THE NARROW-BAND FILTER BASED ON A MAGNETOPHOTONIC CRYSTAL INVOLVING LAYERS WITH HYPERBOLIC DISPERSION LAWS
Subject and Purpose. Narrow-band filters are among the basic components of modern communication systems, instruments for spectroscopy, high-sensitivity sensors, etc. Photonic crystal structures open up broad possibilities for creating compact-sized, narrow-band filters in the optical and terahertz r...
Збережено в:
Дата: | 2024 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Видавничий дім «Академперіодика»
2024
|
Теми: | |
Онлайн доступ: | http://rpra-journal.org.ua/index.php/ra/article/view/1436 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Radio physics and radio astronomy |
Репозитарії
Radio physics and radio astronomyРезюме: | Subject and Purpose. Narrow-band filters are among the basic components of modern communication systems, instruments for spectroscopy, high-sensitivity sensors, etc. Photonic crystal structures open up broad possibilities for creating compact-sized, narrow-band filters in the optical and terahertz ranges. Tuning of spectral characteristics of photonic crystal filters is usually carried out through introduction of certain elements into their structure that are sensitive to external electric and magnetic fields. This work has been aimed at investigating electrodynamic characteristics of one-dimensional magnetophotonic crystals with structural layers characterized by "hyperbolic" dispersion, and suggesting a multichannel, narrow-band filter on their base.Methods and Methodology. The dispersion equation for excitations in an infinite magnetophotonic crystal has been obtained within the framework of the Floquet-Bloch theory, with the use of fundamental solutions of Hill’s equation. The transfer matrix approach has been used to obtain an analytical expression for the transmission coefficient.Results. The band diagram of the one-dimensional magnetophotonic crystal has been analyzed for the case where one of the layers on the structure’s spatial period is characterized by a hyperbolic dispersion law. The areas of existence of surface wave regimes have been found for such layers for the case of normal incidence of the wave upon the finite-seized magnetophotonic crystal. Frequency dependences of the transmission coefficient are characterized by a set of high-Q resonant peaks relating to Fabry-Perot resonances in a periodic structure of finite length.Conclusions. Application of a finite-seized, one-dimensional magnetophotonic crystal is considered as of a means forachieving multichannel optical filtering and formation of a frequency comb. Expressions for the dispersion equation and transmission coefficient have been obtained within the framework of the Floquet-Bloch theory and with the use of the transfer matrix. The feasibility of surface mode excitation has been shown for gyrotropic layers of the periodic structure characterized by a hyperbolic dispersion law, for the case of normal incidence upon the magnetophotonic crystal. The spectral response of the filter contains narrow-band peaks with a high transmission efficiency. By increasing the number of the structure’s periods it is possible to form a frequency comb, which effect can be useful for applications in metrology and modern optical communication systems.Keywords: magnetophotonic crystals, hyperbolic media, narrow-band filtering, frequency comb, dispersion characteristics, surface wave modesManuscript submitted 15.08.2023Radio phys. radio astron. 2024, 29(1): 068-075REFERENCES1. Joannopoulos, J. D., Johnson, S. G., Winn, J. N., and Meade, R. D., 2008. Photonic Crystals: Molding the Flow of Light. Princeton University Press. 304 p.2. Prather, D. W., Sharkawy, A., Shi, S., Murakowski, J., and Schneider, G., 2009. Photonic Crystals, Theory, Applications and Fabrication. Wiley. 416 pp.3. Sakoda, K., 2005.Optical Properties of Photonic Crystals. Springer-Verlag Berlin Heidelberg. 258 pp. DOI: https://doi.org/10.1007/b1383764. Gong, Q., and Hu, X., 2013. Photonic Crystals. Principles and Applications. Pan Stanford Publishing. 366 pp. DOI: https://doi.org/10.1201/b156545. Skorobogatiy, M., and Yang, J., 2009. Fundamentals of Photonic Crystal Guiding. Cambridge University Press. 280 pp. DOI: https://doi.org/10.1017/CBO97805115752286. Ivzhenko, L.I., Odarenko, E.N., and Tarapov, S.I., 2016. Mechanically tunable wire medium metamaterial in the millimeter wave band. Prog. Electromagn. Res. Lett., 64, pp. 93—98. DOI: https://doi.org/10.2528/PIERL160909037. Krauss, T.F., 2003. Planar photonic crystal waveguide devices for integrated optics. Phys. Stat. Sol., 197(3), pp. 688—702. DOI: https://doi.org/10.1002/pssa.2003031178. Ikeda, N., Sugimoto, Y., Tanaka, Y., Inoue, K., and Asakawa, K., 2005. Low propagation losses in single-line-defect photonic crystal waveguides on Ga-As membranes. IEEE J. Sel. Areas Commun., 23(7), pp. 1315—1320. DOI: https://doi.org/10.1109/JSAC.2005.8512159. Englund, D., Ellis, B., Edwards, E., Sarmiento, T., Harris, J.S., Miller, D.A.B, and Vučković, J., 2009. Electrically controlled modulation in a photonic crystal nanocavity. Opt. Express, 18, pp. 15409—15419. DOI: https://doi.org/10.1364/OE.17.01540910. Stievater, T.H., Pruessner, M.W., Rabinovich, W.S., Park, D., Mahon,R., Kozak, D.A., Boos, J.B., Holmstrom, S.A., and Khurgin, J.B., 2015. Suspended photonic waveguide devices. Appl. Opt., 54(31), pp. F164—F173. DOI: https://doi.org/10.1364/AO.54.00F16411. Akahane, Y., Asano, T., Song, B., and Noda, S., 2005. Fine-tuned high-Q photonic-crystal nanocavity. Opt. Express, 13, pp. 1202— 1214. DOI: https://doi.org/10.1364/OPEX.13.00120212. Sashkova, Ya.V., and Odarenko, Ye.N., 2018. The modified Bragg waveguide with additional layers. Telecommunications and Radio Engineering, 77(6), pp. 489—500. DOI: https://doi.org/10.1615/TelecomRadEng.v77.i6.2013. Inoue, M., Fujikawa, R., Baryshev, A., Khanikaev, A., Lim, P.B., Uchida, H., Aktsipetrov, O., Fedyanin, A., Murzina, T., and Granovsky, A., 2006. Magnetophotonic crystals. J. Phy. D: Appl. Phys., 39, pp. 151—161. DOI: https://doi.org/10.1088/0022-3727/39/8/R0114. Shmat’ko, A.A., Mizernik, V.N., and Odarenko, E.N., 2020. Floquet-Bloch waves in magnetophotonic crystals with transverse magnetic field. Journal of Electromagnetic Waves and Applications, 34(12), pp. 1667—1679. DOI: https://doi.org/10.1080/09205071.2020.178095515. Shmat’ko, A.A., Odarenko, E.N., Mizernik, V.N., and Rokhmanova, T.N., 2017. Bragg reflection and transmission of light by one-dimensional gyrotropic magnetophotonic crystal. In: 2017 2nd Int. Conf. on Advanced Information and Communication Technologies (AICT). Lviv, Ukraine, 04—07 July 2017. P. 232—236. DOI: https://doi.org/10.1109/AIACT.2017.802010816. Zhang, Y., Li, P., Chen, Y., and Han, Y., 2019. Four-channel THz wave routing switch based on magneto photonic crystals. Optik, 181, pp. 134—139. DOI: https://doi.org/10.1016/j.ijleo.2018.12.03217. Fei, H., Wu, J., Yang, Y., Liu, X., and Chen, Z., 2015. Magnetooptical isolators with flat-top responses based on one-dimensional magneto-photonic crystals. Photonics Nanostruct., 17, pp. 15—21. DOI: https://doi.org/10.1016/j.photonics.2015.10.00118. Xu, B., Zhang, D., Zeng, X., Wang, Y., and Dong, Z., 2019. Magnetic photonic crystal circulator based on gradient changing width waveguide. Optik, 185, pp. 132—137. DOI: https://doi.org/10.1016/j.ijleo.2019.03.05419. Zeng, C., Wang, Z., and Xie, Y., 2019. Transmission characteristics of linearly polarized light in reflection-type one-dimensional magnetophotonic crystals. Front. Optoelectron., 12, pp. 365—371. DOI: https://doi.org/10.1007/s12200-019-0870-020. Ferrari, L., Wu, C., Lepage, D., Zhang, X., and Liu, Zh., 2015. Hyperbolic metamaterials and their applications. Prog. Quantum Electron., 40, pp. 1—40. DOI: https://doi.org/10.1016/j.pquantelec.2014.10.00121. Mirmoosa, M. S., Kosulnikov, S. Yu., and Simovski, C. R., 2016. Magnetic hyperbolic metamaterial of high-index nanowires. Phys. Rev. B, 94, 075138. DOI: https://doi.org/10.1103/PhysRevB.94.07513822. Tuz, V.R., Fesenko, V.I., 2020. Magnetically induced topological transitions of hyperbolic dispersion in biaxial gyrotropic media. J. Appl. Phys., 128(1), 013107. DOI: https://doi.org/10.1063/5.001354623. Shmat’ko, A.A., Odarenko, E.N., and Mizernik, V.N., 2020. Hyperbolic magnetophotonic crystals with gyrotropic layers. Dispersion characteristics. In: 2020 IEEE Ukrainian Microwave Week (UkrMW). Kharkiv, Ukraine, 21—25 Sept. 2020. Vol. 4, pp. 1094— 1098. DOI: https://doi.org/10.1109/UkrMW49653.2020.925271724. Fan, S., Wang, Z., Miller, D.A.B., Villeneuvec, P.R., Haus, H.A., and Joannopoulos, J.D., 2002. Photonic crystal for communication applications. Proc. SPIE, 4870, pp. 298—306. DOI: https://doi.org/10.1117/12.47554625. Ghosh, R., Ghosh, K.K., and Chakraborty, R., 2013. Narrow band filter using 1D periodic structure with defects for DWDM systems. Opt. Commun., 289, pp. 75—80. DOI: https://doi.org/10.1016/j.optcom.2012.10.00126. González, L.E.. Segura-Gutierrez, L.M., Ordoñez, J.E., Zambrano, G., and Reina, J.H., 2022. A Multichannel Superconductor-Based Photonic Crystal Optical Filter Tunable in the Visible and Telecom Windows at Cryogenic Temperature. Photonics, 9(7), pp. 485—497. DOI: https://doi.org/10.3390/photonics907048527. Dangi, M.M., Aghdam, A.M., Karimzadeh, R., and Saghaei, H., 2022. Design and simulation of high-quality factor all-optical demultiplexers based on two-dimensional photonic crystal. Opt. Contin., 1(7), pp. 1458—1473. DOI: https://doi.org/10.1364/OPTCON.46004428. Liu, W., Zhang, L., and Zhang, F., 2022.Performance analysis of three-wavelength multi-channel photonic crystal filters of different sizes. Crystals, 12(1), pp. 91—102. DOI: https://doi.org/10.3390/cryst1201009129. Djavid, M., Dastjerdi, M.H.T., Philip, M.R., Choudhary, D., Pham, T.T., Khreishah, A., and Nguyen, H.P.T., 2018.Photonic crystal-based permutation switch for optical networks. Photonic Netw. Commun., 35, pp. 90—96. DOI: https://doi.org/10.1007/s11107-017-0719-730. Shmat’ko, A.A., Mizernik, V.N., Odarenko, E.N., Shevchenko, N.G., and Butenko, N.S., 2021. Narrow band filtering on the base of tunable magnetophotonic crystal. In: 2021 4th Int. Conf. on Advanced Information and Communication Technologies (AICT). Lviv, Ukraine, 21—25 Sept. 2021. P. 41—45. DOI: https://doi.org/10.1109/AICT52120.2021.962891031. Mohmoud, M.Y., Bassou, Gh., Taalbi, A., andChekroun, Z.M., 2012. Optical channel drop filters based on photonic crystal ring resonators. Opt. Commun., 285(3), pp. 368—372. DOI: https://doi.org/10.1016/j.optcom.2011.09.06832. Ma, Z., and Ogusu, K., 2011. Channel drop filters using photonic crystal Fabry-Perot resonators.Opt. Commun., 284(5), pp. 1192— 1196. DOI: https://doi.org/10.1016/j.optcom.2010.10.05033. Shmat’ko, A. A., Odarenko, E. N., Mizernik, V. N., and Shevchenko, N. G., 2020. Tunable angular spatial filter based on 1D magnetophotonic crystal. In: 2020 IEEE 15th Int. Conf. on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). Lviv-Slavske, Ukraine, 25—29 Febr. 2020. P. 207—212. DOI: https://doi.org/10.1109/TCSET49122.2020.23542434. Jafari, R., Sahrai, M., Bozorgzadeh, F., Mohammadi-Asl, R., Ahmadi, D., and Movahednia, M.,2022. Narrow-band transmission filter based on 1D-PCs with a defect layer. Appl. Opt., 61(25), pp. 7463—7468. DOI: https://doi.org/10.1364/AO.45263035. Zhao, X., Yang, Y., Wen, J., Chen, Z., Zhang, M., Fei, H., and Hao, Y., 2017. Tunable dual-channel filter based on the photonic crystal with air defects. Appl. Opt., 56(19), pp. 5463—5469. DOI: https://doi.org/10.1364/AO.56.00546336. Gryga, M., Ciprian, D., Gembalova, L., and Hlubina, P., 2023. One-Dimensional Photonic Crystal with a Defect Layer Utilized as an Optical Filter in Narrow Linewidth LED-Based Sources. Crystals, 13(1), 93. DOI: https://doi.org/10.3390/cryst1301009337. Brown, B. M., Eastham, M. S. P., and Schmidt, K. M., 2013. Periodic differential operators. Operator theory: Advances and Applications. 230. Basel: Springer. 216 p. DOI: https://doi.org/10.1007/978-3-0348-0528-538. Shmat’ko, A. A., Mizernik, V. N., Odarenko, E. N., and Lysytsya, V. T., 2017. Dispersion Properties of TM and TE Modes of Gyro- tropic Magnetophotonic Crystals. In: Vakhrushev, A.V. ed. Theoretical foundations and applications of photonic crystals. London: InTech, pp. 47—69. DOI: https://doi.org/10.5772/intechopen.7127339. Shmat’ko, A. A., Odarenko, E. N., and Mizernik, V. N., 2023. Surface waves Fabry-Perot modes of the finite magnetophotonic crystal in Voigt configuration. J. Electromagn. Waves Appl., 37(6), pp. 827–851. DOI: https://doi.org/10.1080/09205071.2023.221217740. Arnaud, J. A., and Saleh, A. A. M., 1974. Guidance of surface waves by multilayer coatings. Appl. Opt., 13(1), pp. 2343—2345. DOI: https://doi.org/10.1364/AO.13.00234341. Robertson, W. M., and May, M. S., 1999. Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays. Appl. Phys. Lett., 74, pp. 1800—1802. DOI: https://doi.org/10.1063/1.12309042. Shmat’ko, A. A., Mizernik, V. N., and Odarenko, E. N., 2018. Surface and bulk modes of magnetophotonic crystals. In: 2018 14th Int. Conf. on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). Lviv-Slavske, Ukraine, 20—24 Febr. 2018. P. 436—440. DOI: https://doi.org/10.1109/TCSET.2018.833623543. Smolik, G. M., Descharmes, N., and Herzig, H. P., 2018. Toward Bloch Surface Wave-Assisted Spectroscopy in the Mid-Infrared Region. ACS Photonics, 5(4), pp. 1164—1170. DOI: https://doi.org/10.1021/acsphotonics.7b0131544. Tuz, V. R., Fedorin, I. V., Fesenko, V. I., 2017. Bihyperbolic isofrequency surface in a magnetic-semiconductor superlattice. Opt. Lett., 42 (21), pp. 4561—4564. DOI: https://doi.org/10.1364/OL.42.004561 |
---|