NEAR-ZONE IONOSPHERIC DISTURBANCES CAUSED BY EXPLOSIVE ERUPTION OF TONGA VOLCANO ON 15 JANUARY 2022
Subject and Purpose. The thermal energy of the Tonga volcano reached 3.9 •1018 J, its power amounted to 9.1•1013 W. The energy and power of the blast waves approached (6.7...7.5) •1018 J and 1011 W, respectively. Ionospheric effects caused by the explosive eruption of the Tonga volcano on January 15...
Збережено в:
Дата: | 2023 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Видавничий дім «Академперіодика»
2023
|
Теми: | |
Онлайн доступ: | http://rpra-journal.org.ua/index.php/ra/article/view/1419 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Radio physics and radio astronomy |
Репозитарії
Radio physics and radio astronomyid |
oai:ri.kharkov.ua:article-1419 |
---|---|
record_format |
ojs |
institution |
Radio physics and radio astronomy |
collection |
OJS |
language |
Ukrainian |
topic |
Tonga volcano ionosphere total electron content ionospheric "hole" quasi-periodic disturbances disturbance parameters вулкан Тонга іоносфера повний електронний вміст іоносферна «діра» квазіперіодичні збурення параметри збурень |
spellingShingle |
Tonga volcano ionosphere total electron content ionospheric "hole" quasi-periodic disturbances disturbance parameters вулкан Тонга іоносфера повний електронний вміст іоносферна «діра» квазіперіодичні збурення параметри збурень Chernogor, L. F. Mylovanov, Yu. B. NEAR-ZONE IONOSPHERIC DISTURBANCES CAUSED BY EXPLOSIVE ERUPTION OF TONGA VOLCANO ON 15 JANUARY 2022 |
topic_facet |
Tonga volcano ionosphere total electron content ionospheric "hole" quasi-periodic disturbances disturbance parameters вулкан Тонга іоносфера повний електронний вміст іоносферна «діра» квазіперіодичні збурення параметри збурень |
format |
Article |
author |
Chernogor, L. F. Mylovanov, Yu. B. |
author_facet |
Chernogor, L. F. Mylovanov, Yu. B. |
author_sort |
Chernogor, L. F. |
title |
NEAR-ZONE IONOSPHERIC DISTURBANCES CAUSED BY EXPLOSIVE ERUPTION OF TONGA VOLCANO ON 15 JANUARY 2022 |
title_short |
NEAR-ZONE IONOSPHERIC DISTURBANCES CAUSED BY EXPLOSIVE ERUPTION OF TONGA VOLCANO ON 15 JANUARY 2022 |
title_full |
NEAR-ZONE IONOSPHERIC DISTURBANCES CAUSED BY EXPLOSIVE ERUPTION OF TONGA VOLCANO ON 15 JANUARY 2022 |
title_fullStr |
NEAR-ZONE IONOSPHERIC DISTURBANCES CAUSED BY EXPLOSIVE ERUPTION OF TONGA VOLCANO ON 15 JANUARY 2022 |
title_full_unstemmed |
NEAR-ZONE IONOSPHERIC DISTURBANCES CAUSED BY EXPLOSIVE ERUPTION OF TONGA VOLCANO ON 15 JANUARY 2022 |
title_sort |
near-zone ionospheric disturbances caused by explosive eruption of tonga volcano on 15 january 2022 |
title_alt |
ІОНОСФЕРНІ ЗБУРЕННЯ У БЛИЖНІЙ ЗОНІ, ВИКЛИКАНІ ЕКСПЛОЗИВНИМ ВИВЕРЖЕННЯМ ВУЛКАНА ТОНГА 15 СІЧНЯ 2022 р. |
description |
Subject and Purpose. The thermal energy of the Tonga volcano reached 3.9 •1018 J, its power amounted to 9.1•1013 W. The energy and power of the blast waves approached (6.7...7.5) •1018 J and 1011 W, respectively. Ionospheric effects caused by the explosive eruption of the Tonga volcano on January 15, 2022 have received due attention. It was established that the ionospheric disturbances spread over global distances, with the greatest disturbances occurring in the near zone. The aim of the present paper is to describe aperiodic and quasi-periodic disturbances started by the Tonga volcano explosion and occurring in the near ionospheric zone.Methods and Methodology. To detect ionospheric disturbances generated by the volcanic eruption, temporal variations of the total electron content (TEC) in a vertical column in the ionosphere were analyzed. The total error of the TEC estimation did not exceed 0.1 TECU.Results. The quantitative characteristics of ionospheric disturbances caused by the explosive eruption of the Tonga volcano have been obtained. It was proved that the appearance of the ionospheric "hole" was caused directly by the volcanic explosion. With dis- tance away from the volcano, the TEC deficit in absolute values decreased from ~10 to ~2.5 TECU. As that was happening, the time taken to form the ionospheric "hole" increased from ~20 to ~100 min. Three groups of disturbances were observed. One group picks out disturbances having an N-shaped profile and caused by a blast wave with a speed exceeding ~1 000 m/s. Another group includes disturbances with a propagation speed within ~340...620 m/s, which is characteristic of atmospheric gravity waves at ionospheric heights. The last group is specified by the disturbance propagation speed within ~110 to 320 m/s. The disturbances of the kind can be generated by tsunamis, Lamb waves and atmospheric gravity waves. The wave disturbance periods varied within ~ 5 to 20 min, the disturbance amplitudes were within 0.5...1.0 TECU.Conclusions. It has been proven that aperiodic and quasi-periodic ionospheric disturbances in the near zone were caused directly by the explosion of the Tonga volcano.Keywords: Tonga volcano, ionosphere, total electron content, ionospheric "hole", quasi-periodic disturbances, disturbance parametersManuscript submitted 10.12.2022Radio phys. radio astron. 2023, 28(3): 212-223REFERENCES 1. Chernogor, L.F., 2012. Physics and Ecology of Disasters. Monograph. Kharkiv: V.N. Karazin Kharkiv National University Publ. 2. Chernogor, L.F., 2022. Physical effects of the January 15, 2022, powerful Tonga volcano explosion in the Earth — atmosphere — ionosphere — magnetosphere system. Space Sci. & Technol., 29(2), pp. 54—77 (in Ukrainian). DOI: https://doi.org/10.15407/knit2023.02.054 3. Chernogor, L.F., Shevelev, M.B., 2022. Infrasonic effect of the explosion of the Tonga super volcano on January 15, 2022. In: Proc. of the XXIIth Int. Young Scientists’ Conf. on Applied Physics. Kyiv, Ukraine, 18—22 Oct. 2022, pp. 126—127. 4. Chernogor, L.F., 2022. Effects of the Tonga volcano explosion on January 15, 2022. In: Int. Conf. "Astronomy and Space Physics". DOI: https://doi.org/10.3997/2214-4609.2022580141Book of Abstracts. Kyiv, Ukraine, 18—21 Oct. 2022, pp. 12—13. 5. Chernogor, L.F., 2022. The Tonga super-volcano explosion as a subject of applied physics. In: The 18th Int. Conf. on Electronics and Applied Physics APHYS’2022. Kyiv, Ukraine, 18—22 Oct. 2022, pp. 130—131. 6. Roberts, D.H., Klobuchar, J.A., Fougere, P.F., Hendrickson, D.H., 1982. A large-amplitude traveling ionospheric disturbance pro- duced by the May 18, 1980, explosion of Mount St. Helens. J. Geophys. Res., 87(A8), pp. 6291—6301. DOI: https://doi.org/10.1029/JA087iA08p06291 7. Liu, C.H, Klostermeyer, J., Yeh, K.C., Jones, T.B., Robinson, T., Holt, O., Leitinger, R., Ogawa, T., Sinno, K., Kato, S., Ogawa, T., Bedard, A.J., Kersley, L., 1982. Global dynamic responses of the atmosphere to the eruption of Mount St. Helens on May 18, 1980. J. Geophys. Res., 87(A8), pp. 6281—6290. DOI: https://doi.org/10.1029/JA087iA08p06281 8. Igarashi, K., Kainuma, S., Nishimuta, I., Okamoto, S., Kuroiwa, H., Tanaka, T., Ogawa, T., 1994. Ionospheric and atmospheric disturbances around Japan caused by the eruption of Mount Pinatubo on 15 June 1991. J. Atmos. Terr. Phys. 56(9), pp. 1227—1234. DOI: https://doi.org/10.1016/0021-9169(94)90060-4 9. Cheng, K., Huang, Y.-N., 1992. Ionospheric disturbances observed during the period of Mount Pinatubo eruptions in June 1991. J. Geophys. Res., 97(A11), pp. 16995—17004. DOI: https://doi.org/10.1029/92JA01462 10. Heki, K., 2006. Explosion energy of the 2004 eruption of the Asama Volcano, central Japan, inferred from ionospheric disturbanc- es. Geophys. Res. Lett., 33(14), id. L14303. DOI: https://doi.org/10.1029/2006GL026249 11. Dautermann, T., Calais, E., Mattioli, G.S., 2009. Global Positioning System detection and energy estimation of the ionospheric wave caused by the 13 July 2003 explosion of the Soufrière Hills Volcano, Montserrat. J. Geophys. Res., 114(B2), id. B02202. DOI: https://doi.org/10.1029/2008JB005722 12. Dautermann, T., Calais, E., Lognonn´e, P., Mattioli, G., 2009. Lithosphere-Atmosphere-Ionosphere Coupling after the 2003 Ex- plosive eruption of the Soufriere Hills Volcano, Montserrat. Geophys. J. Int., 179(3), pp. 1537—1546. DOI: https://doi.org/10.1111/j.1365-246X.2009.04390.x 13. Rozhnoi, A., Hayakawa, M., Solovieva, M., Hobara, Y., Fedun, V., 2014. Ionospheric effects of the Mt. Kirishima volcanic eruption as seen from subionospheric VLF observations. J. Atmos. Sol. Terr. Phys., 107, pp. 54—59. DOI: https://doi.org/10.1016/j.jastp.2013.10.014 14. Shults, K., Astafyeva, E., Adourian, S., 2016. Ionospheric detection and localization of volcano eruptions on the example of the April 2015 Calbuco events. J. Geophys. Res. Space Phys., 121(10), pp. 303—315. DOI: https://doi.org/10.1002/2016JA023382 15. Nakashima, Y., Heki, K., Takeo, A., Cahyadi, M.N., Aditiya, A., Yoshizawa K., 2016. Atmospheric resonant oscillations by the 2014 eruption of the Kelud volcano, Indonesia, observed with the ionospheric total electron contents and seismic signals. Earth Planet. Sci. Lett., 434, pp. 112—116. DOI: https://doi.org/10.1016/j.epsl.2015.11.029 16. Aa, E., Zhang, S.-R., Erickson, P.J., Vierinen, J., Coster, A.J., Goncharenko, L.P., Spicher, A., Rideout, W., 2022. Significant Iono- spheric Hole and Equatorial Plasma Bubbles After the 2022 Tonga Volcano Eruption. Space Weather., 20(7), id. e2022SW003101. DOI: https://doi.org/10.1029/2022SW003101 17. Aa, E., Zhang, S.-R., Wang, W., Erickson, P.J., Qian, L., Eastes, R., Harding, B.J., Immel, T.J., Karan, D.K., Daniell, R.E., Coster, A.J., Goncharenko, L.P., Vierinen, J., Cai, X., Spicher, A., 2022. Pronounced Suppression and X-Pattern Merging of Equatorial Ioniza- tion Anomalies After the 2022 Tonga Volcano Eruption. J. Geophys. Res. Space Phys., 127(6), id. e2022JA030527. DOI: https://doi.org/10.1029/2022JA030527 18. Astafyeva, E., Maletckii, B., Mikesell, T.D., Munaibari, E., Ravanelli, M., Coisson, P., Manta, F., Rolland, L., 2022. The 15 January 2022 Hunga Tonga eruption history as inferred from ionospheric observations. Geophys. Res. Lett., 49(10), id. e2022GL098827. DOI: https://doi.org/10.1029/2022GL098827 19. Chen, C.-H., Zhang, X., Sun, Y.-Y., Wang, F., Liu, T.-C., Lin, C.-Y., Gao, Y., Lyu, J., Jin, X., Zhao, X., Cheng, X., Zhang, P., Chen, Q., Zhang, D., Mao, Z., Liu, J.-Y., 2022. Individual Wave Propagations in Ionosphere and Troposphere Triggered by the Hunga Ton- ga-Hunga Ha’apai Underwater Volcano Eruption on 15 January 2022. Remote Sens., 14(9), id. 2179. DOI: https://doi.org/10.3390/rs14092179 20. Lin, J.-T., Rajesh, P.K., Lin, C.C.H., Chou, M.-Y., Liu, J.-Y., Yue, J., Hsiao, T.-Y., Tsai, H.-F., Chao, H.-M., Kung, M.-M., 2022. Rapid Conjugate Appearance of the Giant Ionospheric Lamb Wave Signatures in the Northern Hemisphere after Hunga-Tonga Volcano Eruptions. Geophys. Res. Lett., 49(8), id. e2022GL098222. DOI: https://doi.org/10.1029/2022GL098222 21. Rajesh, P.K., Lin, C.C.H., Lin, J.T., Lin, C.Y., Liu, J.Y., Matsuo, T., Huang, C.Y., Chou, M.Y., Yue, J., Nishioka, M., Jin, H., Choi, J.M., Chen, S. P., Chou, M., Tsai, H.F., 2022. Extreme poleward expanding super plasma bubbles over Asia-Pacific region triggered by Tonga volcano eruption during the recovery-phase of geomagnetic storm. Geophys. Res. Lett., 49(15), id. e2022GL099798. DOI: https://doi.org/10.1029/2022GL099798 22. Chernogor, L.F., Mylovanov, Y.B., Dorohov V.L., 2022. Ionospheric Effects accompanying the January 15, 2022 Tonga Volcano Explosion. In: Int. Conf. "Astronomy and Space Physics". Book of Abstracts. Kyiv, Ukraine, 18—21 Oct. 2022, pp. 83—84. 23. Saito, S., 2022. Ionospheric disturbances observed over Japan following the eruption of Hunga Tonga-Hunga Ha’apai on 15 Janu- ary 2022. Earth Planets Space. 74(1), id. 57. DOI: https://doi.org/10.1186/s40623-022-01619-0 24. Shinbori, A., Otsuka, Y., Sori, T., Nishioka, M., Perwitasari, S., Tsuda, T., Nishitani, N., 2022. Electromagnetic conjugacy of ion- ospheric disturbances after the 2022 Hunga Tonga-Hunga Ha’apai volcanic eruption as seen in GNSS-TEC and SuperDARN Hokkaido pair of radars observations. Earth Planets Space. 74(1), id. 106. DOI: https://doi.org/10.1186/s40623-022-01665-8 25. Zhang, S.-R., Vierinen, J., Aa, E., Goncharenko, L.P., Erickson, P.J., Rideout, W., Coster, A.J., Spicher, A., 2022. 2022 Tonga Volca- nic Eruption Induced Global Propagation of Ionospheric Disturbances via Lamb Waves. Front. Astron. Space Sci., 9, id. 871275. DOI: https://doi.org/10.3389/fspas.2022.871275 26. Themens, D.R., Watson, C., Žagar, N., Vasylkevych, S., Elvidge, S., McCaffrey, A., Prikryl, P., Reid, B., Wood, A., Jayachan- dran, P.T., 2022. Global propagation of ionospheric disturbances associated with the 2022 Tonga volcanic eruption. Geophys. Res. Lett., 49(7), id. e2022GL098158. DOI: https://doi.org/10.1029/2022GL098158 27. Ern, M., Hoffmann, L., Rhode, S., Preusse, P., 2022. The mesoscale gravity wave response to the 2022 Tonga volcanic eruption: AIRS and MLS satellite observations and source backtracing. Geophys. Res. Lett., 49(10), id. e2022GL098626. DOI: https://doi.org/10.1029/2022GL098626 28. Harding, B.J., Wu, Y.-J.J., Alken, P., Yamazaki, Y., Triplett, C.C., Immel, T.J., Gasque, L.C., Mende, S.B., Xiong, C., 2022. Impacts of the January 2022 Tonga Volcanic Eruption on the Ionospheric Dynamo: ICON-MIGHTI and Swarm Observations of Extreme Neutral Winds and Currents. Geophys. Res. Lett., 49(9), id. e2022GL098577. DOI: https://doi.org/10.1029/2022GL098577 29. Le, G., Liu, G., Yizengaw, E., Englert, C.R., 2022. Intense equatorial electrojet and counter electrojet caused by the 15 January 2022 Tonga volcanic eruption: Space- and ground-based observations. Geophys. Res. Lett., 49(11), id. e2022GL099002. DOI: https://doi.org/10.1029/2022GL099002 30. Kulichkov, S.N., Chunchuzov, I.P., Popov, O.E., Gorchakov, G.I., Mishenin, A.A., Perepelkin, V.G., Bush, G.A., Skorokhod, A.I., Vinogradov, Yu.A., Semutnikova, E.G., Šepic, J., Medvedev, I.P., Gushchin, R.A., Kopeikin, V.M., Belikov, I.B., Gubanova, D.P., Karpov, A.V., Tikhonov, A.V., 2022. Acoustic-Gravity Lamb Waves from the Eruption of the Hunga-Tonga-Hunga-Hapai Volca- no, Its Energy Release and Impact on Aerosol Concentrations and Tsunami. Pure Appl. Geophys., 179, pp. 1533—1548. DOI: https://doi.org/10.1007/s00024-022-03046-4 |
publisher |
Видавничий дім «Академперіодика» |
publishDate |
2023 |
url |
http://rpra-journal.org.ua/index.php/ra/article/view/1419 |
work_keys_str_mv |
AT chernogorlf nearzoneionosphericdisturbancescausedbyexplosiveeruptionoftongavolcanoon15january2022 AT mylovanovyub nearzoneionosphericdisturbancescausedbyexplosiveeruptionoftongavolcanoon15january2022 AT chernogorlf íonosfernízburennâubližníjzoníviklikaníeksplozivnimviveržennâmvulkanatonga15síčnâ2022r AT mylovanovyub íonosfernízburennâubližníjzoníviklikaníeksplozivnimviveržennâmvulkanatonga15síčnâ2022r |
first_indexed |
2024-05-26T06:28:57Z |
last_indexed |
2024-05-26T06:28:57Z |
_version_ |
1802895111983464448 |
spelling |
oai:ri.kharkov.ua:article-14192023-09-22T07:15:07Z NEAR-ZONE IONOSPHERIC DISTURBANCES CAUSED BY EXPLOSIVE ERUPTION OF TONGA VOLCANO ON 15 JANUARY 2022 ІОНОСФЕРНІ ЗБУРЕННЯ У БЛИЖНІЙ ЗОНІ, ВИКЛИКАНІ ЕКСПЛОЗИВНИМ ВИВЕРЖЕННЯМ ВУЛКАНА ТОНГА 15 СІЧНЯ 2022 р. Chernogor, L. F. Mylovanov, Yu. B. Tonga volcano; ionosphere; total electron content; ionospheric "hole"; quasi-periodic disturbances; disturbance parameters вулкан Тонга; іоносфера; повний електронний вміст; іоносферна «діра»; квазіперіодичні збурення; параметри збурень Subject and Purpose. The thermal energy of the Tonga volcano reached 3.9 •1018 J, its power amounted to 9.1•1013 W. The energy and power of the blast waves approached (6.7...7.5) •1018 J and 1011 W, respectively. Ionospheric effects caused by the explosive eruption of the Tonga volcano on January 15, 2022 have received due attention. It was established that the ionospheric disturbances spread over global distances, with the greatest disturbances occurring in the near zone. The aim of the present paper is to describe aperiodic and quasi-periodic disturbances started by the Tonga volcano explosion and occurring in the near ionospheric zone.Methods and Methodology. To detect ionospheric disturbances generated by the volcanic eruption, temporal variations of the total electron content (TEC) in a vertical column in the ionosphere were analyzed. The total error of the TEC estimation did not exceed 0.1 TECU.Results. The quantitative characteristics of ionospheric disturbances caused by the explosive eruption of the Tonga volcano have been obtained. It was proved that the appearance of the ionospheric "hole" was caused directly by the volcanic explosion. With dis- tance away from the volcano, the TEC deficit in absolute values decreased from ~10 to ~2.5 TECU. As that was happening, the time taken to form the ionospheric "hole" increased from ~20 to ~100 min. Three groups of disturbances were observed. One group picks out disturbances having an N-shaped profile and caused by a blast wave with a speed exceeding ~1 000 m/s. Another group includes disturbances with a propagation speed within ~340...620 m/s, which is characteristic of atmospheric gravity waves at ionospheric heights. The last group is specified by the disturbance propagation speed within ~110 to 320 m/s. The disturbances of the kind can be generated by tsunamis, Lamb waves and atmospheric gravity waves. The wave disturbance periods varied within ~ 5 to 20 min, the disturbance amplitudes were within 0.5...1.0 TECU.Conclusions. It has been proven that aperiodic and quasi-periodic ionospheric disturbances in the near zone were caused directly by the explosion of the Tonga volcano.Keywords: Tonga volcano, ionosphere, total electron content, ionospheric "hole", quasi-periodic disturbances, disturbance parametersManuscript submitted 10.12.2022Radio phys. radio astron. 2023, 28(3): 212-223REFERENCES 1. Chernogor, L.F., 2012. Physics and Ecology of Disasters. Monograph. Kharkiv: V.N. Karazin Kharkiv National University Publ. 2. Chernogor, L.F., 2022. Physical effects of the January 15, 2022, powerful Tonga volcano explosion in the Earth — atmosphere — ionosphere — magnetosphere system. Space Sci. & Technol., 29(2), pp. 54—77 (in Ukrainian). DOI: https://doi.org/10.15407/knit2023.02.054 3. Chernogor, L.F., Shevelev, M.B., 2022. Infrasonic effect of the explosion of the Tonga super volcano on January 15, 2022. In: Proc. of the XXIIth Int. Young Scientists’ Conf. on Applied Physics. Kyiv, Ukraine, 18—22 Oct. 2022, pp. 126—127. 4. Chernogor, L.F., 2022. Effects of the Tonga volcano explosion on January 15, 2022. In: Int. Conf. "Astronomy and Space Physics". DOI: https://doi.org/10.3997/2214-4609.2022580141Book of Abstracts. Kyiv, Ukraine, 18—21 Oct. 2022, pp. 12—13. 5. Chernogor, L.F., 2022. The Tonga super-volcano explosion as a subject of applied physics. In: The 18th Int. Conf. on Electronics and Applied Physics APHYS’2022. Kyiv, Ukraine, 18—22 Oct. 2022, pp. 130—131. 6. Roberts, D.H., Klobuchar, J.A., Fougere, P.F., Hendrickson, D.H., 1982. A large-amplitude traveling ionospheric disturbance pro- duced by the May 18, 1980, explosion of Mount St. Helens. J. Geophys. Res., 87(A8), pp. 6291—6301. DOI: https://doi.org/10.1029/JA087iA08p06291 7. Liu, C.H, Klostermeyer, J., Yeh, K.C., Jones, T.B., Robinson, T., Holt, O., Leitinger, R., Ogawa, T., Sinno, K., Kato, S., Ogawa, T., Bedard, A.J., Kersley, L., 1982. Global dynamic responses of the atmosphere to the eruption of Mount St. Helens on May 18, 1980. J. Geophys. Res., 87(A8), pp. 6281—6290. DOI: https://doi.org/10.1029/JA087iA08p06281 8. Igarashi, K., Kainuma, S., Nishimuta, I., Okamoto, S., Kuroiwa, H., Tanaka, T., Ogawa, T., 1994. Ionospheric and atmospheric disturbances around Japan caused by the eruption of Mount Pinatubo on 15 June 1991. J. Atmos. Terr. Phys. 56(9), pp. 1227—1234. DOI: https://doi.org/10.1016/0021-9169(94)90060-4 9. Cheng, K., Huang, Y.-N., 1992. Ionospheric disturbances observed during the period of Mount Pinatubo eruptions in June 1991. J. Geophys. Res., 97(A11), pp. 16995—17004. DOI: https://doi.org/10.1029/92JA01462 10. Heki, K., 2006. Explosion energy of the 2004 eruption of the Asama Volcano, central Japan, inferred from ionospheric disturbanc- es. Geophys. Res. Lett., 33(14), id. L14303. DOI: https://doi.org/10.1029/2006GL026249 11. Dautermann, T., Calais, E., Mattioli, G.S., 2009. Global Positioning System detection and energy estimation of the ionospheric wave caused by the 13 July 2003 explosion of the Soufrière Hills Volcano, Montserrat. J. Geophys. Res., 114(B2), id. B02202. DOI: https://doi.org/10.1029/2008JB005722 12. Dautermann, T., Calais, E., Lognonn´e, P., Mattioli, G., 2009. Lithosphere-Atmosphere-Ionosphere Coupling after the 2003 Ex- plosive eruption of the Soufriere Hills Volcano, Montserrat. Geophys. J. Int., 179(3), pp. 1537—1546. DOI: https://doi.org/10.1111/j.1365-246X.2009.04390.x 13. Rozhnoi, A., Hayakawa, M., Solovieva, M., Hobara, Y., Fedun, V., 2014. Ionospheric effects of the Mt. Kirishima volcanic eruption as seen from subionospheric VLF observations. J. Atmos. Sol. Terr. Phys., 107, pp. 54—59. DOI: https://doi.org/10.1016/j.jastp.2013.10.014 14. Shults, K., Astafyeva, E., Adourian, S., 2016. Ionospheric detection and localization of volcano eruptions on the example of the April 2015 Calbuco events. J. Geophys. Res. Space Phys., 121(10), pp. 303—315. DOI: https://doi.org/10.1002/2016JA023382 15. Nakashima, Y., Heki, K., Takeo, A., Cahyadi, M.N., Aditiya, A., Yoshizawa K., 2016. Atmospheric resonant oscillations by the 2014 eruption of the Kelud volcano, Indonesia, observed with the ionospheric total electron contents and seismic signals. Earth Planet. Sci. Lett., 434, pp. 112—116. DOI: https://doi.org/10.1016/j.epsl.2015.11.029 16. Aa, E., Zhang, S.-R., Erickson, P.J., Vierinen, J., Coster, A.J., Goncharenko, L.P., Spicher, A., Rideout, W., 2022. Significant Iono- spheric Hole and Equatorial Plasma Bubbles After the 2022 Tonga Volcano Eruption. Space Weather., 20(7), id. e2022SW003101. DOI: https://doi.org/10.1029/2022SW003101 17. Aa, E., Zhang, S.-R., Wang, W., Erickson, P.J., Qian, L., Eastes, R., Harding, B.J., Immel, T.J., Karan, D.K., Daniell, R.E., Coster, A.J., Goncharenko, L.P., Vierinen, J., Cai, X., Spicher, A., 2022. Pronounced Suppression and X-Pattern Merging of Equatorial Ioniza- tion Anomalies After the 2022 Tonga Volcano Eruption. J. Geophys. Res. Space Phys., 127(6), id. e2022JA030527. DOI: https://doi.org/10.1029/2022JA030527 18. Astafyeva, E., Maletckii, B., Mikesell, T.D., Munaibari, E., Ravanelli, M., Coisson, P., Manta, F., Rolland, L., 2022. The 15 January 2022 Hunga Tonga eruption history as inferred from ionospheric observations. Geophys. Res. Lett., 49(10), id. e2022GL098827. DOI: https://doi.org/10.1029/2022GL098827 19. Chen, C.-H., Zhang, X., Sun, Y.-Y., Wang, F., Liu, T.-C., Lin, C.-Y., Gao, Y., Lyu, J., Jin, X., Zhao, X., Cheng, X., Zhang, P., Chen, Q., Zhang, D., Mao, Z., Liu, J.-Y., 2022. Individual Wave Propagations in Ionosphere and Troposphere Triggered by the Hunga Ton- ga-Hunga Ha’apai Underwater Volcano Eruption on 15 January 2022. Remote Sens., 14(9), id. 2179. DOI: https://doi.org/10.3390/rs14092179 20. Lin, J.-T., Rajesh, P.K., Lin, C.C.H., Chou, M.-Y., Liu, J.-Y., Yue, J., Hsiao, T.-Y., Tsai, H.-F., Chao, H.-M., Kung, M.-M., 2022. Rapid Conjugate Appearance of the Giant Ionospheric Lamb Wave Signatures in the Northern Hemisphere after Hunga-Tonga Volcano Eruptions. Geophys. Res. Lett., 49(8), id. e2022GL098222. DOI: https://doi.org/10.1029/2022GL098222 21. Rajesh, P.K., Lin, C.C.H., Lin, J.T., Lin, C.Y., Liu, J.Y., Matsuo, T., Huang, C.Y., Chou, M.Y., Yue, J., Nishioka, M., Jin, H., Choi, J.M., Chen, S. P., Chou, M., Tsai, H.F., 2022. Extreme poleward expanding super plasma bubbles over Asia-Pacific region triggered by Tonga volcano eruption during the recovery-phase of geomagnetic storm. Geophys. Res. Lett., 49(15), id. e2022GL099798. DOI: https://doi.org/10.1029/2022GL099798 22. Chernogor, L.F., Mylovanov, Y.B., Dorohov V.L., 2022. Ionospheric Effects accompanying the January 15, 2022 Tonga Volcano Explosion. In: Int. Conf. "Astronomy and Space Physics". Book of Abstracts. Kyiv, Ukraine, 18—21 Oct. 2022, pp. 83—84. 23. Saito, S., 2022. Ionospheric disturbances observed over Japan following the eruption of Hunga Tonga-Hunga Ha’apai on 15 Janu- ary 2022. Earth Planets Space. 74(1), id. 57. DOI: https://doi.org/10.1186/s40623-022-01619-0 24. Shinbori, A., Otsuka, Y., Sori, T., Nishioka, M., Perwitasari, S., Tsuda, T., Nishitani, N., 2022. Electromagnetic conjugacy of ion- ospheric disturbances after the 2022 Hunga Tonga-Hunga Ha’apai volcanic eruption as seen in GNSS-TEC and SuperDARN Hokkaido pair of radars observations. Earth Planets Space. 74(1), id. 106. DOI: https://doi.org/10.1186/s40623-022-01665-8 25. Zhang, S.-R., Vierinen, J., Aa, E., Goncharenko, L.P., Erickson, P.J., Rideout, W., Coster, A.J., Spicher, A., 2022. 2022 Tonga Volca- nic Eruption Induced Global Propagation of Ionospheric Disturbances via Lamb Waves. Front. Astron. Space Sci., 9, id. 871275. DOI: https://doi.org/10.3389/fspas.2022.871275 26. Themens, D.R., Watson, C., Žagar, N., Vasylkevych, S., Elvidge, S., McCaffrey, A., Prikryl, P., Reid, B., Wood, A., Jayachan- dran, P.T., 2022. Global propagation of ionospheric disturbances associated with the 2022 Tonga volcanic eruption. Geophys. Res. Lett., 49(7), id. e2022GL098158. DOI: https://doi.org/10.1029/2022GL098158 27. Ern, M., Hoffmann, L., Rhode, S., Preusse, P., 2022. The mesoscale gravity wave response to the 2022 Tonga volcanic eruption: AIRS and MLS satellite observations and source backtracing. Geophys. Res. Lett., 49(10), id. e2022GL098626. DOI: https://doi.org/10.1029/2022GL098626 28. Harding, B.J., Wu, Y.-J.J., Alken, P., Yamazaki, Y., Triplett, C.C., Immel, T.J., Gasque, L.C., Mende, S.B., Xiong, C., 2022. Impacts of the January 2022 Tonga Volcanic Eruption on the Ionospheric Dynamo: ICON-MIGHTI and Swarm Observations of Extreme Neutral Winds and Currents. Geophys. Res. Lett., 49(9), id. e2022GL098577. DOI: https://doi.org/10.1029/2022GL098577 29. Le, G., Liu, G., Yizengaw, E., Englert, C.R., 2022. Intense equatorial electrojet and counter electrojet caused by the 15 January 2022 Tonga volcanic eruption: Space- and ground-based observations. Geophys. Res. Lett., 49(11), id. e2022GL099002. DOI: https://doi.org/10.1029/2022GL099002 30. Kulichkov, S.N., Chunchuzov, I.P., Popov, O.E., Gorchakov, G.I., Mishenin, A.A., Perepelkin, V.G., Bush, G.A., Skorokhod, A.I., Vinogradov, Yu.A., Semutnikova, E.G., Šepic, J., Medvedev, I.P., Gushchin, R.A., Kopeikin, V.M., Belikov, I.B., Gubanova, D.P., Karpov, A.V., Tikhonov, A.V., 2022. Acoustic-Gravity Lamb Waves from the Eruption of the Hunga-Tonga-Hunga-Hapai Volca- no, Its Energy Release and Impact on Aerosol Concentrations and Tsunami. Pure Appl. Geophys., 179, pp. 1533—1548. DOI: https://doi.org/10.1007/s00024-022-03046-4 Предмет і мета роботи. Теплова енергія вулкана Тонга складала 3.9 •1018 Дж, а потужність — 9.1 •1013 Вт. Енергія вибухових хвиль наближалася до (6.7…7.5) •1013 Дж, а потужність — до 1011 Вт. Іоносферним ефектам, що були викликані експлозивним виверженням вулкана Тонга 15 січня 2022 року, присвячено низку робіт. Установлено, що іоносферні збурення поширювалися на глобальні відстані. Проте найбільші збурення очікувалися у ближній зоні. Метою цієї роботи є досліджен- ня аперіодичних і квазіперіодичних збурень у ближній зоні, згенерованих вибухом вулкана Тонга.Методи і методологія. Для виявлення іоносферних збурень, викликаних виверженням вулкана, аналізувалися часові варіа- ції повного електронного вмісту (ПЕВ) у вертикальному стовпі. Сумарна похибка оцінки ПЕВ не перевищувала 0.1 TECU.Результати. Отримано кількісні характеристики збурень у іоносфері, викликаних експлозивним виверженням вулкана. Доведено, що поява іоносферної «діри» обумовлена саме вибухом вулкана. Дефіцит ПЕВ за абсолютною величиною змен- шувався від ~10.0 до ~2.5 TECU при збільшенні відстані від вулкана. Час появи іоносферної «діри» при цьому збільшувався від ~20 до ~100 хв. Спостерігалися три групи збурень. Перша з них мала N-подібний профіль і була спричинена вибуховою хвилею, швидкість якої перевищувала ~1000 м/с. Друга група збурень мала швидкість поширення ~340…620 м/с, властиву атмосферним гравітаційним хвилям. Швидкість поширення збурень у третій групі складала 110...320 м/с. Такі збурен- ня могли бути згенеровані цунамі, хвилями Лемба або атмосферними гравітаційними хвилями. Періоди збурень складали 5...20 хв, а їхня амплітуда — 0.5...1.0 TECU.Висновки. Доведено, що аперіодичні та квазіперіодичні іоносферні збурення були викликані саме вибухом вулкана Тонга.Ключові слова: вулкан Тонга, іоносфера, повний електронний вміст, іоносферна «діра», квазіперіодичні збурення, параметри збуреньСтаття надійшла до редакції 10.12.2022Radio phys. radio astron. 2023, 28(3): 212-223БІБЛІОГРАФІЧНИЙ СПИСОК 1. Черногор Л.Ф. Физика и экология катастроф. Монография. Харьков: ХНУ имени В.Н. Каразина, 2012. 556 с. 2. Чорногор Л.Ф. Фізичні ефекти у системі Земля — атмосфера — іоносфера — магнітосфера, викликані потужним вибухом вулкана Тонга 15 січня 2022 р. Космічна наука і технологія. 2023. Т. 29, № 2. С. 54—77. 3. Chernogor L.F., Shevelev M.B. Infrasonic effect of the explosion of the Tonga super volcano on January 15, 2022. Proc. of the XXIIth Int. Young Scientists’ Conf. on Applied Physics. Kyiv, Ukraine, 18—22 Oct. 2022. P. 126–127. 4. Chernogor L.F. Effects of the Tonga volcano explosion on January 15, 2022. Int. Conf. "Astronomy and Space Physics". Book of Abstracts. Kyiv, Ukraine, 18—21 Oct. 2022. P. 12—13. 5. Chernogor L.F. The Tonga super-volcano explosion as a subject of applied physics. The 18th Int. Conf. on Electronics and Applied Physics APHYS’2022. Kyiv, Ukraine, 18—22 Oct. 2022. P. 130—131. 6. Roberts D.H., Klobuchar J.A., Fougere P.F., Hendrickson D.H. A large-amplitude traveling ionospheric disturbance produced by the May 18, 1980, explosion of Mount St. Helens. J. Geophys. Res. 1982. Vol. 87, Iss. A8. P. 6291—6301. 7. Liu C.H., Klostermeyer J., Yeh K.C., Jones T.B., Robinson T., Holt O., Leitinger R., Ogawa T., Sinno K., Kato S., Ogawa T., Bedard A.J., and Kersley L. Global dynamic responses of the atmosphere to the eruption of Mount St. Helens on May 18, 1980. J. Geophys. Res. 1982. Vol. 87, Iss. A8. P. 6281—6290. 8. Igarashi K., Kainuma S., Nishimuta I., Okamoto S., Kuroiwa H., Tanaka T., and Ogawa T. Ionospheric and atmospheric disturbances around Japan caused by the eruption of Mount Pinatubo on 15 June 1991. J. Atmos. Terr. Phys. 1994. Vol. 56, Iss. 9. P. 1227—1234. 9. Cheng K., and Huang Y.-N. Ionospheric disturbances observed during the period of Mount Pinatubo eruptions in June 1991.J. Geophys. Res. 1992. Vol. 97, Iss. A11. P. 16995—17004. 10. Heki K. Explosion energy of the 2004 eruption of the Asama Volcano, central Japan, inferred from ionospheric disturbances.Geophys. Res. Lett. 2006. Vol. 33, Iss. 14, id. L14303. 11. Dautermann T., Calais E., and Mattioli G.S. Global Positioning System detection and energy estimation of the ionospheric wave caused by the 13 July 2003 explosion of the Soufrière Hills Volcano, Montserrat. J. Geophys. Res. 2009. Vol. 114, Iss. B2, id. B02202. DOI: 10.1029/2008JB005722 12. Dautermann T., Calais E., Lognonn´e P., and Mattioli G. Lithosphere-Atmosphere-Ionosphere Coupling after the 2003 Explosive eruption of the Soufriere Hills Volcano, Montserrat. Geophys. J. Int. 2009. Vol. 179, Iss. 3. P. 1537—1546. 13. Rozhnoi A., Hayakawa M., Solovieva M., Hobara Y., and Fedun V. Ionospheric effects of the Mt. Kirishima volcanic eruption as seen from subionospheric VLF observations. J. Atmos. Sol. Terr. Phys. 2014. Vol. 107. P. 54—59. 14. Shults K., Astafyeva E., and Adourian S. Ionospheric detection and localization of volcano eruptions on the example of the April 2015 Calbuco events. J. Geophys. Res. Space Phys. 2016. Vol. 121, Iss. 10. P. 303—315. 15. Nakashima Y., Heki K., Takeo A., Cahyadi M.N., Aditiya A., and Yoshizawa K. Atmospheric resonant oscillations by the 2014 eruption of the Kelud volcano, Indonesia, observed with the ionospheric total electron contents and seismic signals. Earth Planet. Sci. Lett. 2016. Vol. 434. P. 112—116. DOI: 10.1016/j.epsl.2015.11.029 16. Aa E., Zhang S.-R., Erickson P.J., Vierinen J., Coster A.J., Goncharenko L.P., Spicher A., and Rideout W. Significant Ionospheric Hole and Equatorial Plasma Bubbles After the 2022 Tonga Volcano Eruption. Space Weather. 2022. Vol. 20, Iss. 7, id. e2022SW003101. DOI: 10.1029/2022SW003101 17. Aa E., Zhang S.-R., Wang W., Erickson P.J., Qian L., Eastes R., Harding B.J., Immel T.J., Karan D.K., Daniell R.E., Coster A.J., Goncharenko L.P., Vierinen J., Cai X., and Spicher A. Pronounced Suppression and X-Pattern Merging of Equatorial Ionization Anomalies After the 2022 Tonga Volcano Eruption. J. Geophys. Res. Space Phys. 2022. Vol. 27, Iss. 6, id. e2022JA030527. 18. Astafyeva E., Maletckii B., Mikesell T.D., Munaibari E., Ravanelli M., Coisson P., Manta F., and Rolland L. The 15 January 2022 Hunga Tonga eruption history as inferred from ionospheric observations. Geophys. Res. Lett. 2022. Vol. 49, Iss. 10, id. e2022GL098827. 19. Chen C.-H., Zhang X., Sun Y.-Y., Wang F., Liu T.-C., Lin C.-Y., Gao Y., Lyu J., Jin X., Zhao X., Cheng X., Zhang P., Chen Q., Zhang D., Mao Z., and Liu J.-Y. Individual Wave Propagations in Ionosphere and Troposphere Triggered by the Hunga Tonga- Hunga Ha’apai Underwater Volcano Eruption on 15 January 2022. Remote Sens. 2022. Vol. 14, Iss. 9, id. 2179. 20. Lin J.-T., Rajesh P.K., Lin C.C.H., Chou M.-Y., Liu J.-Y., Yue J., Hsiao T.-Y., Tsai H.-F., Chao H.-M., and Kung M.-M. Rapid Conjugate Appearance of the Giant Ionospheric Lamb Wave Signatures in the Northern Hemisphere after Hunga-Tonga Volcano Eruptions. Geophys. Res. Lett. 2022. Vol. 49, Iss. 8, id. e2022GL098222. 21. Rajesh P.K., Lin C.C.H., Lin J.T., Lin C.Y., Liu J.Y., Matsuo T., Huang C.Y., Chou M.Y., Yue J., Nishioka M., Jin H., Choi J.M., ChenS. P., Chou M., and Tsai H.F. Extreme poleward expanding super plasma bubbles over Asia-Pacific region triggered by Tonga volcano eruption during the recovery-phase of geomagnetic storm. Geophys. Res. Lett. 2022. Vol. 49, Iss. 15, id. e2022GL099798. 22. Chernogor L.F., Mylovanov Y.B., and Dorohov V.L. Ionospheric Effects accompanying the January 15, 2022 Tonga Volcano Explosion. Int. Conf. "Astronomy and Space Physics". Book of Abstracts. Kyiv, Ukraine, 18—21 Oct. 2022. P. 83—84. 23. Saito S. Ionospheric disturbances observed over Japan following the eruption of Hunga Tonga-Hunga Ha’apai on 15 January 2022.Earth, Planets Space. 2022. Vol. 74, Iss. 1, id. 57. 24. Shinbori A., Otsuka Y., Sori T., Nishioka M., Perwitasari S., Tsuda T., and Nishitani N. Electromagnetic conjugacy of ionospheric disturbances after the 2022 Hunga Tonga-Hunga Ha’apai volcanic eruption as seen in GNSS-TEC and SuperDARN Hokkaido pair of radars observations. Earth Planets Space. 2022. Vol. 74, Iss. 106. 25. Zhang S.-R., Vierinen J., Aa E., Goncharenko L.P., Erickson P.J., Rideout W., Coster A.J. and Spicher A. 2022 Tonga Volcanic Eruption Induced Global Propagation of Ionospheric Disturbances via Lamb Waves. Front. Astron. Space Sci. 2022. Vol. 9, id. 871275. 26. Themens D.R., Watson C., Žagar N., Vasylkevych S., Elvidge S., McCaffrey A., Prikryl P., Reid B., Wood A., and Jayachandran P.T. Global propagation of ionospheric disturbances associated with the 2022 Tonga volcanic eruption. Geophys. Res. Lett. 2022. Vol. 49, Iss. 7, id. e2022GL098158. 27. Ern M., Hoffmann L., Rhode S., and Preusse P. The mesoscale gravity wave response to the 2022 Tonga volcanic eruption: AIRS and MLS satellite observations and source backtracing. Geophys. Res. Lett. 2022. Vol. 49, Iss. 10, id. e2022GL098626. 28. Harding B.J., Wu Y.-J.J., Alken P., Yamazaki Y., Triplett C.C., Immel T.J., Gasque L.C., Mende S.B., and Xiong C. Impacts of the January 2022 Tonga Volcanic Eruption on the Ionospheric Dynamo: ICON-MIGHTI and Swarm Observations of Extreme Neutral Winds and Currents. Geophys. Res. Lett. 2022. Vol. 49, Iss. 9, id. e2022GL098577. 29. Le G., Liu G., Yizengaw E., and Englert C.R. Intense equatorial electrojet and counter electrojet caused by the 15 January 2022 Tonga volcanic eruption: Space- and ground-based observations. Geophys. Res. Lett. 2022. Vol. 49, Iss. 11, id. e2022GL099002. 30. Kulichkov S.N., Chunchuzov I.P., Popov O.E., Gorchakov G.I., Mishenin A.A., Perepelkin V.G., Bush G.A., Skorokhod A.I., Vinogradov Yu.A., Semutnikova E.G., Šepic J., Medvedev I.P., Gushchin R.A., Kopeikin V.M., Belikov I.B., Gubanova D.P., Karpov A.V., and Tikhonov A.V. Acoustic-Gravity Lamb Waves from the Eruption of the Hunga-Tonga-Hunga-Hapai Volcano, Its Energy Release and Impact on Aerosol Concentrations and Tsunami. Pure Appl. Geophys. 2022. Vol. 179. P. 1533—1548. Видавничий дім «Академперіодика» 2023-09-12 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1419 10.15407/rpra28.03.212 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 28, No 3 (2023); 212 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 28, No 3 (2023); 212 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 28, No 3 (2023); 212 2415-7007 1027-9636 10.15407/rpra28.03 uk http://rpra-journal.org.ua/index.php/ra/article/view/1419/pdf Copyright (c) 2023 RADIO PHYSICS AND RADIO ASTRONOMY |