AN IMPROVED PHOTOCLINOMETRY TECHNIQUE FOR SURFACE RELIEF RETRIEVAL FROM IMAGES: ERROR LEVELS FOR HEIGHT AND SLOPE ESTIMATES
Предмет і мета роботи. Шляхом комп’ютерного моделювання досліджуються похибки, що виникають у результаті відновлення рельєфу поверхні планети за набором її зображень методом удосконаленої фотоклинометрії. Метою роботи є оцінка числових значень похибок обчислення висот і нахилів поверхні, що виникают...
Збережено в:
Дата: | 2023 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Видавничий дім «Академперіодика»
2023
|
Теми: | |
Онлайн доступ: | http://rpra-journal.org.ua/index.php/ra/article/view/1428 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Radio physics and radio astronomy |
Репозитарії
Radio physics and radio astronomyРезюме: | Предмет і мета роботи. Шляхом комп’ютерного моделювання досліджуються похибки, що виникають у результаті відновлення рельєфу поверхні планети за набором її зображень методом удосконаленої фотоклинометрії. Метою роботи є оцінка числових значень похибок обчислення висот і нахилів поверхні, що виникають у разі використання зображень з різними відношеннями сигнал/шум, у тому числі оцінка мінімально можливих похибок.Методи і методологія. Використовується метод удосконаленої фотоклинометрії, який дозволяє за набором зображень ділянки поверхні планети обчислити її найімовірніший рельєф. Досліджуються два варіанти реалізації методу: оптимальна фільтрація із застосуванням перетворення Фур’є та розв’язання рівняння Пуассона методом скінченних різниць.Результати. Комп’ютерні експерименти показали, що рельєф, реконструйований за зображеннями із застосуванням методу вдосконаленої фотоклинометрії, завжди якісно подібний до справжнього. У разі використання методу скінченних різниць для реалізації обчислень похибка висот становила 0.21σ0 -0.27σ0 (σ0 — середньоквадратичне відхилення висот моделі рельєфу). За реалізації методу із застосуванням Фур’є-аналізу похибка обчислення висоти змінювалася від 0.86s0 —до 0.33σ0, коли відношення сигнал/шум (ВСШ) початкових зображень набувало значень від 1.0 до 100. Для цього варіанта методу теоретично передбачені мінімальні похибки обчислення висоти змінюються від 0.83σ0 до 0.13σ0. Рельєф у середній частині ділянки, що вивчається, завжди відновлюється точніше в порівнянні з прилеглими до межі районами, незалежно від того, який іздвох варіантів реалізації методу застосовано.Висновки. Застосування методу вдосконаленої фотоклинометрії дозволило відновити рельєф поверхні за набором її зображень з похибкою 0.21σ0...0.27σ0 (з використанням методу скінченних різниць для реалізації обчислень) та 0.33σ0 (із застосуванням Фур’є-аналізу, ВСШ=50). Рекомендовано відновлювати рельєф на ділянці з більшою площею, ніж необхідна для дослідження, оскільки похибка отриманих висот рельєфу, обчислена у середній частині ділянки, завжди виявляється у кілька разів меншою від похибки, обчисленої за всією площею досліджуваної ділянки.Ключові слова: оптимальна фільтрація; похибка обчислення висоти; рельєф поверхні планети; фотометріяСтаття надійшла до редакції 16.05.2023Radio phys. radio astron. 2023, 28(4): 304-317БІБЛІОГРАФІЧНИЙ СПИСОК1. Парусимов В. Г., Корниенко Ю. В. Об отыскании наиболее вероятного рельефа поверхности планеты по ее оптическому изображению. Астрометрия и астрофизика. 1973. Вып. 19. С. 20—24.2. Van Diggelen J. A photometric investigation of the slopes and the heights of the ranges of hills in the Maria of the Moon. Bull. Astron. Inst. Netherlands. 1951. Vol. 11. P. 283—289.3. Nyquist H. Thermal agitation of electric charge in conductors. Phys. Rev. 1928. Vol. 32. P. 110—113. DOI: 10.1103/PhysRev.32.1104. Huang T. S. Advances in computer vision and image processing. USA: JAI Press, 1986. 344 р.5. Boncelet C., and Bovik A. C. Image Noise Models. Handbook of image and video processing. Ed. by A.C. Bovik. P. 397—409. USA: Academic Press, 2005. 1384 р.6. Howard A.D., Blasius K.R., and Cutts J.A. Photoclinometric determination of the topography of the Martian north polar cap. Icarus. 1982. Vol. 50, Iss. 2—3. P. 245—258. DOI: 10.1016/0019-1035(82)90125-77. Goldspiel J.M., Squyres S. W., and Jankowski D.G. Topography of small Martian valleys. Icarus. 1993. Vol. 105, Iss. 2. P. 479—500. DOI: 10.1006/icar.1993.11438. Squyres S.W. The topography of Ganymede’s grooved terrain. Icarus. 1981. Vol. 46, Iss. 2. P. 156—168. DOI: 10.1016/0019-1035(81)90204-99. Barnes J. W., Brown R. H., Soderblom L., Sotin C., Le Mouèlic S., Rodriguez S., Jaumann R., Beyer R.A., Buratti B.J., Pitman K., Baines K.H., Clark R., and Nicholson P. Spectroscopy, morphometry, and photoclinometry of Titan’s dunefields from Cassini/VIMS. Icarus. 2008. Vol. 195, Iss. 1. P. 400—414. DOI: 10.1016/j.icarus.2007.12.00610. Mouginis-Mark P. J. and Wilson L. MERC: a FORTRAN IV Program for the production of topographic data for the planet Mercury. Comput. Geosci. 1981. Vol. 7, Iss. 1. P. 35—45. DOI: 10.1016/0098-3004(81)90038-811. Muinonen K., Lumme K., and Irvine W.M. Slope variations on the surface of Phobos. Planet. Space Sci. 1991. Vol. 39, Iss. 1—2. P. 327—334. DOI: 10.1016/0032-0633(91)90153-212. Schenk P.M., and Moore J.M. Volcanic constructs on Ganymede and Enceladus: Topographic evidence from stereo images and photoclinometry. J. Geophys. Res. 1995. Vol. 100, Iss. E9. P. 19009—19022. DOI: 10.1029/95JE0185413. Lohse V., Heipke C., and Kirk R.L. Derivation of planetary topography using multi-image shape-from-shading. Planet. Space Sci. 2006. Vol. 54, Iss. 7. P. 661—674. DOI: 10.1016/j.pss.2006.03.00214. Korokhin V., Velikodsky Y., Shkuratov Y., Kaydash V., Mall U., and Videen G. Using LROC WAC data for Lunar surface photocli-nometry. Planet. Space Sci. 2018. Vol. 160. P. 120—135. DOI: 10.1016/j.pss.2018.05.02015. Velichko S., Korokhin V., Velikodsky Y., Kaydash V., Shkuratov Y., and Videen G. Removal of topographic effects from LROC NAC images as applied to the inner flank of the crater Hertzsprung S. Planet. Space Sci. 2020. Vol. 193, 105090. DOI: 10.1016/j.pss.2020.10509016. Velichko S., Korokhin V., Shkuratov Y., Kaydash V., Surkov Y., and Videen G. Photometric analysis of the Luna spacecraft landing sites. Planet. Space Sci. 2022. Vol. 216, 105475. DOI: 10.1016/j.pss.2022.10547517. Gaskell R.W., Barnouin-Jha O.S., Scheeres D.J., Konopliv A.S., Mukai T., Abe S., Saito J., Ishiguro M., Kubota T., Hashimoto T., Kawaguchi J., Yoshikawa M., Shirakawa K., Kominato T., Hirata N., and Demura H. Characterizing and navigating small bodieswith imaging data. Meteorit. Planet. Sci. 2008. Vol. 43, Iss. 6. P. 1049—1061. DOI: 10.1111/j.1945-5100.2008.tb00692.x18. Raymond C.A., Jaumann R., Nathues A., Sierks H., Roatsch T., Preusker F., Scholten F., Gaskell R.W., Jorda L., Keller H.U., Zuber M.T., Smith D.E., Mastrodemos N., and Mottola S. The dawn topography investigation. Space Sci. Rev. 2011. Vol. 163. P. 487—510. DOI: 10.1007/s11214-011-9863-z19. Jorda L., Gaskell R., Capanna C., Hviid S., Lamy P., Ďurech J., Faury G., Groussin O., Gutiérrez P., Jackman C., Keihm S.J., Keller H.U., Knollenberg J., Kührt E., Marchi S., Mottola S., Palmer E., Schloerb F.P., Sierks H., Vincent J.-B., A’Hearn M.F., Barbieri C., Rodrigo R., Koschny D., Rickman H., Barucci M.A., Bertaux J.L., Bertini I., Cremonese G., Da Deppo V., Davidsson B., Debei S., De Cecco M., Fornasier S., Fulle M., Güttler C., Ip W.-H., Kramm J.R., Küppers M., Lara L.M., Lazzarin M., Lopez Moreno J.J., Marzari F., Naletto G., Oklay N., Thomas N., Tubiana C., and Wenzel K.-P. The global shape, density and rotation of Comet 67P/Churyumov-Gerasimenko from preperihelion Rosetta/OSIRIS observations. Icarus. 2016. Vol. 277. P. 257—278. DOI:10.1016/j.icarus.2016.05.00220. Alexandrov O., and Beyer R.A. Multiview shape-from-shading for planetary images. Earth Space Sci. 2018. Vol. 5, Iss. 10. P. 652—666. DOI: 10.1029/2018EA00039021. Wildey R.L. Radarclinometry of the earth and Venus from Space-Shuttle and Venera-15 imagery. Earth Moon Planets. 1990. Vol. 48. P. 197—231. DOI: 10.1007/BF0011385722. Watters T.R., and Robinson M.S. Radar and photoclinometric studies of wrinkle ridges on Mars. J. Geophys. Res. 1997. Vol. 102, Iss. E5. P. 10889—10903. DOI: 10.1029/97JE0041123. Корниенко Ю.В., Нгуен Суан Ань. Определение рельефа и радиооптических параметров участка поверхности с помощью радиолокатора с синтезированной апертурой. Радиофизика и электроника: сб. науч. тр. Ин-т радиофизики и электрон. НАН Украины. Харьков, 1996. No 1. C. 129—133.24. Bondarenko N.V., Dulova I.A., and Kornienko Y.V. High-resolution albedo and relief of the lunar surface with the improved photoclinometry method for the topography reconstruction from a set of images. 49th Lunar and Planetary Science Conference, 2018. LPI Contribution No. 2083, id. 2459. URL: https://www.hou.usra.edu/meetings/lpsc2018/pdf/2459.pdf (Last accessed: 28.01.2023).25. Корниенко Ю.В., Дулова И.А. Оптимальное определение рельефа поверхности по совокупности фотометрических и альтиметрических данных. Радиофизика и электроника. 2019. Т. 24, No 4. С. 46—52. DOI: 10.15407/rej2019.04.04826. Корнієнко Ю.В., Дулова І.О., Бондаренко Н.В. Урахування альтиметричної інформації при визначенні рельєфу поверхні планети методом поліпшеної фотоклинометрії за полем нахилів. Радіофізика і радіоастрономія. 2021. Т. 26, No 2. С. 173-188. DOI: 10.15407/rpra26.02.17327. Дулова И.А., Корниенко Ю.В., Скуратовский С.И. Определение рельефа поверхности клинометрическим методом при избытке или недостатке исходных данных. Радиофизика и электроника. 2007. Т. 12, No 2. С. 408—415.28. Дулова И.А., Скуратовский С.И., Бондаренко Н.В., Корниенко Ю.В. Восстановление рельефа поверхности по одиночным изображениям с помощью фотометрического метода. Астрономический вестник. 2008. Т. 42, No 6. С. 557—571.29. Бондаренко Н.В., Дулова И.А., Корниенко Ю.В. Топография полигональных структур на Марсе в месте посадки КА «Phoenix» по результатам вычисления рельефа с помощью метода улучшенной фотоклинометрии по изображениямHiRISE. Астрономический вестник. 2014. Т. 48, No 4. С. 263—279. DOI: 10.7868/S0320930X1404003330. Bondarenko N.V., Dulova I.A., and Kornienko Yu.V. Photometric functions and the improved photoclinometry method: mature Lunar mare surfaces. 51st Lunar and Planetary Science Conference, 2020. Abstract No. 1845. URL: https://www.hou.usra.edu/meetings/lpsc2020/eposter/1845.pdf (Last accessed:28.01.2023).31. Robinson M.S., Brylow S.M., Tschimmel M., Humm D., Lawrence S.J., Thomas P.C., Denevi B.W., Bowman-Cisneros E., Zerr J., Ravine M.A., Caplinger M.A., Ghaemi F.T., Schaffner J.A., Malin M.C., Mahanti P., Bartels A., Anderson J., Tran T.N., Eliason E.M., McEwen A.S., Turtle E., Jolliff B.L., and Hiesinger H. Lunar Reconnaissance Orbiter camera (LROC) instrument overview. Space Sci. Rev. 2010. Vol. 150, Iss. 1—4. P. 81—124. DOI: 10.1007/s11214-010-9634-232. Дулова И.А., Корниенко Ю.В. Случайная погрешность определения рельефа поверхности по ее радиояркости. Радиофизика и радиоастрономия. 2001. Т. 6, No 4. С. 310—316. URL: http://dspace.nbuv.gov.ua/handle/123456789/122282 (датазвернення: 28.01.2023).33. Bayes T. An essay towards solving a problem in the doctrine of chances. Philos. Trans. R. Soc. Lond. 1763. Vol. 53. P. 360—418.34. Смирнов М.М. Дифференциальные уравнения в частных производных второго порядка. Москва: Наука, 1964. 104 с.35. Дулова И.А., Корниенко Ю.В., Скуратовский С.И. Совмещение изображений при определении рельефа поверхности фотоклинометрическим методом. Радиофизика и радиоастрономия. 2015. Т. 20, No 1. С. 30—36. DOI:10.15407/rpra20.07.03036. Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. Москва: Наука, 1978. 592 с.37. Guo P. The numerical solution of Poisson equation with Dirichlet boundary conditions. J. Appl. Math. Phys. 2021. Vol. 9, Iss. 12, P. 3007—3018. DOI: 10.4236/jamp.2021.91219438. Липцер Р.Ш., Ширяев А.Н. Статистика случайных процессов (нелинейная фильтрация и смежные вопросы). Москва: Наука, 1974. 696 с.39. Ландсберг Г.С. Оптика. Москва: Наука, 1976. 928 с.40. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. Москва: Наука, 1984. 832 с. |
---|