SIGNAL FORMATION AND PROCESSING FEATURES FROM AUTODYNE RADAR WITH A WIDE FREQUENCY MODULATION BAND. РART. 1. MODELING OF OPERATING MODES OF A FREQUENCY-MODULATION AUTODYNE IN VIEW OF MODULATION CHARACTERISTIC NONLINEARITY

Subject and Purpose. In Part 1 of the paper, a mathematical model of an autodyne self-oscillator with frequency tuning by varactor capacitance varying is built and thoroughly analyzed for the features of signal formation in autodyne radar with a wide frequency-modulation bandwidth and a nonlinearity...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2023
Автори: Ermak, G. P., Vasilev, A. S., Varavin, A. V., Balaban, M. V., Fateev, A. V., Zheltov, V. N.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Видавничий дім «Академперіодика» 2023
Теми:
Онлайн доступ:http://rpra-journal.org.ua/index.php/ra/article/view/1379
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Radio physics and radio astronomy

Репозитарії

Radio physics and radio astronomy
id oai:ri.kharkov.ua:article-1379
record_format ojs
institution Radio physics and radio astronomy
collection OJS
language Ukrainian
topic


spellingShingle


Ermak, G. P.
Vasilev, A. S.
Varavin, A. V.
Balaban, M. V.
Fateev, A. V.
Zheltov, V. N.
SIGNAL FORMATION AND PROCESSING FEATURES FROM AUTODYNE RADAR WITH A WIDE FREQUENCY MODULATION BAND. РART. 1. MODELING OF OPERATING MODES OF A FREQUENCY-MODULATION AUTODYNE IN VIEW OF MODULATION CHARACTERISTIC NONLINEARITY
topic_facet


format Article
author Ermak, G. P.
Vasilev, A. S.
Varavin, A. V.
Balaban, M. V.
Fateev, A. V.
Zheltov, V. N.
author_facet Ermak, G. P.
Vasilev, A. S.
Varavin, A. V.
Balaban, M. V.
Fateev, A. V.
Zheltov, V. N.
author_sort Ermak, G. P.
title SIGNAL FORMATION AND PROCESSING FEATURES FROM AUTODYNE RADAR WITH A WIDE FREQUENCY MODULATION BAND. РART. 1. MODELING OF OPERATING MODES OF A FREQUENCY-MODULATION AUTODYNE IN VIEW OF MODULATION CHARACTERISTIC NONLINEARITY
title_short SIGNAL FORMATION AND PROCESSING FEATURES FROM AUTODYNE RADAR WITH A WIDE FREQUENCY MODULATION BAND. РART. 1. MODELING OF OPERATING MODES OF A FREQUENCY-MODULATION AUTODYNE IN VIEW OF MODULATION CHARACTERISTIC NONLINEARITY
title_full SIGNAL FORMATION AND PROCESSING FEATURES FROM AUTODYNE RADAR WITH A WIDE FREQUENCY MODULATION BAND. РART. 1. MODELING OF OPERATING MODES OF A FREQUENCY-MODULATION AUTODYNE IN VIEW OF MODULATION CHARACTERISTIC NONLINEARITY
title_fullStr SIGNAL FORMATION AND PROCESSING FEATURES FROM AUTODYNE RADAR WITH A WIDE FREQUENCY MODULATION BAND. РART. 1. MODELING OF OPERATING MODES OF A FREQUENCY-MODULATION AUTODYNE IN VIEW OF MODULATION CHARACTERISTIC NONLINEARITY
title_full_unstemmed SIGNAL FORMATION AND PROCESSING FEATURES FROM AUTODYNE RADAR WITH A WIDE FREQUENCY MODULATION BAND. РART. 1. MODELING OF OPERATING MODES OF A FREQUENCY-MODULATION AUTODYNE IN VIEW OF MODULATION CHARACTERISTIC NONLINEARITY
title_sort signal formation and processing features from autodyne radar with a wide frequency modulation band. рart. 1. modeling of operating modes of a frequency-modulation autodyne in view of modulation characteristic nonlinearity
title_alt SIGNAL FORMATION AND PROCESSING FEATURES FROM AUTODYNE RADAR WITH A WIDE FREQUENCY MODULATION BAND. РART. 1. MODELING OF OPERATING MODES OF A FREQUENCY-MODULATION AUTODYNE IN VIEW OF MODULATION CHARACTERISTIC NONLINEARITY
ОСОБЛИВОСТІ ФОРМУВАННЯ ТА ОБРОБКИ СИГНАЛІВ АВТОДИННОГО РАДІОЛОКАТОРА З ШИРОКОЮ СМУГОЮ МОДУЛЯЦІЇ ЧАСТОТИ Ча с ти на 1. Моделювання режимів роботи автодина з частотною модуляцією з урахуванням нелінійності модуляційної характеристики
description Subject and Purpose. In Part 1 of the paper, a mathematical model of an autodyne self-oscillator with frequency tuning by varactor capacitance varying is built and thoroughly analyzed for the features of signal formation in autodyne radar with a wide frequency-modulation bandwidth and a nonlinearity in the modulation characteristic. The aim of the study is to appreciate the action that the nonlinearity of the oscillator modulation characteristic exerts on the spectral characteristics of signals from frequency-modulation autodyne radar.Methods and Methodology. The research method is a mathematical analysis of the operation of an autodyne oscillator with electronic frequency tuning. To examine formation processes of emitted autodyne signals, the spectral, frequency and amplitude characteristics of signals from frequency-modulation autodyne radar are constructed with the use of numerical modeling techniques.Results. Numerical modeling of autodyne response signal spectra has been performed for various distances to the reflecting object and different modulating voltages across the varactor. It has been shown that a nonlinear dependence of the generator frequency onthe varactor voltage makes for the broadening of the autodyne response signal spectrum. It has been found that as the object distance increases, the frequency of the autodyne response signal moves towards the higher frequencies, while the nonlinearity makes thespectrum broaden. Th e obtained calculation results refer to an 8-mm Gunn diode autodyne.Conclusion. The performed research of the spectral characteristics and into the features of signal formation in autodyne transceiver devices with a wide frequency tuning has shown that in order to achieve high resolution figures from autodyne radar, certain methods are needed to be developed for adjusting the laws of frequency modulation and for the processing of response signals from reflecting objects. Such a method and ways to solve these problems will be presented in Part 2 of the work.Keywords: autodyne, autodyne signal, frequency modulation, modulation characteristic nonlinearity, short-range radar, Gunn-diode oscillator, varactorManuscript submitted 15.12.2021Radio phys. radio astron. 2022, 27(1): 053-063REFERENCES1. Usanov, D.A., Skripal, Al.V., Skripal, An.V., Postelga, A.E., 2004. A microwave autodyne meter of vibration parameters. Instruments and Experimental Techniques, 47(5), pp. 689-693. DOI: https://doi.org/10.1023/B:INET.0000043882.16801.3a2. Alidoost, S.A., Sadeghzade, R., Fatemi, R., 2010. Autodyne system with a single antenna. In: 11th Intern. Radar Symposium (IRS-2010). Lithuania, Vilnius. 2, pp. 406—409.3. Usanov, D.A., Postelga, A.E., 2011. Reconstruction of complicated movement of part of the human body using radio wave autodyne signal. Biomedical Engineering, 45(1), pp. 6-8. DOI: https://doi.org/10.1007/s10527-011-9198-94. Mirsaitov, F.N., Safonova, E.V., Boloznev, V.V., 2014. Microwave autodyne vibrosensor in aeroengine diagnostics. In: European Frequency and Time Forum (EFTF), Neuchatel, June 23-26, 2014. Neuchatel, 2014. P. 140-143. DOI: https://doi.org/10.1109/EFTF.2014.73314475. Kim, S; Kim, B.-H., Yook, J.-G., Yun, G.-H., 2016. Proximity vital sign sensor using self-oscillating mixer. In: URSI Asia-Pacifi c Radio Science Conference (URSI AP-RASC), Seoul, Aug. 21-25, 2016. Seoul, 2016. P. 1446-1448. DOI: https://doi.org/10.1109/URSIAP-RASC.2016.76014026. Noskov, V.Ya., Ignatkov, K.A., Chupahin, A.P., 2016. Application of Two-Diode Autodynes in Devices for Radiowave Control of Product Dimensions. Measurement Techniques, 59(7), pp. 715-721. DOI: https://doi.org/10.1007/s11018-016-1035-97. Efanov, A.A., Diskus, C.G., Stelzer, A., Th im, H.W., Lubke, K., Springer, A.L., 1997. Development of a low-cost 35 GHz radar sensor. Annals of Telecommunications, 52(3), pp. 219-223. DOI: https://doi.org/10.1007/BF029960478. Votoropin, S.D., Noskov, V.Ya., Smolskiy, S.M., 2009. Modern Hybrid-Integrated Autodyne Oscillators of Microwave and Millimeter Wave Ranges and Their Application. Pt. 5. Frequency Modulated Autodyne Studies. Successes of modern electronicengineering, 3, pp. 3—50 (in Russian).9. Noskov, V.Ya., Smolskiy, S.M., 2009. Modern Hybrid-Integrated Autodyne Oscillators of Microwave and Millimeter Wave Ranges and Their Application. Pt. 6. Investigations of radio pulse autodyne. Successes of modern electronic engineering, 6,pp. 3—51 (in Russian).10. Noskov, V.Ya., Varavin, A.V., Vasiliev, A.S., Ermak, G.P., Zakarlyuk, N.M., Ignatkov, K.A., Smolskiy, S.M., 2016. Modern Hybrid-Integrated Autodyne Oscillators of Microwave and Millimeter Wave Ranges and Their Application. Pt. 9. Autodyne RadarApplications. Successes of modern electronic engineering, 3, pp. 32—86 (in Russian).11. Votoropin, S.D., Noskov, V.Ya., Smolskiy, S.M., 2007. Modern Hybrid-Integrated Autodyne Oscillators of Microwave and Millimeter Wave Ranges and Their Application. Pt. 2. Theoretical and experimental research. Successes of modern electronicengineering, 3, pp. 3—33 (in Russian).12. Kurokawa, K., 1973. Injection locking of microwave solid-state oscillators. Proceedings of the IEEE, 61(10), pp. 1386-1410. DOI: https://doi.org/10.1109/PROC.1973.929313. Bogolyubov, N.N., Mitropol’skii, Yu.A., 1963. Asymptotic methods in the theory of nonlinear oscillations. 3rd ed. Moscow: Fizmatlit Publ. (in Russian).14. Andreev, V.S., 1972. Theory of nonlinear electrical circuits. Moscow: Svyaz’ Publ. (in Russian).15. Landa, P.S., 1980. Self-oscillations in systems with a finite number of degrees of freedom. Moscow: Nauka Publ. (in Russian).16. Artym, А.D., 1961. Theory and methods of frequency modulation. Moscow–Leningrad: Gosenergoizdat Publ. (in Russian).17. Noskov, V.Y., Ignatkov, K.A., Chupahin, A.P., Vasiliev, A.V., Ermak, G.P., Smolskiy, S.M., 2016. Peculiarities of signal formation of the autodyne short-range radar with linear frequency modulation. Visn. NTUU KPI, Ser. Radioteh. radioaparatobuduv., 67, pp. 50-57. DOI: https://doi.org/10.20535/RADAP.2016.67.50-5718. Varavin, A.V., Ermak, G.P., Vasilev, A.S., Popov, I.V., 2010. Autodyne Gunn-diode transceiver with internal signal detection for short-range linear FM radar sensor. Telecommunication and Radio Engineering, 69(5), pp. 451-458. DOI: https://doi.org/10.1615/TelecomRadEng.v69.i5.8019. Ermak, G.P., Vasilev, A.S., Varavin, A.V., Popov, I.V., Noskov, V.Ya., Ignatkov, K.A., 2012. Radar Sensors for Hump Yard and Rail Crossing Applications. Telecommunications and Radio Engineering, 71(6), pp. 567-580. DOI: https://doi.org/10.1615/TelecomRadEng.v71.i6.8020. Noskov, V.Ya., Ignatkov, K.A., Chupahin, A.P., Vasiliev, A.S., Ermak, G.P., Smolskiy, S.M., 2016. Signals of Autodyne Radars with Frequency Modulation According to Symmetric Saw-Tooth Law. Telecommunication and Radio Engineering, 75(17), pp. 1551-1566. DOI: 10.1615/TelecomRadEng.v75.i17.40. DOI: https://doi.org/10.1615/TelecomRadEng.v75.i17.4021. Noskov, V.Y., Ignatkov, K.A., Chupahin, A.P., Vasiliev, A.V., Ermak, G P., Smolskiy, S.M., 2016. Peculiarities of signal formation of the autodyne short-range radar with linear frequency modulation. Visn. NTUU KPI, Ser. Radioteh. radioaparatobuduv., 67, pp. 50-57. DOI: https://doi.org/10.20535/RADAP.2016.67.50-5722. Noskov, V.Ya., Vasiliev, A.S., Ermak, G.P., Ignatkov, K.A., Chupahin, A.P., 2017. Fluctuation Features of Autodyne Radar with Frequency Modulation. Radioelectronics and Communications Systems, 60(3), pp. 123-131. DOI: https://doi.org/10.3103/S0735272717030049
publisher Видавничий дім «Академперіодика»
publishDate 2023
url http://rpra-journal.org.ua/index.php/ra/article/view/1379
work_keys_str_mv AT ermakgp signalformationandprocessingfeaturesfromautodyneradarwithawidefrequencymodulationbandrart1modelingofoperatingmodesofafrequencymodulationautodyneinviewofmodulationcharacteristicnonlinearity
AT vasilevas signalformationandprocessingfeaturesfromautodyneradarwithawidefrequencymodulationbandrart1modelingofoperatingmodesofafrequencymodulationautodyneinviewofmodulationcharacteristicnonlinearity
AT varavinav signalformationandprocessingfeaturesfromautodyneradarwithawidefrequencymodulationbandrart1modelingofoperatingmodesofafrequencymodulationautodyneinviewofmodulationcharacteristicnonlinearity
AT balabanmv signalformationandprocessingfeaturesfromautodyneradarwithawidefrequencymodulationbandrart1modelingofoperatingmodesofafrequencymodulationautodyneinviewofmodulationcharacteristicnonlinearity
AT fateevav signalformationandprocessingfeaturesfromautodyneradarwithawidefrequencymodulationbandrart1modelingofoperatingmodesofafrequencymodulationautodyneinviewofmodulationcharacteristicnonlinearity
AT zheltovvn signalformationandprocessingfeaturesfromautodyneradarwithawidefrequencymodulationbandrart1modelingofoperatingmodesofafrequencymodulationautodyneinviewofmodulationcharacteristicnonlinearity
AT ermakgp osoblivostíformuvannâtaobrobkisignalívavtodinnogoradíolokatorazširokoûsmugoûmodulâcííčastotičastina1modelûvannârežimívrobotiavtodinazčastotnoûmodulâcíêûzurahuvannâmnelíníjnostímodulâcíjnoíharakteristiki
AT vasilevas osoblivostíformuvannâtaobrobkisignalívavtodinnogoradíolokatorazširokoûsmugoûmodulâcííčastotičastina1modelûvannârežimívrobotiavtodinazčastotnoûmodulâcíêûzurahuvannâmnelíníjnostímodulâcíjnoíharakteristiki
AT varavinav osoblivostíformuvannâtaobrobkisignalívavtodinnogoradíolokatorazširokoûsmugoûmodulâcííčastotičastina1modelûvannârežimívrobotiavtodinazčastotnoûmodulâcíêûzurahuvannâmnelíníjnostímodulâcíjnoíharakteristiki
AT balabanmv osoblivostíformuvannâtaobrobkisignalívavtodinnogoradíolokatorazširokoûsmugoûmodulâcííčastotičastina1modelûvannârežimívrobotiavtodinazčastotnoûmodulâcíêûzurahuvannâmnelíníjnostímodulâcíjnoíharakteristiki
AT fateevav osoblivostíformuvannâtaobrobkisignalívavtodinnogoradíolokatorazširokoûsmugoûmodulâcííčastotičastina1modelûvannârežimívrobotiavtodinazčastotnoûmodulâcíêûzurahuvannâmnelíníjnostímodulâcíjnoíharakteristiki
AT zheltovvn osoblivostíformuvannâtaobrobkisignalívavtodinnogoradíolokatorazširokoûsmugoûmodulâcííčastotičastina1modelûvannârežimívrobotiavtodinazčastotnoûmodulâcíêûzurahuvannâmnelíníjnostímodulâcíjnoíharakteristiki
first_indexed 2024-05-26T06:28:46Z
last_indexed 2024-05-26T06:28:46Z
_version_ 1802895107350855680
spelling oai:ri.kharkov.ua:article-13792023-06-20T14:13:38Z SIGNAL FORMATION AND PROCESSING FEATURES FROM AUTODYNE RADAR WITH A WIDE FREQUENCY MODULATION BAND. РART. 1. MODELING OF OPERATING MODES OF A FREQUENCY-MODULATION AUTODYNE IN VIEW OF MODULATION CHARACTERISTIC NONLINEARITY SIGNAL FORMATION AND PROCESSING FEATURES FROM AUTODYNE RADAR WITH A WIDE FREQUENCY MODULATION BAND. РART. 1. MODELING OF OPERATING MODES OF A FREQUENCY-MODULATION AUTODYNE IN VIEW OF MODULATION CHARACTERISTIC NONLINEARITY ОСОБЛИВОСТІ ФОРМУВАННЯ ТА ОБРОБКИ СИГНАЛІВ АВТОДИННОГО РАДІОЛОКАТОРА З ШИРОКОЮ СМУГОЮ МОДУЛЯЦІЇ ЧАСТОТИ Ча с ти на 1. Моделювання режимів роботи автодина з частотною модуляцією з урахуванням нелінійності модуляційної характеристики Ermak, G. P. Vasilev, A. S. Varavin, A. V. Balaban, M. V. Fateev, A. V. Zheltov, V. N. Subject and Purpose. In Part 1 of the paper, a mathematical model of an autodyne self-oscillator with frequency tuning by varactor capacitance varying is built and thoroughly analyzed for the features of signal formation in autodyne radar with a wide frequency-modulation bandwidth and a nonlinearity in the modulation characteristic. The aim of the study is to appreciate the action that the nonlinearity of the oscillator modulation characteristic exerts on the spectral characteristics of signals from frequency-modulation autodyne radar.Methods and Methodology. The research method is a mathematical analysis of the operation of an autodyne oscillator with electronic frequency tuning. To examine formation processes of emitted autodyne signals, the spectral, frequency and amplitude characteristics of signals from frequency-modulation autodyne radar are constructed with the use of numerical modeling techniques.Results. Numerical modeling of autodyne response signal spectra has been performed for various distances to the reflecting object and different modulating voltages across the varactor. It has been shown that a nonlinear dependence of the generator frequency onthe varactor voltage makes for the broadening of the autodyne response signal spectrum. It has been found that as the object distance increases, the frequency of the autodyne response signal moves towards the higher frequencies, while the nonlinearity makes thespectrum broaden. Th e obtained calculation results refer to an 8-mm Gunn diode autodyne.Conclusion. The performed research of the spectral characteristics and into the features of signal formation in autodyne transceiver devices with a wide frequency tuning has shown that in order to achieve high resolution figures from autodyne radar, certain methods are needed to be developed for adjusting the laws of frequency modulation and for the processing of response signals from reflecting objects. Such a method and ways to solve these problems will be presented in Part 2 of the work.Keywords: autodyne, autodyne signal, frequency modulation, modulation characteristic nonlinearity, short-range radar, Gunn-diode oscillator, varactorManuscript submitted 15.12.2021Radio phys. radio astron. 2022, 27(1): 053-063REFERENCES1. Usanov, D.A., Skripal, Al.V., Skripal, An.V., Postelga, A.E., 2004. A microwave autodyne meter of vibration parameters. Instruments and Experimental Techniques, 47(5), pp. 689-693. DOI: https://doi.org/10.1023/B:INET.0000043882.16801.3a2. Alidoost, S.A., Sadeghzade, R., Fatemi, R., 2010. Autodyne system with a single antenna. In: 11th Intern. Radar Symposium (IRS-2010). Lithuania, Vilnius. 2, pp. 406—409.3. Usanov, D.A., Postelga, A.E., 2011. Reconstruction of complicated movement of part of the human body using radio wave autodyne signal. Biomedical Engineering, 45(1), pp. 6-8. DOI: https://doi.org/10.1007/s10527-011-9198-94. Mirsaitov, F.N., Safonova, E.V., Boloznev, V.V., 2014. Microwave autodyne vibrosensor in aeroengine diagnostics. In: European Frequency and Time Forum (EFTF), Neuchatel, June 23-26, 2014. Neuchatel, 2014. P. 140-143. DOI: https://doi.org/10.1109/EFTF.2014.73314475. Kim, S; Kim, B.-H., Yook, J.-G., Yun, G.-H., 2016. Proximity vital sign sensor using self-oscillating mixer. In: URSI Asia-Pacifi c Radio Science Conference (URSI AP-RASC), Seoul, Aug. 21-25, 2016. Seoul, 2016. P. 1446-1448. DOI: https://doi.org/10.1109/URSIAP-RASC.2016.76014026. Noskov, V.Ya., Ignatkov, K.A., Chupahin, A.P., 2016. Application of Two-Diode Autodynes in Devices for Radiowave Control of Product Dimensions. Measurement Techniques, 59(7), pp. 715-721. DOI: https://doi.org/10.1007/s11018-016-1035-97. Efanov, A.A., Diskus, C.G., Stelzer, A., Th im, H.W., Lubke, K., Springer, A.L., 1997. Development of a low-cost 35 GHz radar sensor. Annals of Telecommunications, 52(3), pp. 219-223. DOI: https://doi.org/10.1007/BF029960478. Votoropin, S.D., Noskov, V.Ya., Smolskiy, S.M., 2009. Modern Hybrid-Integrated Autodyne Oscillators of Microwave and Millimeter Wave Ranges and Their Application. Pt. 5. Frequency Modulated Autodyne Studies. Successes of modern electronicengineering, 3, pp. 3—50 (in Russian).9. Noskov, V.Ya., Smolskiy, S.M., 2009. Modern Hybrid-Integrated Autodyne Oscillators of Microwave and Millimeter Wave Ranges and Their Application. Pt. 6. Investigations of radio pulse autodyne. Successes of modern electronic engineering, 6,pp. 3—51 (in Russian).10. Noskov, V.Ya., Varavin, A.V., Vasiliev, A.S., Ermak, G.P., Zakarlyuk, N.M., Ignatkov, K.A., Smolskiy, S.M., 2016. Modern Hybrid-Integrated Autodyne Oscillators of Microwave and Millimeter Wave Ranges and Their Application. Pt. 9. Autodyne RadarApplications. Successes of modern electronic engineering, 3, pp. 32—86 (in Russian).11. Votoropin, S.D., Noskov, V.Ya., Smolskiy, S.M., 2007. Modern Hybrid-Integrated Autodyne Oscillators of Microwave and Millimeter Wave Ranges and Their Application. Pt. 2. Theoretical and experimental research. Successes of modern electronicengineering, 3, pp. 3—33 (in Russian).12. Kurokawa, K., 1973. Injection locking of microwave solid-state oscillators. Proceedings of the IEEE, 61(10), pp. 1386-1410. DOI: https://doi.org/10.1109/PROC.1973.929313. Bogolyubov, N.N., Mitropol’skii, Yu.A., 1963. Asymptotic methods in the theory of nonlinear oscillations. 3rd ed. Moscow: Fizmatlit Publ. (in Russian).14. Andreev, V.S., 1972. Theory of nonlinear electrical circuits. Moscow: Svyaz’ Publ. (in Russian).15. Landa, P.S., 1980. Self-oscillations in systems with a finite number of degrees of freedom. Moscow: Nauka Publ. (in Russian).16. Artym, А.D., 1961. Theory and methods of frequency modulation. Moscow–Leningrad: Gosenergoizdat Publ. (in Russian).17. Noskov, V.Y., Ignatkov, K.A., Chupahin, A.P., Vasiliev, A.V., Ermak, G.P., Smolskiy, S.M., 2016. Peculiarities of signal formation of the autodyne short-range radar with linear frequency modulation. Visn. NTUU KPI, Ser. Radioteh. radioaparatobuduv., 67, pp. 50-57. DOI: https://doi.org/10.20535/RADAP.2016.67.50-5718. Varavin, A.V., Ermak, G.P., Vasilev, A.S., Popov, I.V., 2010. Autodyne Gunn-diode transceiver with internal signal detection for short-range linear FM radar sensor. Telecommunication and Radio Engineering, 69(5), pp. 451-458. DOI: https://doi.org/10.1615/TelecomRadEng.v69.i5.8019. Ermak, G.P., Vasilev, A.S., Varavin, A.V., Popov, I.V., Noskov, V.Ya., Ignatkov, K.A., 2012. Radar Sensors for Hump Yard and Rail Crossing Applications. Telecommunications and Radio Engineering, 71(6), pp. 567-580. DOI: https://doi.org/10.1615/TelecomRadEng.v71.i6.8020. Noskov, V.Ya., Ignatkov, K.A., Chupahin, A.P., Vasiliev, A.S., Ermak, G.P., Smolskiy, S.M., 2016. Signals of Autodyne Radars with Frequency Modulation According to Symmetric Saw-Tooth Law. Telecommunication and Radio Engineering, 75(17), pp. 1551-1566. DOI: 10.1615/TelecomRadEng.v75.i17.40. DOI: https://doi.org/10.1615/TelecomRadEng.v75.i17.4021. Noskov, V.Y., Ignatkov, K.A., Chupahin, A.P., Vasiliev, A.V., Ermak, G P., Smolskiy, S.M., 2016. Peculiarities of signal formation of the autodyne short-range radar with linear frequency modulation. Visn. NTUU KPI, Ser. Radioteh. radioaparatobuduv., 67, pp. 50-57. DOI: https://doi.org/10.20535/RADAP.2016.67.50-5722. Noskov, V.Ya., Vasiliev, A.S., Ermak, G.P., Ignatkov, K.A., Chupahin, A.P., 2017. Fluctuation Features of Autodyne Radar with Frequency Modulation. Radioelectronics and Communications Systems, 60(3), pp. 123-131. DOI: https://doi.org/10.3103/S0735272717030049 Предмет та мета роботи. У першій частині роботи на основі математичної моделі автодинного автогенератора з одноконтурною коливальною системою, що перестроюється за частотою зміною ємності варактора, проведений аналіз особ-ливостей формування сигналів у автодинному радіолокаторі з широкою смугою частотної модуляції за наявності нелінійності модуляційної характеристики.Методи та методологія роботи. Метод досліджень — математичний аналіз роботи автодинного автогенератора з електронним перестроюванням частоти. Для аналізу процесів формування випромінюваних автодинних сигналів використовувалися методи чисельного моделювання спектральних, частотних та амплітудних характеристик автодинного радіолокатора з частотною модуляцією.Результати роботи. Проведено чисельне моделювання спектрів сигналів автодинного відгуку для різних відстаней до об’єкта, що відбиває, і амплітуд модулюючої напруги на варакторі. Показано, що за нелінійного характеру залежності частоти генератора від напруги на варакторі спостерігається розширення спектра сигналу автодинного відгука. Виявлено, що збільшення відстані до об’єкта приводитиме до зміщення частоти сигналу автодинного відгуку у бік більш високих частот. Результати розрахунків отримані для автодина, виконаного на діоді Ганна 8-мм діапазону.Висновок. Аналіз результатів досліджень особливостей формування сигналів і спектральних характеристик у автодинних приймально-передавальних пристроях з широким перестроюванням частоти показав, що для досягнення високих значень роздільної здатності автодинних локаторів необхідно розробляти методи корекції законів частотної модуляції та обробки сигналів відгуку від об’єктів локації. Методи та способи вирішення цих завдань будуть відображені у другійчастині роботи.Ключові слова: автодин, автодинний сигнал, частотна модуляція, нелінійність модуляційної характеристики, система ближньої радіолокації, генератор на діоді Ганна, варакторСтаття надійшла до редакції 24.05.2021Radio phys. radio astron. 2022, 27(1): 053-063БІБЛІОГРАФІЧНИЙ СПИСОК1. Usanov D.A., Skripal Al.V., Skripal An.V., Postelga A.E. A microwave autodyne meter of vibration parameters. Instruments and Experimental Techniques. 2004. Vol. 47, Iss. 5. P. 689—693. DOI: https://doi.org/10.1023/B:INET.0000043882.16801.3a.2. Alidoost S.A., Sadeghzade R., Fatemi R. Autodyne system with a single antenna. 11th Intern. Radar Symposium (IRS-2010). Lithuania, Vilnius. 2010. Vol. 2. P. 406—409.3. Usanov D.A., Postelga A.E. Reconstruction of complicated movement of part of the human body using radio wave autodyne signal. Biomedical Engineering. 2011. Vol. 45, Iss. 1. P. 6—8. DOI:  10.1007/s10527-011-9198-9.4. Mirsaitov F.N., Safonova E.V., Boloznev V.V. Microwave autodyne vibrosensor in aeroengine diagnostics. European Frequency and Time Forum (EFTF) (Neuchatel, June 23—26, 2014). Neuchatel, 2014. P. 140—143. DOI: 10.1109/EFTF.2014.7331447.5. Kim S., Kim B.-H., Yook J.-G., Yun G.-H. Proximity vital sign sensor using self-oscillating mixer. URSI Asia-Pacific Radio Science Conference (URSI AP-RASC) (Seoul, Aug. 21—25, 2016). Seoul, 2016. P. 1446—1448.6. Носков В.Я., Игнатков К.А., Чупахин А.П. Применение двухдиодных автодинов в устройствах радиоволнового контроля размеров изделий. Измерительная техника. 2016. No 7. С. 24—28.7. Efanov A.A., Diskus C.G., Stelzer A., Thim H.W., Lubke K., Springer A.L. Development of a low-cost 35 GHz radar sensor. Annals of Telecommunications. 1997. Vol. 52. Iss. 3. P. 219—223. DOI: 10.1007/BF02996047.8. Воторопин С.Д., Носков В.Я., Смольский С.М. Современные гибридно-интегральные автодинные генераторы микроволнового и миллиметрового диапазонов и их применение. Ч. 5. Исследования автодинов с частотной модуляцией. Успехи современной радиоэлектроники. 2009. No 3. P. 3—50.9. Носков В.Я., Смольский С.М. Современные гибридно-интегральные автодинные генераторы микроволнового и миллиметрового диапазонов и их применение. Ч. 6. Исследования радиоимпульсных автодинов. Успехи современной радиоэлектроники. 2009. No 6. P. 3—51.10. Носков В.Я., Варавин А.В., Васильев А.C., Ермак Г.П., Закарлюк Н.М., Игнатков К.А., Смольский С.М. Современные гибридно-интегральные автодинные генераторы микроволнового и миллиметрового диапазонов и их применение. Ч. 9. Радиолокационное применение автодинов. Успехи современной радиоэлектроники. 2016. No 3. P. 32—86.11. Воторопин С.Д., Носков В.Я., Смольский С.М. Современные гибридно-интегральные автодинные генераторы микроволнового и миллиметрового диапазонов и их применение. Ч. 2. Теоретические и экспериментальные исследования. Успехи современной радиоэлектроники. 2007. No 3. P. 3—33.12. Kurokawa K. Injection locking of microwave solid-state oscillators. Proceedings of the IEEE. 1973. Vol. 61, Iss. 10. P. 1386—1410.13. Боголюбов Н.Н., Митропольский Ю.А. Асимптотические методы в теории нелинейных колебаний. Изд. 3, исп. и доп. Москва: Физматлит, 1963. 412 с.14. Андреев В.С. Теория нелинейных электрических цепей. Москва: Связь, 1972. 328 с.15. Ланда П.С. Автоколебания в системах с конечным числом степеней свободы. Москва: Наука, 1980. 324 с.16. Артым А.Д. Теория и методы частотной модуляции. Москва–Ленинград: Госэнергоиздат, 1961. 244 с.17. Noskov, V.Y., Ignatkov, K.A., Chupahin, A.P., Vasiliev, A.V., Ermak, G.P., Smolskiy, S.M. Peculiarities of signal formation of the autodyne short-range radar with linear frequency modulation. Visn. NTUU KPI, Ser. Radioteh. radioaparatobuduv. 2016. Iss. 67. P. 50—57. DOI: https://doi.org/10.20535/RADAP.2016.67.50-57.18. Varavin A.V., Ermak G.P., Vasilev A.S., Popov I.V. Autodyne Gunn-diode transceiver with internal signal detection for shortrange linear FM radar sensor Telecommunication and Radio Engineering. 2010. Vol. 69, Iss. 5. P. 451—458. DOI: 10.1615/TelecomRadEng.v69.i5.80.19. Ermak G.P., Vasilev A.S., Varavin A.V., Popov I.V., Noskov V.Ya., Ignatkov K.A. Radar Sensors for Hump Yard and Rail Crossing Applications. Telecommunications and Radio Engineering. 2012. Vol. 71, Iss. 6. P. 567—80.20. Noskov V.Ya., Ignatkov K.A., Chupahin A.P., Vasiliev A.S., Ermak G.P., Smolskiy S.M. Signals of Autodyne Radars with Frequency Modulation According to Symmetric Saw-Tooth Law. Telecommunication and Radio Engineering. 2016. Vol. 75, Iss. 17. P. 1551—1566. DOI: 10.1615/TelecomRadEng.v75.i17.40.21. Noskov, V.Y., Ignatkov, K.A., Chupahin, A.P., Vasiliev, A.V., Ermak, G.P., Smolskiy, S.M. () Peculiarities of signal formation of the autodyne short-range radar with linear frequency modulation. Visn. NTUU KPI, Ser. Radioteh. radioaparatobuduv. 2016. Iss. 67. P. 50—57. DOI: https://doi.org/10.20535/RADAP.2016.67.50-57.22. Носков В.Я., Васильев А.С., Ермак Г.П., Игнатков К.А., Чупахин А.П. Флуктуационные характеристики автодинных радиолокаторов с частотной модуляцией. Изв. вузов. Радиоэлектроника. 2017. Т. 60. No 3. С. 154—165. Видавничий дім «Академперіодика» 2023-06-13 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1379 10.15407/rpra27.01.053 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 27, No 1 (2022); 53 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 27, No 1 (2022); 53 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 27, No 1 (2022); 53 2415-7007 1027-9636 10.15407/rpra27.01 uk http://rpra-journal.org.ua/index.php/ra/article/view/1379/pdf Copyright (c) 2022 RADIO PHYSICS AND RADIO ASTRONOMY