK, L., STILL, G.,THODE, L. and WEIDENHEIMER, D., 1988. On ThePath To A Terawatt: High Power Microwave ExperimentsAt Aurora’. In: SPIE Microwave and Particle Sourcesand Propagation Proceedings. vol. 873, pp. 51–61. DOI:10.1117/12.96508050. FORTOV, V. E., 2002. Explosive-Driven Generators ofPowerful Electric Current Pulses. Cambridge: CambridgeInternational Science Pub.51. YEL’CHANINOV, A. A., KOROVIN, S. D., PEGEL’, I. V.,ROSTOV, V. V., RUKIN, S. N., SHPAK, V. G. andYALANDIN, M. I., 2003. The superradiative condition of arelativistic BWT with high peak power of microwave pulses.Izv. Vyssh. Uchebn. Zaved. Radioelektronika. vol. 46, is. 3,pp. 55–65. (in Russian).52. MESYATS, G. A., 2004. Pulsed power and electronics.Moscow, Russia: Nauka Publ. (in Russian).53. MESYATS, G. A. and YALANDIN, M. I., 2005. High-powerpicosecond electronics. Phys. Uspekhi. vol. 48, is. 3,pp. 211–229. DOI: 10.1070/PU2005v048n03ABEH00211354. KUZELEV, M. V., RUKHADZE, A. A. and STRELKOV,P. S., 2018. Plasma relativistic microwave electronics.Moscow, Russia: Lenand Publ. (in Russian).55. ALAM, N. and ALAM, M., 2020. The trend of differentparameters for designing integrated circuits from 1973 to2019 and linked to Moore’s law. Aust. J. Eng. Innov. Technol.vol. 2, is. 2, pp. 16–23. DOI: 10.34104/ajeit.020.01602356. VELIKHOV, YE. P., 2003. Nanoelectronic instrumentsand engineering processes. Vestnik Rossijskoj akademii nauk. vol. 73, is. 5, pp. 395–399. (in Russian). Предмет і мета роботи: Найважливішою проблемою держави є захист систем управління країною, збройними силами, об’єктами підвищеної небезпеки (атомними електростанціями, великими хімічними виробництвами, аеропортами тощо). При цьому слід враховувати, що засоби нападу можуть бути розміщені на балістичних і крилатих ракетах, літаках і дронах, висота польоту яких варіює від ≈300 км до ≈10 м. Будь-який засіб нападу містить складне радіоелектронне обладнання, яке складається з чутливих до електромагнітних полів радіоелементів. Починаючи з 1980-х рр. розвивається новий науково-технічний напрям, який отримав назву “функціональне ураження радіоелектронних систем”. У його основі лежить створення потужних засобів електромагнітного випромінювання з енергетичними можливостями виведення з ладу радіоелектронних систем на значних відстанях (від ~ 100 м до ~ 1000 км). Мета роботи – аналіз можливостей функціонального ураження радіоелектронних систем з урахуванням тенденцій, які спостерігаються в радіоелектронних технологіях.Методи і методологія: Проаналізовано можливість функціонального ураження радіоелектронних систем з урахуванням сучасних тенденцій розвитку потужних засобів генерації електромагнітної енергії в НВЧ і більш короткохвильовому діапазонах, мініатюризації та інтеграції радіоелектронних елементів. Побудовано регресію для залежності критичної енергії від часу. Встановлено, що впродовж десятиліть спостерігається тенденція до зменшення критичної енергії, за якої відбувається пошкодження радіоелементів. Це пов’язано з подальшою мініатюризацією та інтеграцією мікросхем згідно закону Мура, який справедливий і понині. Для низки виробів значення критичної енергії знаходиться в межах 10-11÷10-10 Дж. Водночас спостерігається й зворотна тенденція щодо посилення захисту радіоелектронних систем від можливості функціонального ураження. При цьому критична енергія складає 10-7÷10-6 Дж і більше. Із отриманого різновиду основного рівняння функціонального ураження радіоелектронних систем оцінена максимальна відстань, на якій можливе ураження за енергетичних потенціалів існуючих радіокомплексів. Для стаціонарних комплексів ця відстань може досягати сотень кілометрів. Для мобільних засобів вонастановить до 10÷100 км. Обґрунтовано доцільність поєднання в одному радіокомплексі функцій виявлення й ідентифікації цілі та її ураження. Перехід від першого режиму до другого здійснюється на менших відстанях зі збільшенням на 2–3 порядки енергії імпульсів.Результати: Отримано рівняння регресії для залежності критичної енергії функціонального ураження радіоелектронних систем від поточного часу. Підтверджено її незмінне спадання. Така поведінка тісно пов’язана із законом Мура, який характеризує ступінь мініатюризації та інтеграції радіоелектронних пристроїв. Прогнозується, що для низки пристроїв критична енергія може бути меншою ніж 10-11÷10-10 Дж. Отримано різновид основного рівняння функціонального ураження радіоелектронних систем. Показано, що максимальна відстань ураження сучасних радіокомплексів може досягати багатьох сотень кілометрів. Для рухомих засобів ця відстань складає 10÷100 км. Обґрунтовано, що функції виявлення, супроводження й ідентифікації цілі, а також її ураження доцільно поєднати в одному радіокомплексі. Для ураження на певній відстані слід збільшити енергію імпульсу в 102 ÷103 разів.Висновок: Маємо всі науково-технічні передумови, необхідні для створення ефективного радіокомплексу функціонального ураження радіоелектронних систем і захисту державних систем управління, систем управління збройними силами й об’єктами підвищеної небезпеки.Ключові слова: функціональне ураження; радіоелектронні системи; критична енергія; закон Мура; рівняння функціонального ураження; рівняння радіолокації;дальність виявлення й ураженняСтаття надійшла до редакції 07.07.2021Radio phys. radio astron. 2021, 26(4): 358-369СПИСОК ЛІТЕРАТУРИ1. Барсуков В. С. Электромагнитный терроризм: защитаи противодействие. Специальная техника. 2003. Т. 6.С. 25–36.2. Белоус В. Угроза использования ЭМИ-оружия в военных и террористических целях. Ядерный контроль. 2005. Т. 11, No 1(75). С. 133–140.3. Панов В. В., Саркисьян А. П. Некоторые аспекты проблемы создания СВЧ средств функционального поражения. Зарубежная радиоэлектроника. 1993. No 10-12. С. 3–10.4. Florig H. K. The future battlefield: a blast of gigawatts?[microwave-based weapons]. IEEE Spectr. 1988. Vol. 25,Is. 3. P. 50–54. DOI: 10.1109/6.45235. Florig H. K. High-power microwave coupling and effectson electronics. Annales de Physique, Colloque. 1989.Vol. 14, no. 2, Supplement au No 6.6. Протасевич Е. Т. Электромагнитное оружие. Томск:Изд-во ТПУ, 2004. 90 с.7. Палий А. И., Куприянов А. И. Очерки истории радио-электронной борьбы. Москва: Вузовская книга, 2006.284 с.8. Kopp C. The Electromagnetic Bomb – a Weapon of Electrical Mass Destruction. 1996. Melbourne, Australia: Monash University Australia. URL: https://www.airuniversity.af.edu/Portals/10/ASPJ/journals/Chronicles/apjemp.pdf (дата звернення: 5.07. 2021).9. Добыкин В. Д., Куприянов А. И, Пономарев В. Г, Шустов Л. Н. Радиоэлектронная борьба. Силовое поражение радиоэлектронных систем. Москва: Вузовская книга, 2007. 468 с.10. Макаренко С. И. Информационное противоборствои радиоэлектронная борьба в сетецентрических войнахXXI века. Монография. Санкт-Петербург: Наукоемкиетехнологии, 2017. 546 с.11. Михайлов Р. Л. Радиоэлектронная борьба в Вооруженных силах США: военно-теоретический труд. Санкт-Петербург: Наукоемкие технологии, 2018. 131 с.12. Anil K. M. Directed Energy Weapons. Handbook of Defence Electronics and Optronics: Fundamentals, Technologies and Systems. Padstow, Corwall: John Willey & Sons Ltd., 2018. P. 1013–1105. DOI: 10.1002/9781119184737.ch1213. Lazarov L. Perspectives and Trends for the Development of Electronic Warfare Systems. Proceedings of the IEEE 2019 International Conference on Creative Business for Smart and Sustainable Growth (CREBUS). (March 18-21, 2019. Sandanski, Bulgaria). 2019. P. 1–3. DOI: 10.1109/CREBUS.2019.884007414. Kou C., Tang X., Shao K., and Liu J. High power microwave interference effect of radar system. Proceedings of the 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). (February 20-22, 2019. Chengdu, Chaina). 2019. P. 422–427. DOI: 10.1109/IAEAC47372.2019.899766915. Кочеров А. Н., Солдатов В. П., Поляков А. О. Принципы построения интегрированных систем средств радиоэлектронной борьбы. Радиотехника. 2020. Т. 84, No 7(13). С. 45–52. DOI: 10.18127/j00338486-202007(13)-0616. Леньшин А. В. Бортовые комплексы радиоэлектронной борьбы самолетов и вертолетов: учебное пособие. Воронеж: ВУНЦ ВВС “ВВА”, 2021. 298 с.17. Перунов Ю. М., Фомичев К. И., Юдин Л. М. Радиоэлектронное подавление информационных каналов систем управления оружием. Москва: Радиотехника, 2003. 416 с.18. Abrams M. Dawn of the E-Bomb. IEEE Spectr. 2003. Vol. 40, Is. 11. P. 24–30. DOI: 10.1109/MSPEC.2003.124295319. Меркулов В. И., Добыкин В. Д., Дрогалин В. В. Функциональное поражение радиоэлектронных систем. Фазотрон. 2006. No 3–4.20. Кравченко В. И. Электромагнитное оружие. Харьков: Изд-во НТУ “ХПИ”, 2008. 185 с. 21. Кравченко В. И. Оружие на нетрадиционных физических принципах. Электромагнитное оружие. Харьков: Изд-во “НТМТ“, 2009. 266 с.22. Орлянский В. И., Дульнев П. А. Энергетическое воздействие – важная составляющая комплексного поражения противника. Военная мысль. 2017. No 8. С. 83–93.23. Hamamah F., Ahmad W. F. H. W., Gomes C., Isa M. M., and Homam M. J. High power microwave devices:Development since 1880. Proceedings of the 2017 IEEE Asia Pacific Microwave Conference (APMC). (November 13-16, 2017. Kuala Lumpur, Malaysia). 2017. P. 825–828. DOI: 10.1109/APMC.2017.825157624. Сидоренко Р. Г., Грідін В. І., Мегельбей Г. В., Резніченко А. І. Основні напрямки створення систем силової радіоелектронної боротьби для ураження різнотипних радіоелектронних засобів. Збірник наукових праць Харківського національного університету Повітряних Сил. 2018. No 1(55). С. 91–96. DOI: 10.30748/zhups.2018.55.1225. Sakharov K. Y., Sukhov A. V., Ugolev V. L., and Gurevich Y. M. Study of UWB Electromagnetic Pulse Impact on Commercial Unmanned Aerial Vehicle. Proceedings of the 2017–2018 International Symposium on Electromagnetic Compatibility (EMC EUROPE). (August 27-30, 2018. Amsterdam, Netherlsnds). 2018. P. 40–43. DOI: 10.1109/EMCEurope.2018.848499226. Перунов Ю. М., Дмитриев В. Г., Куприянов А. И.Анализ методов и технических решений систем функционального поражения РЭС. Известия Института инженерной физики. 2019. No 3(53). С. 38–42.27. Дмитриев В. Г. Функциональное поражение радиоэлектронных средств – одно из направлений обеспечения военной безопасности. Актуальные проблемы защиты и безопасности. Пленарные доклады XXIII Всероссийской научно-практической конференции РАРАН. Санкт-Петербург: Российская академия ракетных и артиллерийских наук, 2020. С. 150–157.28. Макаренко С. И. Анализ средств и способов противодействия беспилотным летательным аппаратам. Часть 4. Функциональное поражение сверхвысокочастотным и лазерным излучениями. Системы управления, связи и безопасности. 2020. No 3. С. 122–157. DOI: 10.24411/2410-9916-2020-1030429. Белоусов А. О., Газизов Т. Р. Подходы к созданию методологии обеспечения электромагнитной совместимости средств функционального поражения электромагнитным излучением с другими радиоэлектронными средствами в составе комплекса противодействия беспилотным летательным аппаратам. Проблемы совершенствования робототехнических и интеллектуальных систем летательных аппаратов: сборник докладов XI Международной юбилейной научно-технической конференции. Москва: Эдитус, 2021. С. 309–313.30. Афонин И. Е., Макаренко С. И., Петров С. В. Описательная модель подсистемы радиоэлектронного подавления в составе средств воздушно-космического нападения, используемых для нарушения функционирования элементов системы воздушно-космической обороны. Системы управления, связи и безопасности. 2021. No 2. С. 76–95. DOI: 10.24412/2410-9916-2021-2-76-9531. Antinone R. J. A Review of the Phenomenology of High Power Microwave Effects on Electronic Components. Pro-ceedings of the International Symposium on Electromagnetic Environments and Consequence. (Jan 17–21, 1994. Bordeaux). Bordeaux, France, 1994. P. 344–350.32. Антипин В. В., Годовицын В. А., Громов Д. В., Кожевников А. С., Раваев А. А. Влияние мощных импульсных микроволновых помех на полупроводниковые приборы и интегральные микросхемы. Зарубежная радиоэлектроника. 1995. No 1. С. 37–53.33. Бердышев А. В., Ивойлов В. Ф., Исайкин А. В., Козирацкий Ю. Л., Щеренков В. В., Ярыгин А. П. Экспериментальные исследования воздействия СВЧ-импульсов на содержащие микросхемы радиоэлектронные устройства. Радиотехника. 2000. No 6. С. 85–88.34. Добыкин В. Д. Исследование теплового механизма поражения полупроводниковых структур мощным сверхвысокочастотным излучением. Радиотехника и электроника. 2000. Т. 45, No 11. С. 1389–1392.35. Вдовин В. А., Кулагин В. В., Черепенин В. А. Помехи и сбои при нетепловом воздействии коротких СВЧ-импульсов на радиоэлектронные устройства. Электромагнитные волны и электронные системы. 2003. Т. 8, No 1. С. 64–73.36. Vdovin V. A., Gulyaev Y. V., Chanturiya V., and Cherepenin V. А. Nonthermal action of high-powered electromagnetic pulses on gold-bearing rock. J. Commun. Tech. Electron. 2005. Vol. 50, Is. 9. P. 1044–1047.37. Добыкин В. Д. Развитие теории теплового поражения полупроводниковых структур мощным сверхвысокочастотным излучением. Радиотехника и электроника. 2008. Т. 53, No 1. С. 108–111.38. Kichouliya R. and Thomas M. J. Interaction of high power electromagnetic pulses with power cables and electronic systems. Proceedings of 2016 IEEE International Symposium on Electromagnetic Compatibility (EMC). 2016. P. 159–163. DOI: 10.1109/ISEMC.2016.757163639. Gadetski N. P., Kravtsov K. A., and Magda I. I. Personal computer functional disorders under effect of ultra-short duration electromagnetic pulses. Proceedings of 1999 9th International Crimean Microwave Conference “Microwave and Telecommunication Technology” (IEEE Cat. No.99EX363). 1999. P. 326–328, DOI: 10.1109/CRMICO.1999.81525440. Грецких Д. В., Цикаловский Н. М., Гладченко Е. И.Применение и перспективы развития беспроводной передачи энергии микроволновым лучом. Радиотехника. 2016. Вып. 184. С. 100–118.41. Диденко А. Н. СВЧ-энергетика. Теория и практика.Москва: Наука, 2003. 448 с.42. Месяц Г. А. Генерирование мощных наносекундных импульсов. Москва: Сов. радио, 1974. 256 с.43. Кулагин И. С, Милославский П. Ю., Новожилова Ю. В., Сморгонский А. В., Шмелев М. Ю. Релятивистская высокочастотная электроника. Зарубежная радиоэлектроника. 1986. No 12. С. 3–34.44. Benford J., Sze H., Woo W., Smith R. R., and Harteneck B. Phase Locking of Relativistic Magnetrons. Phys. Rev. Lett. 1989. Vol. 62, Is. 8. P. 969–971.45. Бугаев С. П., Канавец В. И., Кошелев В. И., Черепенин В. А. Релятивистские многоволновые СВЧ-генераторы. Новосибирск: Наука, Сибирское отделение, 1991. 296 с.46. Гинзбург Н. С., Новожилова Ю. В., Сергеев А. С.Генерация коротких электромагнитных импульсов электронным сгустком в замедляющей системе типа лампы обратной волны. Письма в ЖТФ. 1996. Т. 22, No 9. С. 39–44.47. Коровин С. Д., Месяц Г. А., Ростов В. В., Ульмаскулов М. Р., Шарыпов К. А., Шпак В. Г., Шунайлов С. А., Яландин М. И. Высокоэффективная генерация импульсов субнаносекундной длительности в релятивистской ЛОВ миллиметрового диапазона длин волн. Письма в ЖТФ. 2002. Т. 28, No 2. С. 81–89.48. Калинушкин В. П., Рухадзе А. А., Кузелев М. В., Минаев И. М. Мощные плазменные СВЧ-источники, перспективы их применения. Прикладная физика. 1997.No 1. С. 3–22.49. Bromborsky A., Agee F., Bollen M., Cameron J., Clark C., Davis H., Destler W., Graybill S., Huttlin G., Judy D.,Kehs R., Kribel R., Libelo L., Pasour J., Pereira N., Rogers J., Rubush M., Ruth B., Schlesiger C., Sherwood E., Smutek L., Still G., Thode L., and Weidenheimer D. On The Path To A Terawatt: High Power Microwave Experiments At Aurora’. Proceedings of the SPIE Microwave and Particle Sources and Propagation. 1988. Vol. 873. P. 51–61. DOI: 10.1117/12.96508050. Фортов В. Е. Взрывные генераторы мощных импульсов электрического тока. Москва: Наука, 2002. 399 с.51. Ельчанинов А. А., Коровин С. Д., Пегель И. В., Ростов В. В., Рукин С. Н, Шпак В. Г., Яландин М. И.Сверхизлучательный режим релятивистской ЛОВ с высокой пиковой мощностью микроволновых импульсов. Известия вузов. Радиоэлектроника. 2003. Т. 46, No 3. С. 55–65.52. Месяц Г. А. Импульсная энергетика и электроника.Москва: Наука, 2004. 704 с.53. Месяц Г. А., Яландин М. И. Пикосекундная электроника больших мощностей. УФН. 2005. Т. 175, No 3. С. 225–246. DOI: 10.3367/UFNr.0175.200503a.022554. Кузелев М. В., Рухадзе А. А., Стрелков П. С. Плазменная релятивистская СВЧ-электроника. Москва: Ленанд, 2018. 624 с.55. Alam N. and Alam M. The trend of different parametersfor designing integrated circuits from 1973 to 2019 and linked to Moore’s law. Aust. J. Eng. Innov. Technol. 2020.Vol. 2, Is. 2. P. 16–23. DOI: 10.34104/ajeit.020.01602356. Велихов Е. П. Наноэлектронные приборы и технологические процессы. Вестник Российской академии наук. 2003. Т. 73, No 5. С. 395–399. Видавничий дім «Академперіодика» 2021-11-18 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1373 10.15407/rpra26.04.358 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 26, No 4 (2021); 358 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 26, No 4 (2021); 358 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 26, No 4 (2021); 358 2415-7007 1027-9636 10.15407/rpra26.04 uk http://rpra-journal.org.ua/index.php/ra/article/view/1373/pdf Copyright (c) 2021 RADIO PHYSICS AND RADIO ASTRONOMY |