METHODS OF RADIO FREQUENCY INTERFERENCE MITIGATION ON THE STAGE OF PRELIMINARY PROCESSING OF RECEIVED SIGNALS

Subject and Purpose. Methods for computer processing of radio astronomical signals observed with space objects at low frequencies are given. The aim of this paper is to improve the current methods and use their combinations for cleaning records from radio interference of natural and artificial origi...

Повний опис

Збережено в:
Бібліографічні деталі
Видавець:Видавничий дім «Академперіодика»
Дата:2023
Автор: Stanislavsky, L. A.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Видавничий дім «Академперіодика» 2023
Теми:
Онлайн доступ:http://rpra-journal.org.ua/index.php/ra/article/view/1401
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!

Репозиторії

Radio physics and radio astronomy
id oai:ri.kharkov.ua:article-1401
record_format ojs
institution Radio physics and radio astronomy
collection OJS
language Ukrainian
topic

spellingShingle

Stanislavsky, L. A.
METHODS OF RADIO FREQUENCY INTERFERENCE MITIGATION ON THE STAGE OF PRELIMINARY PROCESSING OF RECEIVED SIGNALS
topic_facet

format Article
author Stanislavsky, L. A.
author_facet Stanislavsky, L. A.
author_sort Stanislavsky, L. A.
title METHODS OF RADIO FREQUENCY INTERFERENCE MITIGATION ON THE STAGE OF PRELIMINARY PROCESSING OF RECEIVED SIGNALS
title_short METHODS OF RADIO FREQUENCY INTERFERENCE MITIGATION ON THE STAGE OF PRELIMINARY PROCESSING OF RECEIVED SIGNALS
title_full METHODS OF RADIO FREQUENCY INTERFERENCE MITIGATION ON THE STAGE OF PRELIMINARY PROCESSING OF RECEIVED SIGNALS
title_fullStr METHODS OF RADIO FREQUENCY INTERFERENCE MITIGATION ON THE STAGE OF PRELIMINARY PROCESSING OF RECEIVED SIGNALS
title_full_unstemmed METHODS OF RADIO FREQUENCY INTERFERENCE MITIGATION ON THE STAGE OF PRELIMINARY PROCESSING OF RECEIVED SIGNALS
title_sort methods of radio frequency interference mitigation on the stage of preliminary processing of received signals
title_alt МЕТОДИ ПОПЕРЕДНЬОЇ ОБРОБКИ ДАНИХ РАДІОАСТРОНОМІЧНИХ СПОСТЕРЕЖЕНЬ ДЛЯ МІНІМІЗАЦІЇ НЕБАЖАНОГО ВПЛИВУ РАДІОЗАВАД НА РЕЗУЛЬТАТИ ВИМІРЮВАНЬ
description Subject and Purpose. Methods for computer processing of radio astronomical signals observed with space objects at low frequencies are given. The aim of this paper is to improve the current methods and use their combinations for cleaning records from radio interference of natural and artificial origin in the frequency-time domain, as well as to discuss advantages and disadvantage of the methods.Methods and Methodology. In the study of records obtained with radio astronomical observations there is a common feature of received signals from space sources, which consists ina significant contribution of radio interference. Having sufficient experience on possible types of interference and distortion of signals on the way of their propagation, the efficiency of suggested procedures, clearing radio signal interference in the frequency-time domain by a combination of different approaches in dependence from typical features of signals withinvestigated space objects, is shown.Results. The developed methods of extracting space signals against the background of interference allow one to get unique data on the sources of radio emission in astrophysical phenomena. On the one hand, software tools make it possible to detect very weak events against the background of radio frequency interference. On the other hand, they allow one to measureemission parameters based on the most statistically complete set of events.Conclusions. The results obtained in this work manifest that there is no universal way to overcome any obstacle in the records of radio astronomical observations because of radio interference. In addition, even if the most appropriate method is applied, it often requires pre-adjustment of the corresponding parameters on which the analysis of physical parameters of radio emission in the area of generation depends. But if such a space signal at the radio records is not very spoiled by interference, the use of considered methods can be successful and useful.Keywords: radio astronomy observations, RFI mitigation procedures, frequency-time pattern, UTR-2, GURTManuscript submitted 02.06.2022Radio phys. radio astron. 2022, 27(4):268-283REFERENCES1. Konovalenko, A., Sodin, L., Zakharenko, V., Zarka, P., Ulyanov, O., Sidorchuk, M., Stepkin, S., Tokarsky, P., Melnik, V., Kalinichenko, N., Stanislavsky, A., Koliadin, V., Shepelev, V., Dorovskyy, V., Ryabov, V., Koval, A., Bubnov, I., Yerin, S., Gridin, A., Kulishenko, V., Reznichenko, A., Bortsov, V., Lisachenko, V., Reznik, A., Kvasov, G., Mukha, D., Litvinenko, G., Khristenko, A., Shevchenko, V.V., Shevchenko, V.A., Belov, A., Rudavin, E., Vasylieva, I., Miroshnichenko, A., Vasilenko, N., Olyak, M., Mylostna, K., Skoryk, A., Shevtsova, A., Plakhov, M., Kravtsov, I., Volvach, Y., Lytvinenko, O., Shevchuk, N., Zhouk, I., Bovkun, V., Antonov, A., Vavriv, D., Vinogradov, V., Kozhin, R., Kravtsov, A., Bulakh, E., Kuzin, A., Vasilyev, A., Brazhenko, A., Vashchishin, R., Pylaev, O., Koshovyy, V., Lozinsky, A., Ivantyshin, O., Rucker, H.O., Panchenko, M., Fischer, G., Lecacheux, A., Denis, L., Coffre, A., Grießmeier, J.-M., Tagger, M., Girard, J., Charrier, D., Briand, C. and Mann, G., 2016. The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT. Exp. Astron., 42(1), pp. 11—48. DOI: https://doi.org/10.1007/s10686-016-9498-x2. Konovalenko, O.O., Zakharenko, V.V., Kalinichenko, M.M., Melnik, V.M., Sidorchuk, M.А., Stanislavsky, A.A., Stepkin, S.V., and Ulyanov, O.М.,2019. Decameter Wavelength .Radio Emission оf the Universe. Radio Phys. Radio Astron., 24(1), pp. 3—43 (in Ukrainian). DOI: https://doi.org/10.15407/rpra24.01.0033. Konovalenko, A.A., 2005. Low-Frequency Radio Astronomy Prospects. Radio Phys. Radio Astron., 10(5), pp. 86—114 (in Russian).4. Baan, W.A., Fridman, P.A., and Millenaar, R.P., 2004. Radio frequency interference mitigation at the Westerbork synthesis radio telescope: algorithms, Test observations, and System implementation. Astrophys. J., 128, pp. 933—949. DOI:https://doi.org/10.1086/4223505. Winkel, B., Kerp, J., and Stanko, S., 2007. RFI detection by automated feature extraction and statistical analysis. Astron. Nachr., 328(1), pp. 68—79. DOI: https://doi.org/10.1002/asna.2006106616. Offringa, A.R., De Bruyn, A.G., Biehl, M., Zaroubi, S., Bernardi, G., and Pandey, V.N., 2010. Post-correlation radio frequency interference classification methods. Mon. Not. R. Astron. Soc., 405(1), pp. 155—167. DOI:https://doi.org/10.1111/j.1365-2966.2010.16471.x7. Konovalenko, A.А., Sokolov, K.P., and Stepkin, S.V., 1997. Determination of Optimum Operating Frequencies for Observations with UTR-2 Radio Telescope in the Sky Surveying Mode. Radio Phys. Radio Astron., 2(2), pp. 188—198 (in Russian).8. Ryabov, V.B., Vavriv, D.M., Zarka, P., Ryabov, B.P., Kozhin, R., Vinogradov, V.V., and Denis, L., 2010. A low-noise, high dynamic-range, digital receiver for radio astronomy applications: an efficient solution for observing radio-bursts from Jupiter, the Sun, pulsars, and other astrophysical plasmas below 30 MHz. Astron. Astrophys., 510, id. A16, 13 p. DOI:https://doi.org/10.1051/0004-6361/2009133359. Zakharenko, V., Konovalenko, A.A., Zarka, P., Ulyanov, O., Sidorchuk, M., Stepkin, S., Koliadin, V., Kalinichenko, N., Stanislavsky, A., Dorovskyy, V., Shepelev, V., Bubnov, I., Yerin, S., Melnik, V., Koval, A., Shevchuk, N., Vasylieva, I., Mylostna, K., Shevtsova, A., Skoryk, A., Kravtsov, I., Volvach, Y., Plakhov, M., Vasilenko, N., Vasylkivsky, I. Y., Vavriv, D., Vinogradov, V., Kozhin, R., Kravtsov, A., Bulakh, E., Kuzin, A., Vasilyev, A., Ryabov, V., Reznichenko, A., Bortsov, V., Lisachenko, V., Kvasov, G., Mukha, D., Litvinenko, G., Brazhenko, A., Vashchishin, R., Pylaev, O., Koshovyy, V., Lozinsky, A., Ivantyshyn, O., Rucker, H.O., Panchenko, M., Fischer, G., Lecacheux, A., Denis, L., Coffre, A., and Grießmeier, J.-M., 2016. Digital Receivers for Low-Frequency Radio Telescopes UTR-2, URAN, GURT. J. Astron. Instrum., 5(4), id. 1641010. DOI:https://doi.org/10.1142/S225117171641010510. Abranin, E.P., Bruk, Yu.M., Zakharenko, V.V., and Konovalenko, O.O., 1997. Structure and parameters of new system of antenna amplification of radio telescope UTR-2. Radio Phys. Radio Astron., 2(1), pp. 95—103 (in Russian).11. Luwel, K., Beem, A.L., Onghena, P., and Verschaff el, L., 2001. Using segmented linear regression models with unknown change points to analyze strategy shifts in cognitive tasks. Behav. Res. Methods Instrum. Comput., 33(4), pp. 470—478. DOI:https://doi.org/10.3758/BF0319540412. Whittaker, E.T., 1922. On a new method of graduation. Proc. Edinburgh Math. Soc., 41, pp. 63—75. DOI:https://doi.org/10.1017/S001309150007785313. Eilers, P.H.C., 2003. A perfect smoother. Anal. Chem., 75(14), pp. 3631—3636. DOI: https://doi.org/10.1021/ac034173t14. Baek, S.-J., Park, A., Ahn, Y.-J. and Choo, J., 2015. Baseline correction using asymmetrically reweighted penalized least squares smoothing. Analyst, 140(1), pp. 250—257. DOI:https://doi.org/10.1039/C4AN01061B15. Zeng, Q., Chen, X., Li, X., Han, J.L., Wang, C., Zhou, D.J., and Wang, T., 2021. Radio frequency interference mitigation based on the ArPLS and SumThreshold method. Mon. Not. R. Astron. Soc., 500(3), pp.  2969—2978. DOI: https://doi.org/10.1093/mnras/staa255116. Ford, J., and Buch, K., 2014. RFI mitigation techniques in radio astronomy. In: 2014 IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS 2014). Quebec City, QC, Canada, 13—18 July 2014. DOI:https://doi.org/10.1109/IGARSS.2014.694639917. Peck, L.W., and Fenech, D.M., 2012. Reduction and calibration pipelines for e-MERLIN and COBRaS. In: 11th Europ. VLBI Network Symp. & Users Meeting (11th EVN Symp.). Bordeaux, France, 9—12 Oct. 2012. DOI: https://doi.org/10.22323/1.178.010318. Baan, W., 2011. RFI mitigation in radio astronomy. In: 2011 XXXth URSI General Assembly and Scientific Symposium (URSI GASS 2011). Istanbul, Turkey, 13—20 Aug. 2011. DOI:https://doi.org/10.1109/URSIGASS.2011.605124819. Basseville, M., and Nikiforov, I., 1993. Detection of Abrupt Changes: Theory and Applications. Englewood Cliffs: Prentice-Hall, NJ, USA.20. Yang, Z., Yu, C., Xiao, J., and Zhang, B., 2020. Deep residual detection of radio frequency interference for FAST. Mon. Not. R. Astron. Soc., 492(1), pp. 1421—1431. DOI:https://doi.org/10.1093/mnras/stz352121. Vasylieva, I.Y., Zakharenko, V.V., Zarka, P., Ulyanov, O.M., Shevtsova, A.I., and Seredkina, A.A., 2013. Data Processing Pipeline for Decameter Pulsar/Transient Survey. Odessa Astron. Publ., 26(2), pp. 159—161. DOI: 10.18524/1810-4215.2013.26.8247022. Zakharenko, V.V., Ryabov, V.B., Kravtsov, I.P., Mylostna,K.Yu., Kharlanova, V.Yu., Vasylieva, I.Y., Ulyanov, O.M., Konovalenko, O.O., Kalinichenko, M.M., Zarka, P., Rucker, H.O., Fischer, G., Yerin, S.M., Grießmeier, J.-M., Sydorchuk, M.A., Shevtsova, A.I., Skoryk, A.O., Shevchenko, V.A., 2021. Sporadic Radio Emission Of Space Objects At Low-Frequencies. Radio Phys. Radio Astron., 26(2), pp. 99—129. DOI:https://doi.org/10.15407/rpra26.02.09923. Cendes, Y., Prasad, P., Rowlinson, A., Wijers, R.A.M.J., Swinbank, J.D., Law, C.J., van der Horst, A.J., Carbone, D., Broderick, J.W., Staley, T.D., Stewart, A.J., Huizinga, F., Molenaar, G., Alexov, A., Bell, M.E., Coenen, T., Corbel, S., Eislöffel, J., Fender, R., Grießmeier, J.-M., Jonker, P., Kramer, M., Kuniyoshi, M., Pietka, M., Stappers, B., Wise, M., and Zarka, P., 2018. RFI flagging implications for short-duration transients. Astron. Comput., 23, pp. 103—114. DOI:https://doi.org/10.1016/j.ascom.2018.04.00124. Zakharenko, V.V., Vasylieva, I.Y., Konovalenko, A.A., Ulyanov, O.M., Serylak, M., Zarka, P., Grießmeier, J.-M., Cognard, I., and Nikolaenko, V.S., 2013. Detection of decametre-wavelength pulsed radio emission of 40 known pulsars. Mon. Not. R. Astron. Soc., 431(4), pp. 3624—3641. DOI:https://doi.org/10.1093/mnras/stt47025. Vasylieva, I.Y., 2015. Pulsars and transients survey, and exoplanet search at low-frequencies with the UTR-2 radio telescope: methods and first results [online]. PhD Thesis ed. Observatoire de Paris [viewed 19 April 2021]. Available from: https://tel.archives-ouvertes.fr/tel-0124663426. Ross, S.R., 2014. Introduction to Probability and Statistics for Engineers and Scientists. 5th ed. New York: Wiley. DOI:https://doi.org/10.1016/B978-0-12-394811-3.50001-027. Bertalmio, M., Sapiro, G., Caselles, V., and Ballester, C., 2000. Image inpainting. In: Proc. 27th Annual Conf. Computer graphics and interactive techniques (SIGGRAPH 2000). New Orleans, LA, USA, 23—28 July 2000, pp. 417—424. DOI:https://doi.org/10.1145/344779.34497228. Stanislavsky, A.A., Konovalenko, A.A., Koval, A.A., Dorovskyy, V.V., Zarka, P., and Rucker, H.O., 2015. Coronal magnetic field strength from decameter zebra-pattern observations: Complementarity with band-splitting measurements of an associated Type II burst. Sol. Phys., 290(1), pp. 205—218. DOI: https://doi.org/10.1007/s11207-014-0620-929. Karatzas, I., and Shreve, S.E., 1998. Brownian Motion and Stochastic Calculus. New York: Springer. DOI:https://doi.org/10.1007/978-1-4612-0949-230. Stanislavsky, L.A., Bubnov, I.N., Konovalenko, A.A., Tokarsky, P.L., and Yerin, S.N., 2021. The first detection of the solar U+III association with an antenna prototype for the future lunar observatory. Res. Astron. Astrophys., 21(8), id. 187. DOI:https://doi.org/10.1088/1674-4527/21/8/18731. Bubnov, I.N., Konovalenko, A.A., Tokarsky, P.L., Korolev, O.M., Yerin, S.N., and Stanislavsky, L.A., 2021. Creation and approbation of a low-frequency radio astronomy antenna for studies of objects of the Universe from the Moon’s farside. Radio Phys. Radio Astron., 26(3), pp. 197—210. DOI:https://doi.org/10.15407/rpra26.03.197
publisher Видавничий дім «Академперіодика»
publishDate 2023
url http://rpra-journal.org.ua/index.php/ra/article/view/1401
work_keys_str_mv AT stanislavskyla methodsofradiofrequencyinterferencemitigationonthestageofpreliminaryprocessingofreceivedsignals
AT stanislavskyla metodipoperednʹoíobrobkidanihradíoastronomíčnihspostereženʹdlâmínímízacíínebažanogovplivuradíozavadnarezulʹtativimírûvanʹ
first_indexed 2024-05-26T06:28:52Z
last_indexed 2024-05-26T06:28:52Z
_version_ 1802895109839126528
spelling oai:ri.kharkov.ua:article-14012023-06-21T05:37:56Z METHODS OF RADIO FREQUENCY INTERFERENCE MITIGATION ON THE STAGE OF PRELIMINARY PROCESSING OF RECEIVED SIGNALS МЕТОДИ ПОПЕРЕДНЬОЇ ОБРОБКИ ДАНИХ РАДІОАСТРОНОМІЧНИХ СПОСТЕРЕЖЕНЬ ДЛЯ МІНІМІЗАЦІЇ НЕБАЖАНОГО ВПЛИВУ РАДІОЗАВАД НА РЕЗУЛЬТАТИ ВИМІРЮВАНЬ Stanislavsky, L. A. Subject and Purpose. Methods for computer processing of radio astronomical signals observed with space objects at low frequencies are given. The aim of this paper is to improve the current methods and use their combinations for cleaning records from radio interference of natural and artificial origin in the frequency-time domain, as well as to discuss advantages and disadvantage of the methods.Methods and Methodology. In the study of records obtained with radio astronomical observations there is a common feature of received signals from space sources, which consists ina significant contribution of radio interference. Having sufficient experience on possible types of interference and distortion of signals on the way of their propagation, the efficiency of suggested procedures, clearing radio signal interference in the frequency-time domain by a combination of different approaches in dependence from typical features of signals withinvestigated space objects, is shown.Results. The developed methods of extracting space signals against the background of interference allow one to get unique data on the sources of radio emission in astrophysical phenomena. On the one hand, software tools make it possible to detect very weak events against the background of radio frequency interference. On the other hand, they allow one to measureemission parameters based on the most statistically complete set of events.Conclusions. The results obtained in this work manifest that there is no universal way to overcome any obstacle in the records of radio astronomical observations because of radio interference. In addition, even if the most appropriate method is applied, it often requires pre-adjustment of the corresponding parameters on which the analysis of physical parameters of radio emission in the area of generation depends. But if such a space signal at the radio records is not very spoiled by interference, the use of considered methods can be successful and useful.Keywords: radio astronomy observations, RFI mitigation procedures, frequency-time pattern, UTR-2, GURTManuscript submitted 02.06.2022Radio phys. radio astron. 2022, 27(4):268-283REFERENCES1. Konovalenko, A., Sodin, L., Zakharenko, V., Zarka, P., Ulyanov, O., Sidorchuk, M., Stepkin, S., Tokarsky, P., Melnik, V., Kalinichenko, N., Stanislavsky, A., Koliadin, V., Shepelev, V., Dorovskyy, V., Ryabov, V., Koval, A., Bubnov, I., Yerin, S., Gridin, A., Kulishenko, V., Reznichenko, A., Bortsov, V., Lisachenko, V., Reznik, A., Kvasov, G., Mukha, D., Litvinenko, G., Khristenko, A., Shevchenko, V.V., Shevchenko, V.A., Belov, A., Rudavin, E., Vasylieva, I., Miroshnichenko, A., Vasilenko, N., Olyak, M., Mylostna, K., Skoryk, A., Shevtsova, A., Plakhov, M., Kravtsov, I., Volvach, Y., Lytvinenko, O., Shevchuk, N., Zhouk, I., Bovkun, V., Antonov, A., Vavriv, D., Vinogradov, V., Kozhin, R., Kravtsov, A., Bulakh, E., Kuzin, A., Vasilyev, A., Brazhenko, A., Vashchishin, R., Pylaev, O., Koshovyy, V., Lozinsky, A., Ivantyshin, O., Rucker, H.O., Panchenko, M., Fischer, G., Lecacheux, A., Denis, L., Coffre, A., Grießmeier, J.-M., Tagger, M., Girard, J., Charrier, D., Briand, C. and Mann, G., 2016. The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT. Exp. Astron., 42(1), pp. 11—48. DOI: https://doi.org/10.1007/s10686-016-9498-x2. Konovalenko, O.O., Zakharenko, V.V., Kalinichenko, M.M., Melnik, V.M., Sidorchuk, M.А., Stanislavsky, A.A., Stepkin, S.V., and Ulyanov, O.М.,2019. Decameter Wavelength .Radio Emission оf the Universe. Radio Phys. Radio Astron., 24(1), pp. 3—43 (in Ukrainian). DOI: https://doi.org/10.15407/rpra24.01.0033. Konovalenko, A.A., 2005. Low-Frequency Radio Astronomy Prospects. Radio Phys. Radio Astron., 10(5), pp. 86—114 (in Russian).4. Baan, W.A., Fridman, P.A., and Millenaar, R.P., 2004. Radio frequency interference mitigation at the Westerbork synthesis radio telescope: algorithms, Test observations, and System implementation. Astrophys. J., 128, pp. 933—949. DOI:https://doi.org/10.1086/4223505. Winkel, B., Kerp, J., and Stanko, S., 2007. RFI detection by automated feature extraction and statistical analysis. Astron. Nachr., 328(1), pp. 68—79. DOI: https://doi.org/10.1002/asna.2006106616. Offringa, A.R., De Bruyn, A.G., Biehl, M., Zaroubi, S., Bernardi, G., and Pandey, V.N., 2010. Post-correlation radio frequency interference classification methods. Mon. Not. R. Astron. Soc., 405(1), pp. 155—167. DOI:https://doi.org/10.1111/j.1365-2966.2010.16471.x7. Konovalenko, A.А., Sokolov, K.P., and Stepkin, S.V., 1997. Determination of Optimum Operating Frequencies for Observations with UTR-2 Radio Telescope in the Sky Surveying Mode. Radio Phys. Radio Astron., 2(2), pp. 188—198 (in Russian).8. Ryabov, V.B., Vavriv, D.M., Zarka, P., Ryabov, B.P., Kozhin, R., Vinogradov, V.V., and Denis, L., 2010. A low-noise, high dynamic-range, digital receiver for radio astronomy applications: an efficient solution for observing radio-bursts from Jupiter, the Sun, pulsars, and other astrophysical plasmas below 30 MHz. Astron. Astrophys., 510, id. A16, 13 p. DOI:https://doi.org/10.1051/0004-6361/2009133359. Zakharenko, V., Konovalenko, A.A., Zarka, P., Ulyanov, O., Sidorchuk, M., Stepkin, S., Koliadin, V., Kalinichenko, N., Stanislavsky, A., Dorovskyy, V., Shepelev, V., Bubnov, I., Yerin, S., Melnik, V., Koval, A., Shevchuk, N., Vasylieva, I., Mylostna, K., Shevtsova, A., Skoryk, A., Kravtsov, I., Volvach, Y., Plakhov, M., Vasilenko, N., Vasylkivsky, I. Y., Vavriv, D., Vinogradov, V., Kozhin, R., Kravtsov, A., Bulakh, E., Kuzin, A., Vasilyev, A., Ryabov, V., Reznichenko, A., Bortsov, V., Lisachenko, V., Kvasov, G., Mukha, D., Litvinenko, G., Brazhenko, A., Vashchishin, R., Pylaev, O., Koshovyy, V., Lozinsky, A., Ivantyshyn, O., Rucker, H.O., Panchenko, M., Fischer, G., Lecacheux, A., Denis, L., Coffre, A., and Grießmeier, J.-M., 2016. Digital Receivers for Low-Frequency Radio Telescopes UTR-2, URAN, GURT. J. Astron. Instrum., 5(4), id. 1641010. DOI:https://doi.org/10.1142/S225117171641010510. Abranin, E.P., Bruk, Yu.M., Zakharenko, V.V., and Konovalenko, O.O., 1997. Structure and parameters of new system of antenna amplification of radio telescope UTR-2. Radio Phys. Radio Astron., 2(1), pp. 95—103 (in Russian).11. Luwel, K., Beem, A.L., Onghena, P., and Verschaff el, L., 2001. Using segmented linear regression models with unknown change points to analyze strategy shifts in cognitive tasks. Behav. Res. Methods Instrum. Comput., 33(4), pp. 470—478. DOI:https://doi.org/10.3758/BF0319540412. Whittaker, E.T., 1922. On a new method of graduation. Proc. Edinburgh Math. Soc., 41, pp. 63—75. DOI:https://doi.org/10.1017/S001309150007785313. Eilers, P.H.C., 2003. A perfect smoother. Anal. Chem., 75(14), pp. 3631—3636. DOI: https://doi.org/10.1021/ac034173t14. Baek, S.-J., Park, A., Ahn, Y.-J. and Choo, J., 2015. Baseline correction using asymmetrically reweighted penalized least squares smoothing. Analyst, 140(1), pp. 250—257. DOI:https://doi.org/10.1039/C4AN01061B15. Zeng, Q., Chen, X., Li, X., Han, J.L., Wang, C., Zhou, D.J., and Wang, T., 2021. Radio frequency interference mitigation based on the ArPLS and SumThreshold method. Mon. Not. R. Astron. Soc., 500(3), pp.  2969—2978. DOI: https://doi.org/10.1093/mnras/staa255116. Ford, J., and Buch, K., 2014. RFI mitigation techniques in radio astronomy. In: 2014 IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS 2014). Quebec City, QC, Canada, 13—18 July 2014. DOI:https://doi.org/10.1109/IGARSS.2014.694639917. Peck, L.W., and Fenech, D.M., 2012. Reduction and calibration pipelines for e-MERLIN and COBRaS. In: 11th Europ. VLBI Network Symp. & Users Meeting (11th EVN Symp.). Bordeaux, France, 9—12 Oct. 2012. DOI: https://doi.org/10.22323/1.178.010318. Baan, W., 2011. RFI mitigation in radio astronomy. In: 2011 XXXth URSI General Assembly and Scientific Symposium (URSI GASS 2011). Istanbul, Turkey, 13—20 Aug. 2011. DOI:https://doi.org/10.1109/URSIGASS.2011.605124819. Basseville, M., and Nikiforov, I., 1993. Detection of Abrupt Changes: Theory and Applications. Englewood Cliffs: Prentice-Hall, NJ, USA.20. Yang, Z., Yu, C., Xiao, J., and Zhang, B., 2020. Deep residual detection of radio frequency interference for FAST. Mon. Not. R. Astron. Soc., 492(1), pp. 1421—1431. DOI:https://doi.org/10.1093/mnras/stz352121. Vasylieva, I.Y., Zakharenko, V.V., Zarka, P., Ulyanov, O.M., Shevtsova, A.I., and Seredkina, A.A., 2013. Data Processing Pipeline for Decameter Pulsar/Transient Survey. Odessa Astron. Publ., 26(2), pp. 159—161. DOI: 10.18524/1810-4215.2013.26.8247022. Zakharenko, V.V., Ryabov, V.B., Kravtsov, I.P., Mylostna,K.Yu., Kharlanova, V.Yu., Vasylieva, I.Y., Ulyanov, O.M., Konovalenko, O.O., Kalinichenko, M.M., Zarka, P., Rucker, H.O., Fischer, G., Yerin, S.M., Grießmeier, J.-M., Sydorchuk, M.A., Shevtsova, A.I., Skoryk, A.O., Shevchenko, V.A., 2021. Sporadic Radio Emission Of Space Objects At Low-Frequencies. Radio Phys. Radio Astron., 26(2), pp. 99—129. DOI:https://doi.org/10.15407/rpra26.02.09923. Cendes, Y., Prasad, P., Rowlinson, A., Wijers, R.A.M.J., Swinbank, J.D., Law, C.J., van der Horst, A.J., Carbone, D., Broderick, J.W., Staley, T.D., Stewart, A.J., Huizinga, F., Molenaar, G., Alexov, A., Bell, M.E., Coenen, T., Corbel, S., Eislöffel, J., Fender, R., Grießmeier, J.-M., Jonker, P., Kramer, M., Kuniyoshi, M., Pietka, M., Stappers, B., Wise, M., and Zarka, P., 2018. RFI flagging implications for short-duration transients. Astron. Comput., 23, pp. 103—114. DOI:https://doi.org/10.1016/j.ascom.2018.04.00124. Zakharenko, V.V., Vasylieva, I.Y., Konovalenko, A.A., Ulyanov, O.M., Serylak, M., Zarka, P., Grießmeier, J.-M., Cognard, I., and Nikolaenko, V.S., 2013. Detection of decametre-wavelength pulsed radio emission of 40 known pulsars. Mon. Not. R. Astron. Soc., 431(4), pp. 3624—3641. DOI:https://doi.org/10.1093/mnras/stt47025. Vasylieva, I.Y., 2015. Pulsars and transients survey, and exoplanet search at low-frequencies with the UTR-2 radio telescope: methods and first results [online]. PhD Thesis ed. Observatoire de Paris [viewed 19 April 2021]. Available from: https://tel.archives-ouvertes.fr/tel-0124663426. Ross, S.R., 2014. Introduction to Probability and Statistics for Engineers and Scientists. 5th ed. New York: Wiley. DOI:https://doi.org/10.1016/B978-0-12-394811-3.50001-027. Bertalmio, M., Sapiro, G., Caselles, V., and Ballester, C., 2000. Image inpainting. In: Proc. 27th Annual Conf. Computer graphics and interactive techniques (SIGGRAPH 2000). New Orleans, LA, USA, 23—28 July 2000, pp. 417—424. DOI:https://doi.org/10.1145/344779.34497228. Stanislavsky, A.A., Konovalenko, A.A., Koval, A.A., Dorovskyy, V.V., Zarka, P., and Rucker, H.O., 2015. Coronal magnetic field strength from decameter zebra-pattern observations: Complementarity with band-splitting measurements of an associated Type II burst. Sol. Phys., 290(1), pp. 205—218. DOI: https://doi.org/10.1007/s11207-014-0620-929. Karatzas, I., and Shreve, S.E., 1998. Brownian Motion and Stochastic Calculus. New York: Springer. DOI:https://doi.org/10.1007/978-1-4612-0949-230. Stanislavsky, L.A., Bubnov, I.N., Konovalenko, A.A., Tokarsky, P.L., and Yerin, S.N., 2021. The first detection of the solar U+III association with an antenna prototype for the future lunar observatory. Res. Astron. Astrophys., 21(8), id. 187. DOI:https://doi.org/10.1088/1674-4527/21/8/18731. Bubnov, I.N., Konovalenko, A.A., Tokarsky, P.L., Korolev, O.M., Yerin, S.N., and Stanislavsky, L.A., 2021. Creation and approbation of a low-frequency radio astronomy antenna for studies of objects of the Universe from the Moon’s farside. Radio Phys. Radio Astron., 26(3), pp. 197—210. DOI:https://doi.org/10.15407/rpra26.03.197 Предмет і мета роботи. Наведено методи комп’ютерної обробки результатів радіоастрономічних спостережень у декаметровому діапазоні довжин хвиль. Метою роботи є поліпшення низки наявних методів очищення записів від радіозавад і використання їхньої комбінацій у частотно-часовій області, а також аналіз їхніх відносних переваг і недоліків.Методи та методологія. У записах результатів радіоастрономічних спостережень поряд із сигналами від космічних джерел радіовипромінювання зазвичай є помітним внесок різноманітних радіозавад. Спираючись на знання типів завад таїхнього впливу на досліджувані сигнали на шляху їхнього поширення, розроблено процедури очищення радіосигналів від завад у площині частота—час, котрі поєднують різні підходи в залежності від типу космічного об’єкта.Результати. Розроблені методи виділення космічних сигналів на тлі завад уможливлюють отримання унікальних даних щодо джерел такого радіовипромінювання. Відповідні програмні засоби дають можливість виявити дуже слабкі сигнали на тлі радіочастотних завад, а також дозволяють отримати параметри випромінювання, грунтуючись на найбільш статистично повному наборі подій.Висновок. Продемонстровано ефективність розроблених процедур очищення радіосигналів від завад у площині частота—час. Втім, із результатів випливає, що універсального способу подолати наслідки дії будь-якої завади в реєстраціяхрадіоастрономічних спостережень не існує. Кожний метод може вимагати попереднього налаштування параметрів, від яких залежить інформативність аналізу фізичних характеристик радіовипромінювання в області його генерації. Використання зазначених методів може бути успішним, якщо радіосигнал від космічного джерела на реєстраціях виявляється лише помірно зіпсованим завадами.Ключові слова: радіоастрономічні спостереження, процедури очищення даних від завад, частотно-часове представлення сигналу, УТР-2, ГУРТСтаття надійшла до редакції 02.06.2022Radio phys. radio astron. 2022, 27(4): 268-283БІБЛІОГРАФІЧНИЙ СПИСОК1. Konovalenko A., Sodin L., Zakharenko V., Zarka P., Ulyanov O., Sidorchuk M., Stepkin S., Tokarsky P., Melnik V., Kalinichenko N., Stanislavsky A., Koliadin V., Shepelev V., Dorovskyy V., Ryabov V., Koval A., Bubnov I., Yerin S., Gridin, A. Kulishenko V., Reznichenko A., Bortsov V., Lisachenko V., Reznik A., Kvasov G., Mukha D., Litvinenko G., Khristenko A., Shevchenko V.V., Shevchenko V.A., Belov A., Rudavin E., Vasylieva I., Miroshnichenko A., Vasilenko N., Olyak M., Mylostna K., Skoryk A., Shevtsova A., Plakhov M., Kravtsov I., Volvach Y., Lytvinenko O., Shevchuk N., Zhouk I., Bovkun V., Antonov A., Vavriv D., Vinogradov V., Kozhin R., Kravtsov A., Bulakh E., Kuzin A., Vasilyev A., Brazhenko A., Vashchishin R., Pylaev O., Koshovyy V., Lozinsky A., Ivantyshin O., Rucker H.O., Panchenko M., Fischer G., Lecacheux A., Denis L., Coffre A., Grieβmeier J.-M., Tagger M., Girard J., Charrier D., Briand C., Mann G. The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT. Exp. Astron. 2016. Vol. 42, Iss. 1. P. 11—48.2. Коноваленко О.О., Захаренко В.В., Калініченко М.М., Мельник В.М., Сидорчук М.А., Станиславський О.О., Степкін С.В., Ульянов О.М. Радіо випромінювання Всесвіту на декаметрових хвилях (заматеріалами циклу праць, що отримав Державну премію України в галузі науки і техніки у 2018 році). Радіофізика і Радіоастрономія. 2019. Т. 24, No 1. C. 3—43. DOI: 10.15407/rpra24.01.003.3. Коноваленко А.А. Перспективы низкочастотной радиоастрономии. Радіофізика і Радіоастрономія. 2005. T. 10, спец. вып. C. 86—114.4. Baan W.A., Fridman P.A., and Millenaar R.P. Radio frequency interference mitigation at the Westerbork synthesis radio telescope: algorithms, Test observations, and System implementation. Astrophys. J. 2004. Vol. 128. pp. 933—949. DOI: 10.1086/422350.5. Winkel B., Kerp J., and Stanko S. RFI detection by automated feature extraction and statistical analysis. Astron. Nachr. 2007. Vol. 328, Iss. 1. P. 68—79. DOI: 10.1002/asna.200610661.6. Offringa A.R., de Bruyn A.G., Biehl M., Zaroubi S., Bernardi G., and Pandey V.N. Post-correlation radio frequency interference classification methods. Mon. Not. R. Astron. Soc. 2010. Vol. 405, Iss. 1. P. 155—167. DOI: 10.1111/j.1365-2966.2010.16471.x.7. Коноваленко А.А., Соколов К.П., Степкин С.В. Определение оптимальных частот наблюдений на радиотелескопе УТР-2 в режиме радиообзора небесной сферы. Радіофізика і Радіоастрономія. 1997. Т. 2. No 2. С. 188—199.8. Ryabov V.B., Vavriv D.M., Zarka P., Ryabov B.P., Kozhin R., Vinogradov V.V., and Denis L. A low-noise, high-dynamic-range, digital receiver for radio astronomy applications: an efficient solution for observing radio-bursts from Jupiter, the Sun, pulsars, and other astrophysical plasmas below 30 MHz. Astron. Astrophys. 2010. Vol. 510, id. A16, 13 p. DOI: 10.1051/0004-6361/200913335.9. Zakharenko V., Konovalenko A., Zarka P., Ulyanov O., Sidorchuk M., Stepkin S., Koliadin V., Kalinichenko N., Stanislavsky A., Dorovskyy V., Shepelev V., Bubnov I., Yerin S., Melnik V., Koval A., Shevchuk N.S., Vasylieva I., Mylostna K., Shevtsova A., Skoryk A., Kravtsov I., Volvach Y., Plakhov M., Vasilenko N., Vasylkivskyi Y., Vavriv D., Vinogradov V., Kozhin R., Kravtsov A., Bulakh E., Kuzin A., Vasilyev A., Ryabov V., Reznichenko A., Bortsov V., Lisachenko V., Kvasov G., Mukha D., Litvinenko G., Brazhenko A., Vashchishin R., Pylaev O., Koshovyy V., Lozinsky A., Ivantyshyn O., Rucker H.O., Panchenko M., Fischer G., Lecacheux A., Denis L., Coffre A., Grießmeier J.-M. Digital Receivers for Low-Frequency Radio Telescopes UTR-2, URAN, GURT. J. Astron. Instrum. 2016. Vol. 5, Iss. 4, id. 1641010.10. Абранин Э.П., Брук Ю.М., Захаренко В.В., Коноваленко А.А. Структура и параметры новой системы антенного усиления радиотелескопа УТР-2. Радіофізика і Радіоастрономія. 1997. Т. 2, No 1. С. 95—103.11. Luwel K., Beem A.L., Onghena P. and Verschaffel L. Using segmented linear regression models with unknown change points to analyze strategy shift s in cognitive tasks. Behav. Res. Methods Instrum. Comput. 2001. Vol. 33, Iss. 4. P. 470—478.12. Whittaker E.T. On a new method of graduation. Proc. Edinburgh Math. Soc. 1922. Vol. 41. P. 63—75.13. Eilers P.H.C. A perfect smoother. Anal. Chem. 2003. Vol. 75, Iss. 14. P.  3631—3636. DOI: 10.1021/ac034173t.14. Baek S.-J., Park A., Ahn Y.-J., and Choo J. Baseline correction using asymmetrically reweighted penalized least squares smoothing. Analyst. 2015. Vol. 140, Iss. 1. P. 250—257. DOI: 10.1039/C4AN01061B.15. Zeng Q., Chen X., Li X., Han J.L., Wang C., Zhou D.J., and Wang T. Radio frequency interference mitigation based on the ArPLS and SumThreshold method. Mon. Not. R. Astron. Soc. 2021. Vol. 500, Iss. 3. P. 2969—2978. DOI: 10.1093/mnras/staa2551.16. Ford J. and Buch K.RFI mitigation techniques in radio astronomy. 2014 IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS 2014). Quebec City, QC, Canada, 13—18 July 2014. DOI: 10.1109/IGARSS.2014.6946399.17. Peck L.W. and Fenech D.M. Reduction and calibration pipelines for e-MERLIN and COBRaS. 11th Europ. VLBI Network Symp. & Users Meeting (11th EVN Symp.). Bordeaux, France, 9—12 Oct. 2012. DOI: 10.22323/1.178.0103.18. Baan W. RFI mitigation in radio astronomy. 2011 XXXth URSI General Assembly and Scientific Symposium (URSI GASS 2011). Istanbul, Turkey, 13—20 Aug. 2011. DOI: 10.1109/URSIGASS.2011.6051248.19. Basseville M. and Nikiforov I. Detection of Abrupt Changes: Theory and Applications. Englewood Cliff s: Prentice-Hall, NJ, USA, 1993.20. Yang Z., Yu C., Xiao J., and Zhang B. Deep residual detection of radio frequency interference for FAST. Mon. Not. R. Astron. Soc.2020. Vol. 492. Iss. 1. P. 1421—1431. DOI: 10.1093/mnras/stz3521.21. Vasylieva I.Y., Zakharenko V.V., Zarka P., Ulyanov O.M., Shevtsova A.I., and Seredkina A.A. Data processing pipeline for decameter pulsar/transient survey. Odessa Astron. Publ. 2013. Vol. 26. Iss. 2. P. 159—161.22. Захаренко В.В., Рябов В.Б., Кравцов І.П., Милостна К.Ю., Харланова В.Ю.,Васильєва Я.Ю., УльяновО.М., Коноваленко О.О., Калініченко М.М., Зарка Ф., Рукер Г., Фішер Г., Єрін С. М., Грісмайєр Ж.-М., Сидорчук М.А., Шевцова А.І., Скорик А.О., Шевченко В.А. Спорадичне радіовипромінювання космічних об’єктів на низьких частотах. Радіофізика і Радіоастрономія. 2021. Т. 26. No 2. C. 99—129. DOI: 10.15407/rpra26.02.099.23. Cendes Y., Prasad P., Rowlinson A., Wijers R.A.M.J., Swinbank J.D., Law C.J., van der Horst A.J., Carbone D., Broderick J.W., Staley T.D., Stewart A.J., Huizinga F., Molenaar G., Alexov A., Bell M.E., Coenen T., Corbel S., Eislöff el J., Fender R., Grießmeier J.-M., Jonker P., Kramer M., Kuniyoshi M., Pietka M., Stappers B., Wise M. and Zarka P. RFI flagging implications for short-duration transients. Astron. Comput. 2018. Vol. 23. P. 103—114. DOI: 10.1016/j.ascom.2018.04.001.24. Zakharenko V.V., Vasylieva I.Y., Konovalenko A.A., Ulyanov O.M., Serylak M., Zarka P., Grießmeier J.-M., Cognard I. and Nikolaenko V.S. Detection of decametre-wavelength pulsed radio emission of 40 known pulsars. Mon. Not. Roy. Astron. Soc. 2013. Vol. 431, Iss. 4. P. 3624—3641. DOI: 10.1093/mnras/stt470.25. Vasylieva I.Y. Pulsars and transients survey, and exoplanet search at low-frequencies with the UTR-2 radio telescope: methods and first results [online]. 2015. PhD Thesis ed. Observatoire de Paris [viewed 19 April 2021]. URL: https://tel.archives-ouvertes.fr/tel-01246634.26. Ross S.R. Introduction to Probability and Statistics for Engineers and Scientists. Fift h Edition. New York: Wiley, 2014.27. Bertalmio M., Sapiro G., Caselles V. and Ballester C. Image inpainting. Proc. 27th Annual Conf. Computer graphics and interactive techniques (SIGGRAPH 2000). New Orleans, LA, USA, 23—28 July 2000. P. 417—424.28. Stanislavsky A.A., Konovalenko A.A., Koval A.A., Dorovskyy V.V., Zarka P., and Rucker H.O. Coronal magnetic field strength from decameter zebra-pattern observations: Complementarity with band-splitting measurements of an associated Type II burst. Sol. Phys. 2015. Vol. 290, Iss. 1. P. 205—218. DOI: 10.1007/s11207-014-0620-9.29. Karatzas I. and Shreve S.E. Brownian Motion and Stochastic Calculus. New York: Springer, 1998. DOI: 10.1007/978-1-4612-0949-230. Stanislavsky L.A., Bubnov I.N., Konovalenko A.A., Tokarsky P.L., and Yerin S.N. The first detection of the solar U+III association with an antenna prototype for the future lunar observatory. Res. Astron. Astrophys. 2021. Vol. 21, Iss. 8. id. 187. DOI: 10.1088/1674-4527/21/8/187.31. Бубнов І.М., Коноваленко О.О., Токарський П.Л., Корольов О.М., Єрін С.М., Станіславський Л.О. Створення та апробація низькочастотної радіоастрономічної антени для досліджень об’єктів Всесвіту зі зворотного боку Місяця. Радіофізика і Радіоастрономія. 2021. Т. 26. No 3. С. 197—210. DOI: 10.15407/rpra26.03.197 Видавничий дім «Академперіодика» 2023-06-15 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1401 10.15407/rpra27.04.268 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 27, No 4 (2022); 268 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 27, No 4 (2022); 268 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 27, No 4 (2022); 268 2415-7007 1027-9636 10.15407/rpra27.04 uk http://rpra-journal.org.ua/index.php/ra/article/view/1401/pdf Copyright (c) 2022 RADIO PHYSICS AND RADIO ASTRONOMY