RESONANCE PROPERTIES OF AN X-BAND RECTANGULAR WAVEGUIDE SECTION WITH AN INHOMOGENEOUS DIELECTRIC INSET
Subject and Purpose. In modern dielectrometry, the problem of detecting foreign inclusions in a radio-transparent material, which are signifi cantly smaller than the operational wavelength, remains very important. The problem becomes even more complicated if it is required to determine complex permi...
Збережено в:
Дата: | 2023 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Видавничий дім «Академперіодика»
2023
|
Теми: | |
Онлайн доступ: | http://rpra-journal.org.ua/index.php/ra/article/view/1387 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Radio physics and radio astronomy |
Репозитарії
Radio physics and radio astronomyРезюме: | Subject and Purpose. In modern dielectrometry, the problem of detecting foreign inclusions in a radio-transparent material, which are signifi cantly smaller than the operational wavelength, remains very important. The problem becomes even more complicated if it is required to determine complex permittivityof these inclusions. This work analyzes the conditions for the correct use of the original resonance method proposed by the authors earlier for determining permittivity of a local inclusion when its dimensions and dielectric constant change.Methods and Methodology. The measured module consists of a rectangular X-band waveguide, which is partially filled with a dielectric in the form of a rectangular Teflon matrix with a local cubic inclusion inside. The dimensions of the matrix are fixed and are 23 mm × 10 mm × 30 mm. Numerical modeling is performed using the Ansys HFSS software package. Th e dependences of the resonance frequencies of the module upon changing the dielectric constant of the cube are analyzed. The cube permittivity was changed between 3.8 and 100 in 5-unit steps. Permittivity of the material of the cube is determined by comparing arrays of calculated data with experimental results.Results. Numerical modeling of the module was performed and its electrodynamic properties were determined in the frequency band of 8...10 GHz at different sizes and permittivity of the inclusion. For a cube with a facet size of 2 mm, the resonance frequency decreases with an permittivity increase of the material. For a cube with a facet size of 3 mm and permittivity above 50, additional resonances appear in the structure due to the excitation of resonant modes of the cube itself.Conclusion. It has been shown that by varying the dielectric permittivity of the cubic inset between 3.8 and 100 it proves possible to provide for resonant mode excitation over the frequency range specified. This allows estimating the dielectric permittivity of the cubic inset’s material by way of comparing the calculated versus measured data arrays concerning resonant frequency dependences upon material parameters.Keywords: rectangular waveguide section, teflon matrix, local inclusion, resonance, permittivityREFERENCES1. Gragnani, G.L., 2010. Shape reconstruction of 2-D dielectric objects by an analytical method. Int’l. J. Signal and Imaging Syst. Eng., 3(2), pp. 81—92. DOI: 10.1504/IJSISE.2010.0349972. Smirnov, A.P., Semenov, A.N., and Shestopalov, Y.V., 2013. FDTD Simulation of Waveguide with Non-uniform Dielectric Slab. In: PIERS 2013 STOCKHOLM. Progress in Electromagnetics Research Symposium. Stockholm, Sweden, 12—15 Aug. 2013, pp. 76—83.3. Smirnov, A.P., Sheina, E.A., Shestopalov, Y.V. and Semenov, A.N., 2015. Numerical simulation of a nonuniform dielectric inclusion in a waveguide aimed at reconstructing its permittivity. In: 2015 Int. Conf. Electromagnetics in Advanced Applications (ICEAA). Torino, Italy, 7—11 Sept. 2015, pp. 419—421. DOI: 10.1109/ICEAA.2015.72971474. Sheina, E.A., Smirnov, A.P. and Shestopalov, Y.V., 2016. Influence of standing waves on the solution of the inverse problem of reconstructing parameters of a dielectric inclusion in a waveguide. In: 2016 URSI Int. Symp. Electromagnetic Theory (EMTS). Espoo, Finland, 14—18 Aug. 2016, pp. 643—646. DOI: 10.1109/URSI-EMTS.2016.75714795. Ivanchenko, I., Khruslov, M., Popenko, N., Sheina, E., Smirnov, A. and Shestopalov,Y., 2016. Reconstructing complex permittivity of local inhomogeneites in a radio-transparent dielectric matrix located in a waveguide. In: 2016 22nd Int. Conf. Applied Electromagnetics and Communications (ICECOM). Dubrovnik, Croatia, 19—21 Sept. 2016, pp. 1—3. DOI: 10.1109/ICECom.2016.78438826. Carter, R.G., 2001. Accuracy of microwave cavity perturbation measurements. IEEE Trans. Microwave Theory Tech., 49(5), pp. 918—923. DOI: 10.1109/22.920149.7. Sheen, J., 2005. Study of microwave dielectric properties measurements by various resonance techniques. Measurement, 37(2), pp. 123—130. DOI: 10.1016/j.measurement.2004.11.006.8. Kumar, A., Sharma, S. and Singh, G., 2007. Measurement of Dielectric Constant and Loss Factor of the Dielectric Material at Microwave Frequencies. Prog. Electromagn. Res. (PIER), 69, pp. 47—54. DOI: 10.2528/PIER06111204.9. Balmus, S.-B., Pascariu, G.-N., Creanga, F., Dumitru, I. and Sandu, D.D., 2006. The cavity perturbation method for the measurement of the relative dielectric permittivity in the microwave range. J. Optoelectron. Adv. Mater., 8(3), pp. 971—977.10. Sheen, J., 2007. Amendment of cavity perturbation technique for loss tangent measurement at microwave frequencies. J. Appl. Phys., 102(1), id. 014102. DOI: 10.1063/1.2751484.11. Robinson, M.P., Fitton, L.C., Little, A., Cobb, S.N. and Ashby, S.P., 2019. Dielectric replica measurement: a new technique for obtaining the complex permittivity of irregularly shaped objects. Meas. Sci. Technol., 30(4), id. 045902. DOI: 10.1088/1361-6501/ab0466.12. Dube, D.C., Lanagan, M.T., Kim, J.H. and Jang, S.J., 1988. Dielectric measurement on substrate materials at microwave frequencies using a cavity perturbation technique. J. Appl. Phys., 63(7), pp. 2466—2468. DOI: 10.1063/1.34102413. Sheen, J., 2005. Study of microwave dielectric properties measurements by various resonance techniques. Measurement, 37(2), pp. 123—130. DOI: 10.1016/j.measurement.2004.11.006.14. Hakki, B.W. and Coleman, P.D., 1960. A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range. IEEE Trans. Microwave Theory Tech., 8(4), pp. 402—410. DOI:10.1109/TMTT.1960.112474915. Banerjee, P., Ghosh, G. and Biswas, S.K., 2010. Measurement of dielectric properties of medium loss samples at X-band frequencies. J. Optoelectron. Adv. Mater., 12(6), pp. 1367—1371.16. Ivanchenko, I., Khruslov, M., Popenko, N., Plakhtii, V., Rönnow, D. and Shestopalov, Y., 2020. A novel resonance method for determining the complex permittivity of local inclusions in a rectangular waveguide. Meas. Sci. Technol., 31(9), id. 097001. DOI:10.1088/1361-6501/ab870f17. Ivanchenko, I., Popenko, N., Khruslov, M. and Plakhtii, V., 2020 Numerical Smulations of the X-band Waveguide Partially Filled with a Dielectric with Local Iinhomogeneity Inside. In: 2020 IEEE Ukrainian Microwave Week (UkrMW). Kharkiv, Ukraine, 21—25 Sept. 2020, pp. 688—691. DOI: 10.1109/UkrMW49653.2020.9252647 |
---|