INFLUENCE OF GLOBAL SEISMIC ACTIVITY ON IONOSPHERE AND NEAR-EARTH ATMOSPHERE PARAMETERS
Subject and Purpose. The catastrophic magnitude of life and monetary losses associated with earthquakes spurs extensive searches for reliable earthquake precursors. It is common knowledge that lithospheric processes have a direct bearing on the state of atmosphere and ionosphere during earthquakes....
Збережено в:
Дата: | 2023 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Видавничий дім «Академперіодика»
2023
|
Теми: | |
Онлайн доступ: | http://rpra-journal.org.ua/index.php/ra/article/view/1412 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Radio physics and radio astronomy |
Репозитарії
Radio physics and radio astronomyid |
oai:ri.kharkov.ua:article-1412 |
---|---|
record_format |
ojs |
institution |
Radio physics and radio astronomy |
collection |
OJS |
language |
Ukrainian |
topic |
earthquake radon atmospheric pressure total electron content lithosphere-atmospheric-ionospheric interaction землетрус радон атмосферний тиск повний електронний вміст літосферно-атмосферно-іоносферна взаємодія |
spellingShingle |
earthquake radon atmospheric pressure total electron content lithosphere-atmospheric-ionospheric interaction землетрус радон атмосферний тиск повний електронний вміст літосферно-атмосферно-іоносферна взаємодія Zakharov, I. G. Chernogor, L. F. INFLUENCE OF GLOBAL SEISMIC ACTIVITY ON IONOSPHERE AND NEAR-EARTH ATMOSPHERE PARAMETERS |
topic_facet |
earthquake radon atmospheric pressure total electron content lithosphere-atmospheric-ionospheric interaction землетрус радон атмосферний тиск повний електронний вміст літосферно-атмосферно-іоносферна взаємодія |
format |
Article |
author |
Zakharov, I. G. Chernogor, L. F. |
author_facet |
Zakharov, I. G. Chernogor, L. F. |
author_sort |
Zakharov, I. G. |
title |
INFLUENCE OF GLOBAL SEISMIC ACTIVITY ON IONOSPHERE AND NEAR-EARTH ATMOSPHERE PARAMETERS |
title_short |
INFLUENCE OF GLOBAL SEISMIC ACTIVITY ON IONOSPHERE AND NEAR-EARTH ATMOSPHERE PARAMETERS |
title_full |
INFLUENCE OF GLOBAL SEISMIC ACTIVITY ON IONOSPHERE AND NEAR-EARTH ATMOSPHERE PARAMETERS |
title_fullStr |
INFLUENCE OF GLOBAL SEISMIC ACTIVITY ON IONOSPHERE AND NEAR-EARTH ATMOSPHERE PARAMETERS |
title_full_unstemmed |
INFLUENCE OF GLOBAL SEISMIC ACTIVITY ON IONOSPHERE AND NEAR-EARTH ATMOSPHERE PARAMETERS |
title_sort |
influence of global seismic activity on ionosphere and near-earth atmosphere parameters |
title_alt |
ВПЛИВ ГЛОБАЛЬНОЇ СЕЙСМІЧНОЇ АКТИВНОСТІ НА ПАРАМЕТРИ ІОНОСФЕРИ ТА ПРИЗЕМНОЇ АТМОСФЕРИ |
description |
Subject and Purpose. The catastrophic magnitude of life and monetary losses associated with earthquakes spurs extensive searches for reliable earthquake precursors. It is common knowledge that lithospheric processes have a direct bearing on the state of atmosphere and ionosphere during earthquakes. However, the usual practice is to enquire things in the immediate vicinity of the hypocenter, notwithstanding the global nature of seismic processes. The present work is different as considers the changes of pressure and temperature in the near-Earth atmosphere and the total electron content (TEC) in the ionosphere for world regions at arbitrary distances from hypocenters of strong earthquakes.Methods and Methodology. Employed are the data from the maps of the ionospheric TEC and the maps of the pressure and temperature in the atmospheric surface layer in world regions of 40°N latitude. The quantitative estimates are provided by the superposed epoch analysis for winter seasons between 2012 to 2018. Days of strong earthquakes of the Richter magnitudes within 6.3 to 7.9 are taken for the "zeros" whatever the geographical coordinates of the event.Results. The near-Earth atmosphere pressure P0 shows a decrease for about 5 days before the earthquake and gets elevated for about 5 days after the event. The air temperature T behaves in the opposite way. The TEC shows a sharp increase 2 to 5 days before the earthquake. The typical deviations ΔP0 and ΔT are of up to 2 hPa and 0.3 K, respectively. The TEC deviations, ΔTEC, are within 3 to 4%. Where the longitudes fall on the lithosphere plate boundaries, these deviations are nearly doubled. Also, the magnitude of the effect is higher in the regions where the atmospheric pressure is lower. The established patterns indicate that the gas release from underground plays an important role in the lithosphere-atmosphere and lithosphere-ionosphere interaction effects. In this case, the main part is played by radon fluxes that initiate the near-Earth atmosphere ionization and trigger a whole chain of secon- dary processes.Conclusions. The results of the work indicate that atmospheric and ionospheric effects caused by lithospheric processes take place at arbitrary distances from strong earthquake hypocenters. Gaseous emissions from underground play an important role as a primary factor of these global effects.Keywords: earthquake, radon, atmospheric pressure, total electron content, lithosphere-atmospheric-ionospheric interactionManuscript submitted 06.12.2021Radio phys. radio astron. 2023, 28(2): 130-142REFERENCES 1. Gorny, V.I., Salman, A.G., Tronin, A.A., and Shilin, B.V., 1988. Outgoing infrared radiation of the Earth as an indicator of seismic activity. Dokl. AN SSSR, 301(1), pp. 67—69 (in Russian).2. Tronin, A.A., Biagi, P.F, Molchanov, O.A., Khatkevich, Y.V., and Gordeev, E.I., 2004. Temperature variations related to earth- quakes from simultaneous observation at the ground stations and by satellites in Kamchatka area. Phys. Chem. Earth, 29(4—9), pp. 501—506. DOI: https://doi.org/10.1016/j.pce.2003.09.0243. Dunajecka, M.A., and Pulinets, S.A., 2005. Atmospheric and thermal anomalies observed around the time of strong earthquakes in Mexico. Atmosfera, 18(4), pp. 235—247.4. Pulinets, S.A., and Uzunov, D.P., 2011. There is no alternative to satellite technologies. On the problem of monitoring natural and man-made disasters. Trudy IPG imeni E.K. Fedorova, 89, pp. 173—185 (in Russian).5. Smirnov, S.E, Mikhailova, G.A., Mikhailov, Yu.M., and Kapustina, O.V., 2017. Effects of strong earthquakes in variations of electrical and meteorological quantities in the near-ground atmosphere in Kamchatka. Geomagn. Aeron., 57(5), pp. 656—663 (in Russian). DOI:https://doi.org/10.7868/S00167940170501706. Ouzounov, D., and Freund, F., 2004. Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data. Adv. Space Res., 33(3), pp. 268—273. DOI: https://doi.org/10.1016/S0273-1177(03)00486-17. Svensmark, H., Pedersen, J.O.P., Marsh, N.D., Enghoff, M.B., and Uggerhoj, U.I., 2007. Experimental evidence for the role of ions in particle nucleation under atmospheric conditions. Proc. R. Soc. A, 463(2078), pp. 385—396. DOI: https://doi.org/10.1098/rspa.2006.17738. Levina, G.V., Moiseev, S.S., and Rutkevich, P.B., 2000. Hydrodynamic alpha-effect in a convective system. In: L. Debnath andD.N. Riahi, eds. Nonlinear Instability, Chaos and Turbulence. Vol. 25. Advances in Fluid Mechanics. Lincoln, Lincolnshire, United Kingdom: Wit Press, pp. 111—162.9. Rulenko, O.P., and Kuzmin, Yu.D., 2013. Increase in the volumetric activity of radon and thoron in Kamchatka before the cata- strophic earthquake in Japan on March 11, 2011. In: Solar-terrestrial interactions and physics of earthquake precursors. Proc. VI Int. conf. Paratunka, Kamchatka, Russia, Sep. 9—13, 2013, pp. 430—434 (in Russian).10. Dobrovolskiy, I.P., 1991. Theory of tectonic earthquake preparation. Moscow, Russia: Nauka Publ. (in Russian).11. Nishimura, S., and Katsura, I., 1990. Radon in soil gas: applications in exploration and earthquake prediction. In: Geochemistry of gaseous elements and compounds. Athens: Theophrastus Publ., pp. 497—533.12. Shumakova, E.M., 2019. Geodynamics as one of possible reasons for an increase in air temperature in winter in the Volga basin. Trudy RGGMU, Meteorology, 55, pp. 59—73. (in Russian). DOI: https://doi.org/10.33933/2074-2762-2019-55-59-7313. Jin, S., Occhipinti, G., and Jin, R., 2015. GNSS ionospheric seismology: Recent observation evidences and characteristics. Earth-Science Rev., 147, pp. 54—64. DOI: https://doi.org/10.1016/j.earscirev.2015.05.00314. Hobara, Y., and Parrot, M., 2005. Ionospheric perturbations linked to a very powerful seismic event. J. Atmos. Terr. Phys., 67(7), pp. 677—685. DOI: https://doi.org/10.1016/j.jastp.2005.02.00615. Liu, J.Y., Chen, Y.I., Chuo, Y.J., and Chen, C.S., 2006. A statistical investigation of preearthquake ionospheric anomaly. J. Geophys. Res., 111(A5), A05304. DOI: https://doi.org/10.1029/2005JA01133316. Liperovskaya, E.V., Parro, M., Bogdanov, V.V., Meister, K.V., Rodkin, M.V., and Liperovskiy, V.A., 2007. On foF2 disturbances in the mid-latitude ionosphere before strong earthquakes. In: Solar-terrestrial interactions and physics of earthquake precursors. Proc. of the IV Int. conf. Paratunka, Kamchatka, Russia, 14—17 Aug. 2007, section 5, pp. 367—372 (in Russian).17. Heki, K., 2011. Ionospheric electron enhancement preceding the 2011 Tohoku‐Oki earthquake. Geophys. Res. Lett., 38(17), L17312. DOI: https://doi.org/10.1029/2011GL04790818. Khizhnyak, V.V., Khizhnyak, V.V., Dedenok, V.P., and Tkachenko, A.A., 2012. Ionospheric disturbances before strong earth- quakes in Haiti (M 7.2) and in Japan (M 9.0) according to satellite radio navigation systems. Space Sci. and Technol., 18(6), pp. 35—42 (in Russian). DOI: https://doi.org/10.15407/knit2012.06.03519. Pulinets, S.A., Ouzounov, D.P., Karelin, A.V., and Davidenko, D.V., 2015. Physical Bases of the Generation of Short Term Earth- quake Precursors: A Complex Model of Ionization Induced Geophysical Processes in the Lithosphere—Atmosphere—Iono- sphere—Magnetosphere System. Geomag. Aeron., 55(4), pp. 521—538. DOI: https://doi.org/10.1134/S001679321504013120. Shuvalov, V.A., Makarov, A.L., and Lazuchenkov, D.N., 2016. Earthquake identification by satellite measurements of ionospheric plasma disturbances. Space Sci. and Technol., 22(1), pp. 64—78 (in Russian). DOI: https://doi.org/10.15407/knit2016.01.06421. Korepanov, V., hayakawa, M., Yampolski, Yu., and Lizunov, G., 2009. AGW as a seismo-ionospheric coupling responsible agent. Phys. Chem. Earth, 34(6—7), pp. 485—495. DOI: https://doi.org/10.1016/j.pce.2008.07.01422. Freund, F., 2002. Charge generation and propagation in igneous rocks. J. Geodyn., vol. 33(4—5), pp. 543—570. DOI: https://doi.org/10.1016/S0264-3707(02)00015-723. Hoppel, W.A., Anderson, R.V., and Willet, J.C., 1986. Atmospheric Electricity in the Planetary Boundary Layer. In: The Earth’s Electrical Environment. Washington: Nat. Acad. Press, pp. 149—165.24. Liperovsky, V.A., Meister, C.-V., Liperovskaya, E.V., Davidov, V.F., and Bogdanov, V.V., 2005. On the possible influence of radon and aerosol injection on the atmosphere and ionosphere before earthquakes. Nat. Hazards Earth Syst. Sci., 5(6), pp. 783—789. DOI: https://doi.org/10.5194/nhess-5-783-200525. Gorkavy, N.N., Trapeznikov, Yu.A., and Fridman, A.M., 1994. On the global component of the seismic process and its relationship with the observed features of the Earth’s rotation. Dokl. RAN, Geophysics, 338(4), pp. 525—527 (in Russian).26. Vikulin, A.V., and Ivanchin, A.G. 1998. Rotational model of seismic process. Tikhookeanskaya Geologiya, 17(6), pp. 95—103 (in Russian).27. Gufeld, I.L., 2007. The seismic process. Physical and chemical aspects. Korolev, M.R., Russia: TSNIIMash. Publ. (in Russian).28. Zakharov, I.G., and Chernogor, L.F., 2018. Ionosphere as an indicator of processes in the geospace, troposphere, and lithosphere. Geomagn. Aeron., 58(3), pp. 430—437. DOI: https://doi.org/10.1134/S001679321803016729. Zakharov, I.G., and Chernogor, L.F., 2021. Influence of global seismic activity on processes in the atmosphere and ionosphere. Space Sci. and Technol., 27(5), pp. 19—34. DOI: https://doi.org/10.15407/knit2021.05.01930. Daniel, W.W., 1990. Friedman two-way analysis of variance by ranks. In: Applied Nonparametric Statistics. 2nd ed. Boston: PWS- Kent, pp. 262–274. ISBN 978-0-534-91976-431. Zakrzhevskaya, N.A., and Sobolev, G.A., 2004. Influence of magnetic storms with sudden onset on seismicity in different regions.J. Volcanol. Seismol., 3, pp. 63—75 (in Russian).32. Tertyshnikov, A.V., 2013. Estimation of the practical significance of geomagnetic precursors of strong earthquakes. Heliogeophys. Res., 3, pp. 63—70 (in Russian).33. Chernogor, L.F., 2019. Possibility of generating quasiperiodic magnetic earthquake precursors. Geomagn. Aeron., 59(3), pp. 400— 408 (in Russian). DOI: https://doi.org/10.1134/S001679401903006434. Voitov, G.I., 1986. Chemistry and the scale of the modern flow of natural gases in various geostructural zones of the Earth. Zhur- nal VChO, 31(5), pp. 533—539 (in Russian).35. Syvorotkin, V.L., 1994. Ozone Layer, Earth Degassing, Rifting and Global Catastrophes. Moscow, Russia: Geoinformmark Publ. (in Russian).36. Sytinskiy, A.D., 1979. On a solar-atmospheric effect during strong earthquakes. Dokl. AN SSSR, 245(6), pp. 1337—1340 (in Russian).37. Bokov, V.N., 2003. Variability of atmospheric circulation as an initiator of strong earthquakes. Bull. RGO RAN, 135(6), pp. 54—65 (in Russian).38. Chernogor, L.F., 2003. Physics of Earth, Atmosphere, and Geospace from the Standpoint of System. Radio Phys. Radio Astron., 8(1), pp. 59—106 (in Russian).39. Voitov, G.I., 1999. On cold degassing of methane into the Earth’s troposphere. In: Yu.G. Leonov, ed., 1999. Theoretical and Regional Issues of Geodynamics. Transactions of GIN RAS, 515, pp. 242—251. Мoscow, Russia: Nauka Publ. (in Russian).40. Letnikov, F.A., 2002. Earth degassin as a global process of self-organization. In: Degassing of the Earth: geodynamics, geofluids, oil and gas. Proc. of the Int. Conf. Moscow, Russia, 20—24 May 2002. Moscow: GEOS Publ., pp. 6—7 (in Russian).41. Shuleikin, V.N., Reznichenko, A.P., and Pushchina, L.V., 2008. On the relations of methane, hydrogen and radon in soil air. In: De- gassing of the Earth: geodynamics, geofluids, oil, gas and their parageneses. Proc. of All-Russian Conf. Moscow, Russia, 22–25 Apr. 2008. Moscow: GEOS Publ., pp. 544—547 (in Russian).42. Marakushev, A.A., 1992. The origin of the Earth and the nature of its endogenous activity. Moscow, Russia: Nauka Publ. (in Russian).43. Gufeld, I.L., Matveeva, M.I., and Novoselov, O.N., 2011. Why we cannot predict strong earthquakes in the Earth’s crust. Geodyn. Tectonophys., 2(4), pp. 378—415. DOI: https://doi.org/10.5800/GT-2011-2-4-005144. Gufeld, I.L., Gusev, G.A., and Matveeva, M.I., 1998. Metastability of the lithosphere as a manifestation of the ascending diffusion of light gases. Dokl. RAN, 362(5), pp. 677—680 (in Russian).45. Chernogor, L.F., 2003. Earth—atmosphere—geospace as an open dynamic nonlinear system. Space Sci. and Technol., 9(5/6), pp. 96—105 (in Russian). DOI: https://doi.org/10.15407/knit2003.05.09646. Woith, H., 2015. Radon earthquake precursor: A short review. Eur. Phys. J. Spec. Top., 224(4), pp. 611—627. DOI: https://doi.org/10.1140/epjst/e2015-02395-9 |
publisher |
Видавничий дім «Академперіодика» |
publishDate |
2023 |
url |
http://rpra-journal.org.ua/index.php/ra/article/view/1412 |
work_keys_str_mv |
AT zakharovig influenceofglobalseismicactivityonionosphereandnearearthatmosphereparameters AT chernogorlf influenceofglobalseismicactivityonionosphereandnearearthatmosphereparameters AT zakharovig vplivglobalʹnoísejsmíčnoíaktivnostínaparametriíonosferitaprizemnoíatmosferi AT chernogorlf vplivglobalʹnoísejsmíčnoíaktivnostínaparametriíonosferitaprizemnoíatmosferi |
first_indexed |
2024-05-26T06:28:55Z |
last_indexed |
2024-05-26T06:28:55Z |
_version_ |
1802895111179206656 |
spelling |
oai:ri.kharkov.ua:article-14122023-06-23T06:20:41Z INFLUENCE OF GLOBAL SEISMIC ACTIVITY ON IONOSPHERE AND NEAR-EARTH ATMOSPHERE PARAMETERS ВПЛИВ ГЛОБАЛЬНОЇ СЕЙСМІЧНОЇ АКТИВНОСТІ НА ПАРАМЕТРИ ІОНОСФЕРИ ТА ПРИЗЕМНОЇ АТМОСФЕРИ Zakharov, I. G. Chernogor, L. F. earthquake; radon; atmospheric pressure; total electron content; lithosphere-atmospheric-ionospheric interaction землетрус; радон; атмосферний тиск; повний електронний вміст; літосферно-атмосферно-іоносферна взаємодія Subject and Purpose. The catastrophic magnitude of life and monetary losses associated with earthquakes spurs extensive searches for reliable earthquake precursors. It is common knowledge that lithospheric processes have a direct bearing on the state of atmosphere and ionosphere during earthquakes. However, the usual practice is to enquire things in the immediate vicinity of the hypocenter, notwithstanding the global nature of seismic processes. The present work is different as considers the changes of pressure and temperature in the near-Earth atmosphere and the total electron content (TEC) in the ionosphere for world regions at arbitrary distances from hypocenters of strong earthquakes.Methods and Methodology. Employed are the data from the maps of the ionospheric TEC and the maps of the pressure and temperature in the atmospheric surface layer in world regions of 40°N latitude. The quantitative estimates are provided by the superposed epoch analysis for winter seasons between 2012 to 2018. Days of strong earthquakes of the Richter magnitudes within 6.3 to 7.9 are taken for the "zeros" whatever the geographical coordinates of the event.Results. The near-Earth atmosphere pressure P0 shows a decrease for about 5 days before the earthquake and gets elevated for about 5 days after the event. The air temperature T behaves in the opposite way. The TEC shows a sharp increase 2 to 5 days before the earthquake. The typical deviations ΔP0 and ΔT are of up to 2 hPa and 0.3 K, respectively. The TEC deviations, ΔTEC, are within 3 to 4%. Where the longitudes fall on the lithosphere plate boundaries, these deviations are nearly doubled. Also, the magnitude of the effect is higher in the regions where the atmospheric pressure is lower. The established patterns indicate that the gas release from underground plays an important role in the lithosphere-atmosphere and lithosphere-ionosphere interaction effects. In this case, the main part is played by radon fluxes that initiate the near-Earth atmosphere ionization and trigger a whole chain of secon- dary processes.Conclusions. The results of the work indicate that atmospheric and ionospheric effects caused by lithospheric processes take place at arbitrary distances from strong earthquake hypocenters. Gaseous emissions from underground play an important role as a primary factor of these global effects.Keywords: earthquake, radon, atmospheric pressure, total electron content, lithosphere-atmospheric-ionospheric interactionManuscript submitted 06.12.2021Radio phys. radio astron. 2023, 28(2): 130-142REFERENCES 1. Gorny, V.I., Salman, A.G., Tronin, A.A., and Shilin, B.V., 1988. Outgoing infrared radiation of the Earth as an indicator of seismic activity. Dokl. AN SSSR, 301(1), pp. 67—69 (in Russian).2. Tronin, A.A., Biagi, P.F, Molchanov, O.A., Khatkevich, Y.V., and Gordeev, E.I., 2004. Temperature variations related to earth- quakes from simultaneous observation at the ground stations and by satellites in Kamchatka area. Phys. Chem. Earth, 29(4—9), pp. 501—506. DOI: https://doi.org/10.1016/j.pce.2003.09.0243. Dunajecka, M.A., and Pulinets, S.A., 2005. Atmospheric and thermal anomalies observed around the time of strong earthquakes in Mexico. Atmosfera, 18(4), pp. 235—247.4. Pulinets, S.A., and Uzunov, D.P., 2011. There is no alternative to satellite technologies. On the problem of monitoring natural and man-made disasters. Trudy IPG imeni E.K. Fedorova, 89, pp. 173—185 (in Russian).5. Smirnov, S.E, Mikhailova, G.A., Mikhailov, Yu.M., and Kapustina, O.V., 2017. Effects of strong earthquakes in variations of electrical and meteorological quantities in the near-ground atmosphere in Kamchatka. Geomagn. Aeron., 57(5), pp. 656—663 (in Russian). DOI:https://doi.org/10.7868/S00167940170501706. Ouzounov, D., and Freund, F., 2004. Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data. Adv. Space Res., 33(3), pp. 268—273. DOI: https://doi.org/10.1016/S0273-1177(03)00486-17. Svensmark, H., Pedersen, J.O.P., Marsh, N.D., Enghoff, M.B., and Uggerhoj, U.I., 2007. Experimental evidence for the role of ions in particle nucleation under atmospheric conditions. Proc. R. Soc. A, 463(2078), pp. 385—396. DOI: https://doi.org/10.1098/rspa.2006.17738. Levina, G.V., Moiseev, S.S., and Rutkevich, P.B., 2000. Hydrodynamic alpha-effect in a convective system. In: L. Debnath andD.N. Riahi, eds. Nonlinear Instability, Chaos and Turbulence. Vol. 25. Advances in Fluid Mechanics. Lincoln, Lincolnshire, United Kingdom: Wit Press, pp. 111—162.9. Rulenko, O.P., and Kuzmin, Yu.D., 2013. Increase in the volumetric activity of radon and thoron in Kamchatka before the cata- strophic earthquake in Japan on March 11, 2011. In: Solar-terrestrial interactions and physics of earthquake precursors. Proc. VI Int. conf. Paratunka, Kamchatka, Russia, Sep. 9—13, 2013, pp. 430—434 (in Russian).10. Dobrovolskiy, I.P., 1991. Theory of tectonic earthquake preparation. Moscow, Russia: Nauka Publ. (in Russian).11. Nishimura, S., and Katsura, I., 1990. Radon in soil gas: applications in exploration and earthquake prediction. In: Geochemistry of gaseous elements and compounds. Athens: Theophrastus Publ., pp. 497—533.12. Shumakova, E.M., 2019. Geodynamics as one of possible reasons for an increase in air temperature in winter in the Volga basin. Trudy RGGMU, Meteorology, 55, pp. 59—73. (in Russian). DOI: https://doi.org/10.33933/2074-2762-2019-55-59-7313. Jin, S., Occhipinti, G., and Jin, R., 2015. GNSS ionospheric seismology: Recent observation evidences and characteristics. Earth-Science Rev., 147, pp. 54—64. DOI: https://doi.org/10.1016/j.earscirev.2015.05.00314. Hobara, Y., and Parrot, M., 2005. Ionospheric perturbations linked to a very powerful seismic event. J. Atmos. Terr. Phys., 67(7), pp. 677—685. DOI: https://doi.org/10.1016/j.jastp.2005.02.00615. Liu, J.Y., Chen, Y.I., Chuo, Y.J., and Chen, C.S., 2006. A statistical investigation of preearthquake ionospheric anomaly. J. Geophys. Res., 111(A5), A05304. DOI: https://doi.org/10.1029/2005JA01133316. Liperovskaya, E.V., Parro, M., Bogdanov, V.V., Meister, K.V., Rodkin, M.V., and Liperovskiy, V.A., 2007. On foF2 disturbances in the mid-latitude ionosphere before strong earthquakes. In: Solar-terrestrial interactions and physics of earthquake precursors. Proc. of the IV Int. conf. Paratunka, Kamchatka, Russia, 14—17 Aug. 2007, section 5, pp. 367—372 (in Russian).17. Heki, K., 2011. Ionospheric electron enhancement preceding the 2011 Tohoku‐Oki earthquake. Geophys. Res. Lett., 38(17), L17312. DOI: https://doi.org/10.1029/2011GL04790818. Khizhnyak, V.V., Khizhnyak, V.V., Dedenok, V.P., and Tkachenko, A.A., 2012. Ionospheric disturbances before strong earth- quakes in Haiti (M 7.2) and in Japan (M 9.0) according to satellite radio navigation systems. Space Sci. and Technol., 18(6), pp. 35—42 (in Russian). DOI: https://doi.org/10.15407/knit2012.06.03519. Pulinets, S.A., Ouzounov, D.P., Karelin, A.V., and Davidenko, D.V., 2015. Physical Bases of the Generation of Short Term Earth- quake Precursors: A Complex Model of Ionization Induced Geophysical Processes in the Lithosphere—Atmosphere—Iono- sphere—Magnetosphere System. Geomag. Aeron., 55(4), pp. 521—538. DOI: https://doi.org/10.1134/S001679321504013120. Shuvalov, V.A., Makarov, A.L., and Lazuchenkov, D.N., 2016. Earthquake identification by satellite measurements of ionospheric plasma disturbances. Space Sci. and Technol., 22(1), pp. 64—78 (in Russian). DOI: https://doi.org/10.15407/knit2016.01.06421. Korepanov, V., hayakawa, M., Yampolski, Yu., and Lizunov, G., 2009. AGW as a seismo-ionospheric coupling responsible agent. Phys. Chem. Earth, 34(6—7), pp. 485—495. DOI: https://doi.org/10.1016/j.pce.2008.07.01422. Freund, F., 2002. Charge generation and propagation in igneous rocks. J. Geodyn., vol. 33(4—5), pp. 543—570. DOI: https://doi.org/10.1016/S0264-3707(02)00015-723. Hoppel, W.A., Anderson, R.V., and Willet, J.C., 1986. Atmospheric Electricity in the Planetary Boundary Layer. In: The Earth’s Electrical Environment. Washington: Nat. Acad. Press, pp. 149—165.24. Liperovsky, V.A., Meister, C.-V., Liperovskaya, E.V., Davidov, V.F., and Bogdanov, V.V., 2005. On the possible influence of radon and aerosol injection on the atmosphere and ionosphere before earthquakes. Nat. Hazards Earth Syst. Sci., 5(6), pp. 783—789. DOI: https://doi.org/10.5194/nhess-5-783-200525. Gorkavy, N.N., Trapeznikov, Yu.A., and Fridman, A.M., 1994. On the global component of the seismic process and its relationship with the observed features of the Earth’s rotation. Dokl. RAN, Geophysics, 338(4), pp. 525—527 (in Russian).26. Vikulin, A.V., and Ivanchin, A.G. 1998. Rotational model of seismic process. Tikhookeanskaya Geologiya, 17(6), pp. 95—103 (in Russian).27. Gufeld, I.L., 2007. The seismic process. Physical and chemical aspects. Korolev, M.R., Russia: TSNIIMash. Publ. (in Russian).28. Zakharov, I.G., and Chernogor, L.F., 2018. Ionosphere as an indicator of processes in the geospace, troposphere, and lithosphere. Geomagn. Aeron., 58(3), pp. 430—437. DOI: https://doi.org/10.1134/S001679321803016729. Zakharov, I.G., and Chernogor, L.F., 2021. Influence of global seismic activity on processes in the atmosphere and ionosphere. Space Sci. and Technol., 27(5), pp. 19—34. DOI: https://doi.org/10.15407/knit2021.05.01930. Daniel, W.W., 1990. Friedman two-way analysis of variance by ranks. In: Applied Nonparametric Statistics. 2nd ed. Boston: PWS- Kent, pp. 262–274. ISBN 978-0-534-91976-431. Zakrzhevskaya, N.A., and Sobolev, G.A., 2004. Influence of magnetic storms with sudden onset on seismicity in different regions.J. Volcanol. Seismol., 3, pp. 63—75 (in Russian).32. Tertyshnikov, A.V., 2013. Estimation of the practical significance of geomagnetic precursors of strong earthquakes. Heliogeophys. Res., 3, pp. 63—70 (in Russian).33. Chernogor, L.F., 2019. Possibility of generating quasiperiodic magnetic earthquake precursors. Geomagn. Aeron., 59(3), pp. 400— 408 (in Russian). DOI: https://doi.org/10.1134/S001679401903006434. Voitov, G.I., 1986. Chemistry and the scale of the modern flow of natural gases in various geostructural zones of the Earth. Zhur- nal VChO, 31(5), pp. 533—539 (in Russian).35. Syvorotkin, V.L., 1994. Ozone Layer, Earth Degassing, Rifting and Global Catastrophes. Moscow, Russia: Geoinformmark Publ. (in Russian).36. Sytinskiy, A.D., 1979. On a solar-atmospheric effect during strong earthquakes. Dokl. AN SSSR, 245(6), pp. 1337—1340 (in Russian).37. Bokov, V.N., 2003. Variability of atmospheric circulation as an initiator of strong earthquakes. Bull. RGO RAN, 135(6), pp. 54—65 (in Russian).38. Chernogor, L.F., 2003. Physics of Earth, Atmosphere, and Geospace from the Standpoint of System. Radio Phys. Radio Astron., 8(1), pp. 59—106 (in Russian).39. Voitov, G.I., 1999. On cold degassing of methane into the Earth’s troposphere. In: Yu.G. Leonov, ed., 1999. Theoretical and Regional Issues of Geodynamics. Transactions of GIN RAS, 515, pp. 242—251. Мoscow, Russia: Nauka Publ. (in Russian).40. Letnikov, F.A., 2002. Earth degassin as a global process of self-organization. In: Degassing of the Earth: geodynamics, geofluids, oil and gas. Proc. of the Int. Conf. Moscow, Russia, 20—24 May 2002. Moscow: GEOS Publ., pp. 6—7 (in Russian).41. Shuleikin, V.N., Reznichenko, A.P., and Pushchina, L.V., 2008. On the relations of methane, hydrogen and radon in soil air. In: De- gassing of the Earth: geodynamics, geofluids, oil, gas and their parageneses. Proc. of All-Russian Conf. Moscow, Russia, 22–25 Apr. 2008. Moscow: GEOS Publ., pp. 544—547 (in Russian).42. Marakushev, A.A., 1992. The origin of the Earth and the nature of its endogenous activity. Moscow, Russia: Nauka Publ. (in Russian).43. Gufeld, I.L., Matveeva, M.I., and Novoselov, O.N., 2011. Why we cannot predict strong earthquakes in the Earth’s crust. Geodyn. Tectonophys., 2(4), pp. 378—415. DOI: https://doi.org/10.5800/GT-2011-2-4-005144. Gufeld, I.L., Gusev, G.A., and Matveeva, M.I., 1998. Metastability of the lithosphere as a manifestation of the ascending diffusion of light gases. Dokl. RAN, 362(5), pp. 677—680 (in Russian).45. Chernogor, L.F., 2003. Earth—atmosphere—geospace as an open dynamic nonlinear system. Space Sci. and Technol., 9(5/6), pp. 96—105 (in Russian). DOI: https://doi.org/10.15407/knit2003.05.09646. Woith, H., 2015. Radon earthquake precursor: A short review. Eur. Phys. J. Spec. Top., 224(4), pp. 611—627. DOI: https://doi.org/10.1140/epjst/e2015-02395-9 Предмет і мета роботи. Актуальність досліджень зумовлена необхідністю попередження несприятливого впливу природних збурень на людину. Вплив процесів у літосфері на стан атмосфери та іоносфери під час землетрусів (ЗТ) активно ви вчається у сучасних дослідженнях. Однак майже всі дослідження проводилися поблизу осередків ЗТ, незважаючи на глобальний характер сейсмічного процесу. Мета роботи — аналіз змін тиску і температури приземної атмосфери та повного електронного вмісту (ПЕВ) іоносфери на довільній відстані від осередків потужних ЗТ.Методи та методологія.Використано дані для 40° пн. ш. з карт ПЕВ іоносфери, карт тиску і температури приземної атмосфери. Розрахунки проведено методом накладених епох. Як «нульові» використано дні потужних ЗТ з магнітудою від 6.3 до 7.9 балів за шкалою Ріхтера незалежно від їх координат. Дослідження проведено для зимових сезонів 2012—2018 рр.Результати. Приземний тиск P0 був знижений протягом приблизно п’яти днів напередодні ЗТ і підвищений протягом п’яти днів після нього. Температура повітря Tзмінюється у протифазі. Значення ПЕВ різко зростають за два-п’ять днів напередодні ЗТ. Типові значення відхилень складають: ΔP0 — до 2 гПа, ΔT — до 0.3 К, ΔПЕВ — 3...4 %. Поблизу довгот, які припадають на межі літосферних плит, відхилення збільшується майже вдвічі. Амплітуда ефекту вище над регіонами зі зниженим атмосферним тиском. Установлені закономірності свідчать про важливу роль дегазації земних надр у літосферно-атмосферних та літосферно-іоносферних ефектах. Основну роль відіграють потоки радону, що викликають іонізацію приземного повітря та ініціюють низку вторинних процесів.Висновки. Результати роботи свідчать про наявність атмосферних та іоносферних ефектів, викликаних літосферни- ми процесами, на довільній відстані від осередків потужних землетрусів і вказують на важливу роль дегазації земних надр як первинного чинника цих глобальних ефектів.Ключові слова: землетрус, радон, атмосферний тиск, повний електронний вміст, літосферно-атмосферно-іоносферна взаємодіяСтаття надійшла до редакції 06.12.2021Radio phys. radio astron. 2023, 28(2): 130-142БІБЛІОГРАФІЧНИЙ СПИСОК 1. Горный В.И., Сальман А.Г., Тронин А.А., Шилин Б.В. Уходящее инфракрасное излучение Земли — индикатор сейсмической активности. Доклады АН СССР. 1988. Т. 301, № 1. С. 67—69. 2. Tronin A.A., Biagi P.F, Molchanov O.A., Khatkevich Y.V., and Gordeev E.I. Temperature variations related to earthquakes from simultaneous observation at the ground stations and by satellites in Kamchatka area. Phys. Chem. Earth. 2004. Vol. 29, Iss. 4—9. P. 501—506. DOI: 10.1016/j.pce.2003.09.024 3. Dunajecka M.A., and Pulinets S.A. Atmospheric and thermal anomalies observed around the time of strong earthquakes in Mex- ico. Atmosfera. 2005. Vol. 18, Iss. 4. P. 235—247. 4. Пулинец С.А., Узунов Д.П. Спутниковым технологиям нет альтернативы. О проблеме мониторинга природных и техногенных катастроф. Труды Ин-та прикл. геофизики им. Е.К. Федорова. 2011. Вып. 89. С. 173—185. 5. Смирнов С.Э., Михайлова Г.А., Михайлов Ю.М., Капустина О.В. Эффекты сильных землетрясений в вариациях электрических и метеорологических величин в приземной атмосфере на Камчатке. Геомагнетизм и аэрономия. 2017. Т. 57, № 5. С. 656—663. DOI: 10.7868/S0016794017050170 6. Ouzounov D., and Freund F. Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data. Adv. Space Res. 2004. Vol. 33, Iss. 3. P. 268—273. DOI: 10.1016/S0273-1177(03)00486-1. 7. Svensmark H., Pedersen J.O.P., Marsh N.D., Enghoff M.B., and Uggerhoj U.I. Experimental evidence for the role of ions in particle nucleation under atmospheric conditions. Proc. R. Soc. A. 2007. Vol. 463, Iss. 2078. Р. 385—396. DOI: https://doi.org/10.1098/ rspa.2006.1773 8. Levina, G.V., Moiseev, S.S., and Rutkevich, P.B. Hydrodynamic alpha-effect in a convective system. L. Debnath and D.N. Riahi, eds. Nonlinear Instability, Chaos and Turbulence. Vol. 25. Advances in Fluid Mechanics. Lincoln, Lincolnshire, United Kingdom: Wit Press, 2000. Р. 111—162. 9. Руленко О.П., Кузьмин Ю.Д. Увеличение объемной активности радона и торона на Камчатке перед катастрофическим землетрясением в Японии 11 марта 2011 г. Солнечно-земные связи и физика предвестников землетрясений. Солнеч- но-земные связи и физика предвестников землетрясений. Материалы VI межд. конф. (Паратунка, Камчатский край, 9—13 сент. 2013). Паратунка, Россия, 2013. С. 430—434. 10. Добровольский И.П. Теория подготовки тектонического землетрясения. Москва: Наука, 1991. 224 с. 11. Nishimura S., and Katsura I. Radon in soil gas: applications in exploration and earthquake prediction. Geochemistry of gaseous elements and compounds. Athens: Theophrastus Publ., 1990. P. 497—533. 12. Шумакова Е.М. Геодинамика как одна из возможных причин повышения температуры воздуха в зимний период в бассейне Волги. Ученые записки РГГМУ. Метеорология. 2019. № 55. С. 59—73. DOI: 10.33933/2074-2762-2019-55-59-73 13. Jin S., Occhipinti G., and Jin R. GNSS ionospheric seismology: Recent observation evidences and characteristics. Earth-Science Rev. 2015. Vol. 147. P. 54—64. DOI: http://dx.doi.org/10.1016/j.earscirev.2015.05.003 0012-8252 14. Hobara Y., and Parrot M. Ionospheric perturbations linked to a very powerful seismic event. J. Atmos. Terr. Phys. 2005. Vol. 67, Iss. 7. P. 677—685. DOI: 10.1016/j.jastp.2005.02.006 15. Liu J.Y., Chen Y.I., Chuo Y.J., and Chen C.S. A statistical investigation of preearthquake ionospheric anomaly. J. Geophys. Res.: Atmos. 2006. Vol. 111, Iss. A5. A05304. DOI: 10.1029/2005JA011333 16. Липеровская Е.В., Парро М., Богданов В.В., Мейстер К.В., Родкин М.В., Липеровский В.А. О возмущениях foF2 в средне- широтной ионосфере перед сильними землетрясениями. Солнечно-земные связи и физика предвестников землетрясений. Материалы IV межд. конф. (Паратунка, Камчатский край, 14—17 авг. 2007). Паратунка, Россия, 2007. Секция 5. С. 367— 372. 17. Heki K. Ionospheric electron enhancement preceding the 2011 Tohoku‐Oki earthquake. Geophys. Res. Lett. 2011. Vol. 38, Iss. 17. L17312. DOI: 10.1029/2011GL047908. 18. Хижняк В.В., Деденок В.П., Ткаченко А.А. Ионосферные возмущения перед сильными землетрясениями на Гаити (М 7.2) и в Японии (М 9.0) по данным спутниковых радионавигационных систем. Космічна наука і технологія. 2012. Т. 18, № 6. С. 35—42. DOI: https://doi.org/10.15407/knit2012.06.035 19. Пулинец С.А., Узунов Д.П., Карелин А.В., Давиденко Д.В. Физические основы генерации краткосрочных предвестников землетрясений. Комплексная модель геофизических процессов в системе литосфера—атмосфера—ионосфера— магнитосфера, инициируемых ионизацией. Геомагнетизм и аэрономия. 2015. Т. 55, № 4. С. 1—19. DOI: 10.7868/ S0016794015040136 20. Шувалов В.А., Макаров А.Л., Лазученков Д.Н. Идентификация землетрясений по спутниковым измерениям воз- мущений ионосферной плазмы. Космічна наука і технологія. 2016. Т. 22, № 1. С. 64—78. DOI: https://doi.org/10.15407/ knit2016.01.064 21. Korepanov V., Hayakawa M., Yampolski Yu., and Lizunov G. AGW as a seismo-ionospheric coupling responsible agent. Phys. Chem. Earth. 2009. Vol. 34, Iss. 6—7. P. 485—495. DOI:10.1016/j.pce.2008.07.014 22. Freund F. Charge generation and propagation in igneous rocks. J. Geodyn. 2002. Vol. 33, Iss. 4—5. P. 543—570. DOI: 10.1016/ S0264-3707(02)00015-7 23. Hoppel W.A., Anderson R.V., and Willet J.C. Atmospheric electricity in the planetary boundary layer. The Earth’s Electrical Environment. Washington: National Academic Press, 1986. P. 149—165. 24. Liperovsky V.A., Meister C.-V., Liperovskaya E.V., Davidov V.F., and Bogdanov V.V. On the possible influence of radon and aerosol injection on the atmosphere and ionosphere before earthquakes. Nat. Hazards Earth Syst. Sci. 2005. Vol. 5, Iss. 6. P. 783— 789. DOI: 10.5194/nhess-5-783-2005 2 25. Горькавый Н.Н., Трапезников Ю.А., Фридман А.М. О глобальной составляющей сейсмического процесса и ее связи с наблюдаемыми особенностями вращения Земли. Докл. РАН. Геофизика. 1994. Т. 338, № 4. С. 525—527. 26. Викулин А.В., Иванчин А.Г. Ротационная модель сейсмического процесса. Тихоокеанская геология. 1998. Т. 17, № 6. С. 95—103. 27. Гуфельд И.Л. Сейсмический процесс. Физико-химические аспекты. Королёв, М.О.: ЦНИИМаш, 2007. 160 с. 28. Zakharov I.G., and Chernogor L.F. Ionosphere as an Indicator of Processes in the Geospace, Troposphere, and Lithosphere. Geo- magn. Aeron. 2018. Vol. 58, Iss. 3. P. 430—437. DOI:10.1134/S0016793218030167 29. Захаров І.Г., Чорногор Л.Ф. Вплив глобальної сейсмічної активності на процеси в атмосфері й іоносфері. Космічна наука і технологія. 2021. T. 27, № 5. С. 19—34. DOI: https://doi.org/10.15407/knit2021.04.000 30. Daniel W.W. Friedman two-way analysis of variance by ranks. Applied Nonparametric Statistics. 2nd ed. Boston: PWS-Kent, 1990. P. 262–274. ISBN 978-0-534-91976-4 31. Закржевская Н.А., Соболев Г.А. Влияние магнитных бурь с внезапным началом на сейсмичность в различных районах.Вулканология и сейсмология. 2004. № 3. С. 63–75. 32. Тертышников А.В. Оценка практической значимости геомагнитных предвестников сильных землетрясений.Гелиогеофизические исследования. 2013. Вып. 3. С. 63—70. 33. Черногор Л.Ф. Возможность генерации квазипериодических магнитных предвестников землетрясений. Геомагнетизм и аэрономия. 2019. Т. 59, № 3. С. 400—408. DOI: 10.1134/S0016794019030064 34. Войтов Г.И. Химизм и масштабы современного потока природных газов в различных геоструктурных зонах Земли.Журнал ВХО. 1986. Т. 31, № 5. С. 533—539. 35. Сывороткин В.Л. Озоновый слой, дегазация Земли, рифтогенез и глобальные катастрофы. Москва: Геоинформмарк, 1994. 68 с. 36. Сытинский А.Д. Об одном солнечно-атмосферном эффекте во время сильных землетрясений. Докл. АН СССР. 1979. Т. 245, № 6. С. 1337—1340. 37. Боков В.Н. Изменчивость атмосферной циркуляции — инициатор сильных землетрясений. Известия РГО РАН. 2003. Т. 135, вып. 6. С. 54—65. 38. Черногор Л.Ф. Физика Земли, атмосферы и геокосмоса в свете системной парадигмы. Радиофизика и радиоастрономия. 2003. Т. 8, № 1. С. 59—106. 39. Войтов Г.И. О холодной дегазации метана в тропосферу Земли. Теоретические и региональные проблемы геодинамики. Тр. Геолог. ин-та РАН. Вып. 515. Москва: Наука, 1999. С. 242—251. 40. Летников Ф.А. Дегазация земли как глобальный процесс самоорганизации. Дегазация Земли: геодинамика, геофлюиды; нефть и газ. Материалы межд. конф. (Москва, 20—24 мая 2002). Москва: ГЕОС, 2002. С. 6—7. 41. Шулейкин В.Н., Резниченко А. П., Пущина Л. В. О связях метана, водорода и радона почвенного воздуха. Дегазация Земли: геодинамика, геофлюиды, нефть, газ и их парагенезы. Материалы Всерос. конф. (Москва, 22—25 апр. 2008).Москва: ГЕОС, 2008. С. 544—547. 42. Маракушев А.А. Происхождение Земли и природа ее эндогенной активности. Москва: Наука, 1992. 208 с. 43. Gufeld I.L., Matveeva M.I., and Novoselov O.N. Why we cannot predict strong earthquakes in the Earth’s crust. Geodyn. Tectono- phys. 2011. Vol. 2, Iss. 4. P. 378—415. DOI: 10.5800/GT2011240051 44. Гуфельд И.Л., Гусев Г.А., Матвеева М.И. Метастабильность литосферы как проявление восходящей диффузии легких газов. Докл. РАН. 1998. Т. 362, № 5. С. 677—680. 45. Черногор Л.Ф. Земля—атмосфера—геокосмос как открытая динамическая нелинейная система. Космічна наука і технологія. 2003. Т. 9, № 5/6. С. 96—105. 46. Woith H. Radon earthquake precursor: A short review. Eur. Phys. J. Spec. Top. 2015. Vol. 224, Iss. 4. P. 611—627. DOI: doi. org/10.1140/epjst/e2015 Видавничий дім «Академперіодика» 2023-06-16 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1412 10.15407/rpra28.02.130 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 28, No 2 (2023); 130 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 28, No 2 (2023); 130 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 28, No 2 (2023); 130 2415-7007 1027-9636 10.15407/rpra28.02 uk http://rpra-journal.org.ua/index.php/ra/article/view/1412/pdf Copyright (c) 2023 RADIO PHYSICS AND RADIO ASTRONOMY |