THE NARROW-BAND FILTER BASED ON A MAGNETOPHOTONIC CRYSTAL INVOLVING LAYERS WITH HYPERBOLIC DISPERSION LAWS
Subject and Purpose. Narrow-band filters are among the basic components of modern communication systems, instruments for spectroscopy, high-sensitivity sensors, etc. Photonic crystal structures open up broad possibilities for creating compact-sized, narrow-band filters in the optical and terahertz r...
Збережено в:
Дата: | 2024 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Видавничий дім «Академперіодика»
2024
|
Теми: | |
Онлайн доступ: | http://rpra-journal.org.ua/index.php/ra/article/view/1436 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Radio physics and radio astronomy |
Репозитарії
Radio physics and radio astronomyid |
oai:ri.kharkov.ua:article-1436 |
---|---|
record_format |
ojs |
institution |
Radio physics and radio astronomy |
collection |
OJS |
language |
English |
topic |
magnetophotonic crystals hyperbolic media narrow-band filtering frequency comb dispersion characteristics surface wave modes магнітофотонний кристал гіперболічні середовища вузькосмугова фільтрація частотна гребінка дисперсійні характеристики режими поверхневих хвиль |
spellingShingle |
magnetophotonic crystals hyperbolic media narrow-band filtering frequency comb dispersion characteristics surface wave modes магнітофотонний кристал гіперболічні середовища вузькосмугова фільтрація частотна гребінка дисперсійні характеристики режими поверхневих хвиль Shmat’ko, A. A. Odarenko, E. N. THE NARROW-BAND FILTER BASED ON A MAGNETOPHOTONIC CRYSTAL INVOLVING LAYERS WITH HYPERBOLIC DISPERSION LAWS |
topic_facet |
magnetophotonic crystals hyperbolic media narrow-band filtering frequency comb dispersion characteristics surface wave modes магнітофотонний кристал гіперболічні середовища вузькосмугова фільтрація частотна гребінка дисперсійні характеристики режими поверхневих хвиль |
format |
Article |
author |
Shmat’ko, A. A. Odarenko, E. N. |
author_facet |
Shmat’ko, A. A. Odarenko, E. N. |
author_sort |
Shmat’ko, A. A. |
title |
THE NARROW-BAND FILTER BASED ON A MAGNETOPHOTONIC CRYSTAL INVOLVING LAYERS WITH HYPERBOLIC DISPERSION LAWS |
title_short |
THE NARROW-BAND FILTER BASED ON A MAGNETOPHOTONIC CRYSTAL INVOLVING LAYERS WITH HYPERBOLIC DISPERSION LAWS |
title_full |
THE NARROW-BAND FILTER BASED ON A MAGNETOPHOTONIC CRYSTAL INVOLVING LAYERS WITH HYPERBOLIC DISPERSION LAWS |
title_fullStr |
THE NARROW-BAND FILTER BASED ON A MAGNETOPHOTONIC CRYSTAL INVOLVING LAYERS WITH HYPERBOLIC DISPERSION LAWS |
title_full_unstemmed |
THE NARROW-BAND FILTER BASED ON A MAGNETOPHOTONIC CRYSTAL INVOLVING LAYERS WITH HYPERBOLIC DISPERSION LAWS |
title_sort |
narrow-band filter based on a magnetophotonic crystal involving layers with hyperbolic dispersion laws |
title_alt |
ВУЗЬКОСМУГОВИЙ ФІЛЬТР НА ОСНОВІ МАГНІТОФОТОННОГО КРИСТАЛА, ЩО МІСТИТЬ ШАРИ З ГІПЕРБОЛІЧНИМ ЗАКОНОМ ДИСПЕРСІЇ |
description |
Subject and Purpose. Narrow-band filters are among the basic components of modern communication systems, instruments for spectroscopy, high-sensitivity sensors, etc. Photonic crystal structures open up broad possibilities for creating compact-sized, narrow-band filters in the optical and terahertz ranges. Tuning of spectral characteristics of photonic crystal filters is usually carried out through introduction of certain elements into their structure that are sensitive to external electric and magnetic fields. This work has been aimed at investigating electrodynamic characteristics of one-dimensional magnetophotonic crystals with structural layers characterized by "hyperbolic" dispersion, and suggesting a multichannel, narrow-band filter on their base.Methods and Methodology. The dispersion equation for excitations in an infinite magnetophotonic crystal has been obtained within the framework of the Floquet-Bloch theory, with the use of fundamental solutions of Hill’s equation. The transfer matrix approach has been used to obtain an analytical expression for the transmission coefficient.Results. The band diagram of the one-dimensional magnetophotonic crystal has been analyzed for the case where one of the layers on the structure’s spatial period is characterized by a hyperbolic dispersion law. The areas of existence of surface wave regimes have been found for such layers for the case of normal incidence of the wave upon the finite-seized magnetophotonic crystal. Frequency dependences of the transmission coefficient are characterized by a set of high-Q resonant peaks relating to Fabry-Perot resonances in a periodic structure of finite length.Conclusions. Application of a finite-seized, one-dimensional magnetophotonic crystal is considered as of a means forachieving multichannel optical filtering and formation of a frequency comb. Expressions for the dispersion equation and transmission coefficient have been obtained within the framework of the Floquet-Bloch theory and with the use of the transfer matrix. The feasibility of surface mode excitation has been shown for gyrotropic layers of the periodic structure characterized by a hyperbolic dispersion law, for the case of normal incidence upon the magnetophotonic crystal. The spectral response of the filter contains narrow-band peaks with a high transmission efficiency. By increasing the number of the structure’s periods it is possible to form a frequency comb, which effect can be useful for applications in metrology and modern optical communication systems.Keywords: magnetophotonic crystals, hyperbolic media, narrow-band filtering, frequency comb, dispersion characteristics, surface wave modesManuscript submitted 15.08.2023Radio phys. radio astron. 2024, 29(1): 068-075REFERENCES1. Joannopoulos, J. D., Johnson, S. G., Winn, J. N., and Meade, R. D., 2008. Photonic Crystals: Molding the Flow of Light. Princeton University Press. 304 p.2. Prather, D. W., Sharkawy, A., Shi, S., Murakowski, J., and Schneider, G., 2009. Photonic Crystals, Theory, Applications and Fabrication. Wiley. 416 pp.3. Sakoda, K., 2005.Optical Properties of Photonic Crystals. Springer-Verlag Berlin Heidelberg. 258 pp. DOI: https://doi.org/10.1007/b1383764. Gong, Q., and Hu, X., 2013. Photonic Crystals. Principles and Applications. Pan Stanford Publishing. 366 pp. DOI: https://doi.org/10.1201/b156545. Skorobogatiy, M., and Yang, J., 2009. Fundamentals of Photonic Crystal Guiding. Cambridge University Press. 280 pp. DOI: https://doi.org/10.1017/CBO97805115752286. Ivzhenko, L.I., Odarenko, E.N., and Tarapov, S.I., 2016. Mechanically tunable wire medium metamaterial in the millimeter wave band. Prog. Electromagn. Res. Lett., 64, pp. 93—98. DOI: https://doi.org/10.2528/PIERL160909037. Krauss, T.F., 2003. Planar photonic crystal waveguide devices for integrated optics. Phys. Stat. Sol., 197(3), pp. 688—702. DOI: https://doi.org/10.1002/pssa.2003031178. Ikeda, N., Sugimoto, Y., Tanaka, Y., Inoue, K., and Asakawa, K., 2005. Low propagation losses in single-line-defect photonic crystal waveguides on Ga-As membranes. IEEE J. Sel. Areas Commun., 23(7), pp. 1315—1320. DOI: https://doi.org/10.1109/JSAC.2005.8512159. Englund, D., Ellis, B., Edwards, E., Sarmiento, T., Harris, J.S., Miller, D.A.B, and Vučković, J., 2009. Electrically controlled modulation in a photonic crystal nanocavity. Opt. Express, 18, pp. 15409—15419. DOI: https://doi.org/10.1364/OE.17.01540910. Stievater, T.H., Pruessner, M.W., Rabinovich, W.S., Park, D., Mahon,R., Kozak, D.A., Boos, J.B., Holmstrom, S.A., and Khurgin, J.B., 2015. Suspended photonic waveguide devices. Appl. Opt., 54(31), pp. F164—F173. DOI: https://doi.org/10.1364/AO.54.00F16411. Akahane, Y., Asano, T., Song, B., and Noda, S., 2005. Fine-tuned high-Q photonic-crystal nanocavity. Opt. Express, 13, pp. 1202— 1214. DOI: https://doi.org/10.1364/OPEX.13.00120212. Sashkova, Ya.V., and Odarenko, Ye.N., 2018. The modified Bragg waveguide with additional layers. Telecommunications and Radio Engineering, 77(6), pp. 489—500. DOI: https://doi.org/10.1615/TelecomRadEng.v77.i6.2013. Inoue, M., Fujikawa, R., Baryshev, A., Khanikaev, A., Lim, P.B., Uchida, H., Aktsipetrov, O., Fedyanin, A., Murzina, T., and Granovsky, A., 2006. Magnetophotonic crystals. J. Phy. D: Appl. Phys., 39, pp. 151—161. DOI: https://doi.org/10.1088/0022-3727/39/8/R0114. Shmat’ko, A.A., Mizernik, V.N., and Odarenko, E.N., 2020. Floquet-Bloch waves in magnetophotonic crystals with transverse magnetic field. Journal of Electromagnetic Waves and Applications, 34(12), pp. 1667—1679. DOI: https://doi.org/10.1080/09205071.2020.178095515. Shmat’ko, A.A., Odarenko, E.N., Mizernik, V.N., and Rokhmanova, T.N., 2017. Bragg reflection and transmission of light by one-dimensional gyrotropic magnetophotonic crystal. In: 2017 2nd Int. Conf. on Advanced Information and Communication Technologies (AICT). Lviv, Ukraine, 04—07 July 2017. P. 232—236. DOI: https://doi.org/10.1109/AIACT.2017.802010816. Zhang, Y., Li, P., Chen, Y., and Han, Y., 2019. Four-channel THz wave routing switch based on magneto photonic crystals. Optik, 181, pp. 134—139. DOI: https://doi.org/10.1016/j.ijleo.2018.12.03217. Fei, H., Wu, J., Yang, Y., Liu, X., and Chen, Z., 2015. Magnetooptical isolators with flat-top responses based on one-dimensional magneto-photonic crystals. Photonics Nanostruct., 17, pp. 15—21. DOI: https://doi.org/10.1016/j.photonics.2015.10.00118. Xu, B., Zhang, D., Zeng, X., Wang, Y., and Dong, Z., 2019. Magnetic photonic crystal circulator based on gradient changing width waveguide. Optik, 185, pp. 132—137. DOI: https://doi.org/10.1016/j.ijleo.2019.03.05419. Zeng, C., Wang, Z., and Xie, Y., 2019. Transmission characteristics of linearly polarized light in reflection-type one-dimensional magnetophotonic crystals. Front. Optoelectron., 12, pp. 365—371. DOI: https://doi.org/10.1007/s12200-019-0870-020. Ferrari, L., Wu, C., Lepage, D., Zhang, X., and Liu, Zh., 2015. Hyperbolic metamaterials and their applications. Prog. Quantum Electron., 40, pp. 1—40. DOI: https://doi.org/10.1016/j.pquantelec.2014.10.00121. Mirmoosa, M. S., Kosulnikov, S. Yu., and Simovski, C. R., 2016. Magnetic hyperbolic metamaterial of high-index nanowires. Phys. Rev. B, 94, 075138. DOI: https://doi.org/10.1103/PhysRevB.94.07513822. Tuz, V.R., Fesenko, V.I., 2020. Magnetically induced topological transitions of hyperbolic dispersion in biaxial gyrotropic media. J. Appl. Phys., 128(1), 013107. DOI: https://doi.org/10.1063/5.001354623. Shmat’ko, A.A., Odarenko, E.N., and Mizernik, V.N., 2020. Hyperbolic magnetophotonic crystals with gyrotropic layers. Dispersion characteristics. In: 2020 IEEE Ukrainian Microwave Week (UkrMW). Kharkiv, Ukraine, 21—25 Sept. 2020. Vol. 4, pp. 1094— 1098. DOI: https://doi.org/10.1109/UkrMW49653.2020.925271724. Fan, S., Wang, Z., Miller, D.A.B., Villeneuvec, P.R., Haus, H.A., and Joannopoulos, J.D., 2002. Photonic crystal for communication applications. Proc. SPIE, 4870, pp. 298—306. DOI: https://doi.org/10.1117/12.47554625. Ghosh, R., Ghosh, K.K., and Chakraborty, R., 2013. Narrow band filter using 1D periodic structure with defects for DWDM systems. Opt. Commun., 289, pp. 75—80. DOI: https://doi.org/10.1016/j.optcom.2012.10.00126. González, L.E.. Segura-Gutierrez, L.M., Ordoñez, J.E., Zambrano, G., and Reina, J.H., 2022. A Multichannel Superconductor-Based Photonic Crystal Optical Filter Tunable in the Visible and Telecom Windows at Cryogenic Temperature. Photonics, 9(7), pp. 485—497. DOI: https://doi.org/10.3390/photonics907048527. Dangi, M.M., Aghdam, A.M., Karimzadeh, R., and Saghaei, H., 2022. Design and simulation of high-quality factor all-optical demultiplexers based on two-dimensional photonic crystal. Opt. Contin., 1(7), pp. 1458—1473. DOI: https://doi.org/10.1364/OPTCON.46004428. Liu, W., Zhang, L., and Zhang, F., 2022.Performance analysis of three-wavelength multi-channel photonic crystal filters of different sizes. Crystals, 12(1), pp. 91—102. DOI: https://doi.org/10.3390/cryst1201009129. Djavid, M., Dastjerdi, M.H.T., Philip, M.R., Choudhary, D., Pham, T.T., Khreishah, A., and Nguyen, H.P.T., 2018.Photonic crystal-based permutation switch for optical networks. Photonic Netw. Commun., 35, pp. 90—96. DOI: https://doi.org/10.1007/s11107-017-0719-730. Shmat’ko, A.A., Mizernik, V.N., Odarenko, E.N., Shevchenko, N.G., and Butenko, N.S., 2021. Narrow band filtering on the base of tunable magnetophotonic crystal. In: 2021 4th Int. Conf. on Advanced Information and Communication Technologies (AICT). Lviv, Ukraine, 21—25 Sept. 2021. P. 41—45. DOI: https://doi.org/10.1109/AICT52120.2021.962891031. Mohmoud, M.Y., Bassou, Gh., Taalbi, A., andChekroun, Z.M., 2012. Optical channel drop filters based on photonic crystal ring resonators. Opt. Commun., 285(3), pp. 368—372. DOI: https://doi.org/10.1016/j.optcom.2011.09.06832. Ma, Z., and Ogusu, K., 2011. Channel drop filters using photonic crystal Fabry-Perot resonators.Opt. Commun., 284(5), pp. 1192— 1196. DOI: https://doi.org/10.1016/j.optcom.2010.10.05033. Shmat’ko, A. A., Odarenko, E. N., Mizernik, V. N., and Shevchenko, N. G., 2020. Tunable angular spatial filter based on 1D magnetophotonic crystal. In: 2020 IEEE 15th Int. Conf. on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). Lviv-Slavske, Ukraine, 25—29 Febr. 2020. P. 207—212. DOI: https://doi.org/10.1109/TCSET49122.2020.23542434. Jafari, R., Sahrai, M., Bozorgzadeh, F., Mohammadi-Asl, R., Ahmadi, D., and Movahednia, M.,2022. Narrow-band transmission filter based on 1D-PCs with a defect layer. Appl. Opt., 61(25), pp. 7463—7468. DOI: https://doi.org/10.1364/AO.45263035. Zhao, X., Yang, Y., Wen, J., Chen, Z., Zhang, M., Fei, H., and Hao, Y., 2017. Tunable dual-channel filter based on the photonic crystal with air defects. Appl. Opt., 56(19), pp. 5463—5469. DOI: https://doi.org/10.1364/AO.56.00546336. Gryga, M., Ciprian, D., Gembalova, L., and Hlubina, P., 2023. One-Dimensional Photonic Crystal with a Defect Layer Utilized as an Optical Filter in Narrow Linewidth LED-Based Sources. Crystals, 13(1), 93. DOI: https://doi.org/10.3390/cryst1301009337. Brown, B. M., Eastham, M. S. P., and Schmidt, K. M., 2013. Periodic differential operators. Operator theory: Advances and Applications. 230. Basel: Springer. 216 p. DOI: https://doi.org/10.1007/978-3-0348-0528-538. Shmat’ko, A. A., Mizernik, V. N., Odarenko, E. N., and Lysytsya, V. T., 2017. Dispersion Properties of TM and TE Modes of Gyro- tropic Magnetophotonic Crystals. In: Vakhrushev, A.V. ed. Theoretical foundations and applications of photonic crystals. London: InTech, pp. 47—69. DOI: https://doi.org/10.5772/intechopen.7127339. Shmat’ko, A. A., Odarenko, E. N., and Mizernik, V. N., 2023. Surface waves Fabry-Perot modes of the finite magnetophotonic crystal in Voigt configuration. J. Electromagn. Waves Appl., 37(6), pp. 827–851. DOI: https://doi.org/10.1080/09205071.2023.221217740. Arnaud, J. A., and Saleh, A. A. M., 1974. Guidance of surface waves by multilayer coatings. Appl. Opt., 13(1), pp. 2343—2345. DOI: https://doi.org/10.1364/AO.13.00234341. Robertson, W. M., and May, M. S., 1999. Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays. Appl. Phys. Lett., 74, pp. 1800—1802. DOI: https://doi.org/10.1063/1.12309042. Shmat’ko, A. A., Mizernik, V. N., and Odarenko, E. N., 2018. Surface and bulk modes of magnetophotonic crystals. In: 2018 14th Int. Conf. on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). Lviv-Slavske, Ukraine, 20—24 Febr. 2018. P. 436—440. DOI: https://doi.org/10.1109/TCSET.2018.833623543. Smolik, G. M., Descharmes, N., and Herzig, H. P., 2018. Toward Bloch Surface Wave-Assisted Spectroscopy in the Mid-Infrared Region. ACS Photonics, 5(4), pp. 1164—1170. DOI: https://doi.org/10.1021/acsphotonics.7b0131544. Tuz, V. R., Fedorin, I. V., Fesenko, V. I., 2017. Bihyperbolic isofrequency surface in a magnetic-semiconductor superlattice. Opt. Lett., 42 (21), pp. 4561—4564. DOI: https://doi.org/10.1364/OL.42.004561 |
publisher |
Видавничий дім «Академперіодика» |
publishDate |
2024 |
url |
http://rpra-journal.org.ua/index.php/ra/article/view/1436 |
work_keys_str_mv |
AT shmatkoaa thenarrowbandfilterbasedonamagnetophotoniccrystalinvolvinglayerswithhyperbolicdispersionlaws AT odarenkoen thenarrowbandfilterbasedonamagnetophotoniccrystalinvolvinglayerswithhyperbolicdispersionlaws AT shmatkoaa vuzʹkosmugovijfílʹtrnaosnovímagnítofotonnogokristalaŝomístitʹšarizgíperbolíčnimzakonomdispersíí AT odarenkoen vuzʹkosmugovijfílʹtrnaosnovímagnítofotonnogokristalaŝomístitʹšarizgíperbolíčnimzakonomdispersíí AT shmatkoaa narrowbandfilterbasedonamagnetophotoniccrystalinvolvinglayerswithhyperbolicdispersionlaws AT odarenkoen narrowbandfilterbasedonamagnetophotoniccrystalinvolvinglayerswithhyperbolicdispersionlaws |
first_indexed |
2024-05-26T06:29:01Z |
last_indexed |
2024-05-26T06:29:01Z |
_version_ |
1802895113922281472 |
spelling |
oai:ri.kharkov.ua:article-14362024-03-26T08:40:53Z THE NARROW-BAND FILTER BASED ON A MAGNETOPHOTONIC CRYSTAL INVOLVING LAYERS WITH HYPERBOLIC DISPERSION LAWS ВУЗЬКОСМУГОВИЙ ФІЛЬТР НА ОСНОВІ МАГНІТОФОТОННОГО КРИСТАЛА, ЩО МІСТИТЬ ШАРИ З ГІПЕРБОЛІЧНИМ ЗАКОНОМ ДИСПЕРСІЇ Shmat’ko, A. A. Odarenko, E. N. magnetophotonic crystals; hyperbolic media; narrow-band filtering; frequency comb; dispersion characteristics; surface wave modes магнітофотонний кристал; гіперболічні середовища; вузькосмугова фільтрація; частотна гребінка; дисперсійні характеристики; режими поверхневих хвиль Subject and Purpose. Narrow-band filters are among the basic components of modern communication systems, instruments for spectroscopy, high-sensitivity sensors, etc. Photonic crystal structures open up broad possibilities for creating compact-sized, narrow-band filters in the optical and terahertz ranges. Tuning of spectral characteristics of photonic crystal filters is usually carried out through introduction of certain elements into their structure that are sensitive to external electric and magnetic fields. This work has been aimed at investigating electrodynamic characteristics of one-dimensional magnetophotonic crystals with structural layers characterized by "hyperbolic" dispersion, and suggesting a multichannel, narrow-band filter on their base.Methods and Methodology. The dispersion equation for excitations in an infinite magnetophotonic crystal has been obtained within the framework of the Floquet-Bloch theory, with the use of fundamental solutions of Hill’s equation. The transfer matrix approach has been used to obtain an analytical expression for the transmission coefficient.Results. The band diagram of the one-dimensional magnetophotonic crystal has been analyzed for the case where one of the layers on the structure’s spatial period is characterized by a hyperbolic dispersion law. The areas of existence of surface wave regimes have been found for such layers for the case of normal incidence of the wave upon the finite-seized magnetophotonic crystal. Frequency dependences of the transmission coefficient are characterized by a set of high-Q resonant peaks relating to Fabry-Perot resonances in a periodic structure of finite length.Conclusions. Application of a finite-seized, one-dimensional magnetophotonic crystal is considered as of a means forachieving multichannel optical filtering and formation of a frequency comb. Expressions for the dispersion equation and transmission coefficient have been obtained within the framework of the Floquet-Bloch theory and with the use of the transfer matrix. The feasibility of surface mode excitation has been shown for gyrotropic layers of the periodic structure characterized by a hyperbolic dispersion law, for the case of normal incidence upon the magnetophotonic crystal. The spectral response of the filter contains narrow-band peaks with a high transmission efficiency. By increasing the number of the structure’s periods it is possible to form a frequency comb, which effect can be useful for applications in metrology and modern optical communication systems.Keywords: magnetophotonic crystals, hyperbolic media, narrow-band filtering, frequency comb, dispersion characteristics, surface wave modesManuscript submitted 15.08.2023Radio phys. radio astron. 2024, 29(1): 068-075REFERENCES1. Joannopoulos, J. D., Johnson, S. G., Winn, J. N., and Meade, R. D., 2008. Photonic Crystals: Molding the Flow of Light. Princeton University Press. 304 p.2. Prather, D. W., Sharkawy, A., Shi, S., Murakowski, J., and Schneider, G., 2009. Photonic Crystals, Theory, Applications and Fabrication. Wiley. 416 pp.3. Sakoda, K., 2005.Optical Properties of Photonic Crystals. Springer-Verlag Berlin Heidelberg. 258 pp. DOI: https://doi.org/10.1007/b1383764. Gong, Q., and Hu, X., 2013. Photonic Crystals. Principles and Applications. Pan Stanford Publishing. 366 pp. DOI: https://doi.org/10.1201/b156545. Skorobogatiy, M., and Yang, J., 2009. Fundamentals of Photonic Crystal Guiding. Cambridge University Press. 280 pp. DOI: https://doi.org/10.1017/CBO97805115752286. Ivzhenko, L.I., Odarenko, E.N., and Tarapov, S.I., 2016. Mechanically tunable wire medium metamaterial in the millimeter wave band. Prog. Electromagn. Res. Lett., 64, pp. 93—98. DOI: https://doi.org/10.2528/PIERL160909037. Krauss, T.F., 2003. Planar photonic crystal waveguide devices for integrated optics. Phys. Stat. Sol., 197(3), pp. 688—702. DOI: https://doi.org/10.1002/pssa.2003031178. Ikeda, N., Sugimoto, Y., Tanaka, Y., Inoue, K., and Asakawa, K., 2005. Low propagation losses in single-line-defect photonic crystal waveguides on Ga-As membranes. IEEE J. Sel. Areas Commun., 23(7), pp. 1315—1320. DOI: https://doi.org/10.1109/JSAC.2005.8512159. Englund, D., Ellis, B., Edwards, E., Sarmiento, T., Harris, J.S., Miller, D.A.B, and Vučković, J., 2009. Electrically controlled modulation in a photonic crystal nanocavity. Opt. Express, 18, pp. 15409—15419. DOI: https://doi.org/10.1364/OE.17.01540910. Stievater, T.H., Pruessner, M.W., Rabinovich, W.S., Park, D., Mahon,R., Kozak, D.A., Boos, J.B., Holmstrom, S.A., and Khurgin, J.B., 2015. Suspended photonic waveguide devices. Appl. Opt., 54(31), pp. F164—F173. DOI: https://doi.org/10.1364/AO.54.00F16411. Akahane, Y., Asano, T., Song, B., and Noda, S., 2005. Fine-tuned high-Q photonic-crystal nanocavity. Opt. Express, 13, pp. 1202— 1214. DOI: https://doi.org/10.1364/OPEX.13.00120212. Sashkova, Ya.V., and Odarenko, Ye.N., 2018. The modified Bragg waveguide with additional layers. Telecommunications and Radio Engineering, 77(6), pp. 489—500. DOI: https://doi.org/10.1615/TelecomRadEng.v77.i6.2013. Inoue, M., Fujikawa, R., Baryshev, A., Khanikaev, A., Lim, P.B., Uchida, H., Aktsipetrov, O., Fedyanin, A., Murzina, T., and Granovsky, A., 2006. Magnetophotonic crystals. J. Phy. D: Appl. Phys., 39, pp. 151—161. DOI: https://doi.org/10.1088/0022-3727/39/8/R0114. Shmat’ko, A.A., Mizernik, V.N., and Odarenko, E.N., 2020. Floquet-Bloch waves in magnetophotonic crystals with transverse magnetic field. Journal of Electromagnetic Waves and Applications, 34(12), pp. 1667—1679. DOI: https://doi.org/10.1080/09205071.2020.178095515. Shmat’ko, A.A., Odarenko, E.N., Mizernik, V.N., and Rokhmanova, T.N., 2017. Bragg reflection and transmission of light by one-dimensional gyrotropic magnetophotonic crystal. In: 2017 2nd Int. Conf. on Advanced Information and Communication Technologies (AICT). Lviv, Ukraine, 04—07 July 2017. P. 232—236. DOI: https://doi.org/10.1109/AIACT.2017.802010816. Zhang, Y., Li, P., Chen, Y., and Han, Y., 2019. Four-channel THz wave routing switch based on magneto photonic crystals. Optik, 181, pp. 134—139. DOI: https://doi.org/10.1016/j.ijleo.2018.12.03217. Fei, H., Wu, J., Yang, Y., Liu, X., and Chen, Z., 2015. Magnetooptical isolators with flat-top responses based on one-dimensional magneto-photonic crystals. Photonics Nanostruct., 17, pp. 15—21. DOI: https://doi.org/10.1016/j.photonics.2015.10.00118. Xu, B., Zhang, D., Zeng, X., Wang, Y., and Dong, Z., 2019. Magnetic photonic crystal circulator based on gradient changing width waveguide. Optik, 185, pp. 132—137. DOI: https://doi.org/10.1016/j.ijleo.2019.03.05419. Zeng, C., Wang, Z., and Xie, Y., 2019. Transmission characteristics of linearly polarized light in reflection-type one-dimensional magnetophotonic crystals. Front. Optoelectron., 12, pp. 365—371. DOI: https://doi.org/10.1007/s12200-019-0870-020. Ferrari, L., Wu, C., Lepage, D., Zhang, X., and Liu, Zh., 2015. Hyperbolic metamaterials and their applications. Prog. Quantum Electron., 40, pp. 1—40. DOI: https://doi.org/10.1016/j.pquantelec.2014.10.00121. Mirmoosa, M. S., Kosulnikov, S. Yu., and Simovski, C. R., 2016. Magnetic hyperbolic metamaterial of high-index nanowires. Phys. Rev. B, 94, 075138. DOI: https://doi.org/10.1103/PhysRevB.94.07513822. Tuz, V.R., Fesenko, V.I., 2020. Magnetically induced topological transitions of hyperbolic dispersion in biaxial gyrotropic media. J. Appl. Phys., 128(1), 013107. DOI: https://doi.org/10.1063/5.001354623. Shmat’ko, A.A., Odarenko, E.N., and Mizernik, V.N., 2020. Hyperbolic magnetophotonic crystals with gyrotropic layers. Dispersion characteristics. In: 2020 IEEE Ukrainian Microwave Week (UkrMW). Kharkiv, Ukraine, 21—25 Sept. 2020. Vol. 4, pp. 1094— 1098. DOI: https://doi.org/10.1109/UkrMW49653.2020.925271724. Fan, S., Wang, Z., Miller, D.A.B., Villeneuvec, P.R., Haus, H.A., and Joannopoulos, J.D., 2002. Photonic crystal for communication applications. Proc. SPIE, 4870, pp. 298—306. DOI: https://doi.org/10.1117/12.47554625. Ghosh, R., Ghosh, K.K., and Chakraborty, R., 2013. Narrow band filter using 1D periodic structure with defects for DWDM systems. Opt. Commun., 289, pp. 75—80. DOI: https://doi.org/10.1016/j.optcom.2012.10.00126. González, L.E.. Segura-Gutierrez, L.M., Ordoñez, J.E., Zambrano, G., and Reina, J.H., 2022. A Multichannel Superconductor-Based Photonic Crystal Optical Filter Tunable in the Visible and Telecom Windows at Cryogenic Temperature. Photonics, 9(7), pp. 485—497. DOI: https://doi.org/10.3390/photonics907048527. Dangi, M.M., Aghdam, A.M., Karimzadeh, R., and Saghaei, H., 2022. Design and simulation of high-quality factor all-optical demultiplexers based on two-dimensional photonic crystal. Opt. Contin., 1(7), pp. 1458—1473. DOI: https://doi.org/10.1364/OPTCON.46004428. Liu, W., Zhang, L., and Zhang, F., 2022.Performance analysis of three-wavelength multi-channel photonic crystal filters of different sizes. Crystals, 12(1), pp. 91—102. DOI: https://doi.org/10.3390/cryst1201009129. Djavid, M., Dastjerdi, M.H.T., Philip, M.R., Choudhary, D., Pham, T.T., Khreishah, A., and Nguyen, H.P.T., 2018.Photonic crystal-based permutation switch for optical networks. Photonic Netw. Commun., 35, pp. 90—96. DOI: https://doi.org/10.1007/s11107-017-0719-730. Shmat’ko, A.A., Mizernik, V.N., Odarenko, E.N., Shevchenko, N.G., and Butenko, N.S., 2021. Narrow band filtering on the base of tunable magnetophotonic crystal. In: 2021 4th Int. Conf. on Advanced Information and Communication Technologies (AICT). Lviv, Ukraine, 21—25 Sept. 2021. P. 41—45. DOI: https://doi.org/10.1109/AICT52120.2021.962891031. Mohmoud, M.Y., Bassou, Gh., Taalbi, A., andChekroun, Z.M., 2012. Optical channel drop filters based on photonic crystal ring resonators. Opt. Commun., 285(3), pp. 368—372. DOI: https://doi.org/10.1016/j.optcom.2011.09.06832. Ma, Z., and Ogusu, K., 2011. Channel drop filters using photonic crystal Fabry-Perot resonators.Opt. Commun., 284(5), pp. 1192— 1196. DOI: https://doi.org/10.1016/j.optcom.2010.10.05033. Shmat’ko, A. A., Odarenko, E. N., Mizernik, V. N., and Shevchenko, N. G., 2020. Tunable angular spatial filter based on 1D magnetophotonic crystal. In: 2020 IEEE 15th Int. Conf. on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). Lviv-Slavske, Ukraine, 25—29 Febr. 2020. P. 207—212. DOI: https://doi.org/10.1109/TCSET49122.2020.23542434. Jafari, R., Sahrai, M., Bozorgzadeh, F., Mohammadi-Asl, R., Ahmadi, D., and Movahednia, M.,2022. Narrow-band transmission filter based on 1D-PCs with a defect layer. Appl. Opt., 61(25), pp. 7463—7468. DOI: https://doi.org/10.1364/AO.45263035. Zhao, X., Yang, Y., Wen, J., Chen, Z., Zhang, M., Fei, H., and Hao, Y., 2017. Tunable dual-channel filter based on the photonic crystal with air defects. Appl. Opt., 56(19), pp. 5463—5469. DOI: https://doi.org/10.1364/AO.56.00546336. Gryga, M., Ciprian, D., Gembalova, L., and Hlubina, P., 2023. One-Dimensional Photonic Crystal with a Defect Layer Utilized as an Optical Filter in Narrow Linewidth LED-Based Sources. Crystals, 13(1), 93. DOI: https://doi.org/10.3390/cryst1301009337. Brown, B. M., Eastham, M. S. P., and Schmidt, K. M., 2013. Periodic differential operators. Operator theory: Advances and Applications. 230. Basel: Springer. 216 p. DOI: https://doi.org/10.1007/978-3-0348-0528-538. Shmat’ko, A. A., Mizernik, V. N., Odarenko, E. N., and Lysytsya, V. T., 2017. Dispersion Properties of TM and TE Modes of Gyro- tropic Magnetophotonic Crystals. In: Vakhrushev, A.V. ed. Theoretical foundations and applications of photonic crystals. London: InTech, pp. 47—69. DOI: https://doi.org/10.5772/intechopen.7127339. Shmat’ko, A. A., Odarenko, E. N., and Mizernik, V. N., 2023. Surface waves Fabry-Perot modes of the finite magnetophotonic crystal in Voigt configuration. J. Electromagn. Waves Appl., 37(6), pp. 827–851. DOI: https://doi.org/10.1080/09205071.2023.221217740. Arnaud, J. A., and Saleh, A. A. M., 1974. Guidance of surface waves by multilayer coatings. Appl. Opt., 13(1), pp. 2343—2345. DOI: https://doi.org/10.1364/AO.13.00234341. Robertson, W. M., and May, M. S., 1999. Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays. Appl. Phys. Lett., 74, pp. 1800—1802. DOI: https://doi.org/10.1063/1.12309042. Shmat’ko, A. A., Mizernik, V. N., and Odarenko, E. N., 2018. Surface and bulk modes of magnetophotonic crystals. In: 2018 14th Int. Conf. on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). Lviv-Slavske, Ukraine, 20—24 Febr. 2018. P. 436—440. DOI: https://doi.org/10.1109/TCSET.2018.833623543. Smolik, G. M., Descharmes, N., and Herzig, H. P., 2018. Toward Bloch Surface Wave-Assisted Spectroscopy in the Mid-Infrared Region. ACS Photonics, 5(4), pp. 1164—1170. DOI: https://doi.org/10.1021/acsphotonics.7b0131544. Tuz, V. R., Fedorin, I. V., Fesenko, V. I., 2017. Bihyperbolic isofrequency surface in a magnetic-semiconductor superlattice. Opt. Lett., 42 (21), pp. 4561—4564. DOI: https://doi.org/10.1364/OL.42.004561 Предмет і мета роботи. Вузькосмугові фільтри є одними з основних компонентів сучасних систем зв›язку, спектроскопії, високочутливих сенсорів тощо. Фотонно-кристалічні структури відкривають широкі можливості для створення компактних вузькосмугових фільтрів оптичного та терагерцового діапазонів. Налаштування спектральних характеристик фотонно-кристалічних фільтрів зазвичай здійснюється шляхом введення в їхню структуру елементів, чутливих до зовнішніх електричних і магнітних полів. Метою даної роботи є дослідження електродинамічних характеристик одновимірного магнітофотонного кристала з шарами, які характеризуються гіперболічним законом дисперсії, та створення на цій основі багатоканального вузькосмугового фільтра.Методи та методологія. У рамках методу Флоке–Блоха з використанням фундаментальних розв›язків рівняння Хілла отримано дисперсійне рівняння для нескінченного магнітофотонного кристала. Для отримання аналітичного виразу для коефіцієнта пропускання використано метод матриці передачі.Результати. Проаналізовано дисперсійну діаграму одновимірного магнітофотонного кристала для випадку, коли один із шарів на періоді структури характеризується гіперболічним законом дисперсії. Знайдено області існування поверхневих хвильових режимів у таких шарах періодичної структури за умови нормального падіння хвилі на скінченний магнітофотонний кристал. Частотні залежності коефіцієнта пропускання характеризуються набором високодобротних резонансних піків, що є обумовленими резонансами Фабрі–Перо в скінченній періодичній структурі.Висновки. Розглянуто застосування скінченного одновимірного магнітофотонного кристала для оптичної багатоканальної фільтрації та формування частотної гребінки. Отримано дисперсійне рівняння та вираз для коефіцієнта пропускання в рамках методу Флоке–Блоха та матриці передачі. Показано можливість реалізації мод поверхневих хвиль у шарах періодичної структури, які характеризуються гіперболічним законом дисперсії, за умови нормального падіння хвилі на магнітофотонний кристал. Спектральна характеристика фільтра містить вузькосмугові піки з високим коефіцієнтом проходження. Збільшення кількості періодів структури приводить до формування частотної гребінки, яка може бути використаною в метрології та сучасних оптичних комунікаційних системах.Ключові слова: магнітофотонний кристал; гіперболічні середовища; вузькосмугова фільтрація; частотна гребінка; дисперсійні характеристики; режими поверхневих хвильСтаття надійшла до редакції 15.08.2023Radio phys. radio astron. 2024, 29(1): 068-075БІБЛІОГРАФІЧНИЙ СПИСОК 1. Joannopoulos, J.D., Johnson, S.G., Winn, J.N., and Meade, R.D., 2008. Photonic Crystals: Molding the Flow of Light. Princeton University Press. 304 p. 2. Prather, D.W., Sharkawy, A., Shi, S., Murakowski, J., and Schneider, G., 2009. Photonic Crystals, Theory, Applications and Fabrication. Wiley. 416 pp. 3. Sakoda, K., 2005.Optical Properties of Photonic Crystals. Springer-Verlag Berlin Heidelberg. 258 pp. 4. Gong, Q., and Hu, X., 2013. Photonic Crystals. Principles and Applications. Pan Stanford Publishing. 366 pp. 5. Skorobogatiy, M., and Yang, J., 2009. Fundamentals of Photonic Crystal Guiding. Cambridge University Press. 280 pp. 6. Ivzhenko, L.I., Odarenko, E.N., and Tarapov, S.I., 2016. Mechanically tunable wire medium metamaterial in the millimeter wave band. Prog. Electromagn. Res. Lett., 64, pp. 93—98. DOI: 10.2528/PIERL16090903 7. Krauss, T.F., 2003. Planar photonic crystal waveguide devices for integrated optics. Phys. Stat. Sol., 197(3), pp. 688—702. DOI: 10.1002/pssa.200303117 8. Ikeda, N., Sugimoto, Y., Tanaka, Y., Inoue, K., and Asakawa, K., 2005. Low propagation losses in single-line-defect photonic crystal waveguides on Ga-As membranes. IEEE J. Sel. Areas Commun., 23(7), pp. 1315—1320. DOI: 10.1109/JSAC.2005.851215 9. Englund, D., Ellis, B., Edwards, E., Sarmiento, T., Harris, J.S., Miller, D.A.B, and Vučković, J., 2009. Electrically controlled modulation in a photonic crystal nanocavity. Opt. Express, 18, pp. 15409—15419. DOI: 10.1364/OE.17.015409 10. Stievater, T.H., Pruessner, M.W., Rabinovich, W.S., Park, D., Mahon,R., Kozak, D.A., Boos, J.B., Holmstrom, S.A., and Khurgin, J.B., 2015. Suspended photonic waveguide devices. Appl. Opt., 54(31), pp. F164—F173. DOI: 10.1364/AO.54.00F164 11. Akahane, Y., Asano, T., Song, B., and Noda, S., 2005. Fine-tuned high-Q photonic-crystal nanocavity. Opt. Express, 13, pp. 1202— 1214. DOI: 10.1364/OPEX.13.001202 12. Sashkova, Ya.V., and Odarenko, Ye.N., 2018. The modified Bragg waveguide with additional layers. Telecommunications and Radio Engineering, 77(6), pp. 489—500. DOI: 10.1615/TelecomRadEng.v77.i6.20 13. Inoue, M., Fujikawa, R., Baryshev, A., Khanikaev, A., Lim, P.B., Uchida, H., Aktsipetrov, O., Fedyanin, A., Murzina, T., and Granovsky, A., 2006. Magnetophotonic crystals. J. Phy. D: Appl. Phys., 39, pp. 151—161. DOI: 10.1088/0022-3727/39/8/R01 14. Shmat’ko, A.A., Mizernik, V.N., and Odarenko, E.N., 2020. Floquet-Bloch waves in magnetophotonic crystals with transverse magnetic field. Journal of Electromagnetic Waves and Applications, 34(12), pp. 1667—1679. DOI: 10.1080/09205071.2020.1780955 15. Shmat’ko, A.A., Odarenko, E.N., Mizernik, V.N., and Rokhmanova, T.N., 2017. Bragg reflection and transmission of light by one-dimensional gyrotropic magnetophotonic crystal. In: 2017 2nd Int. Conf. on Advanced Information and Communication Technologies (AICT). Lviv, Ukraine, 04—07 July 2017. P. 232—236. DOI: 10.1109/AIACT.2017.8020108 16. Zhang, Y., Li, P., Chen, Y., and Han, Y., 2019. Four-channel THz wave routing switch based on magneto photonic crystals. Optik,181, pp. 134—139. DOI: 10.1016/j.ijleo.2018.12.032 17. Fei, H., Wu, J., Yang, Y., Liu, X., and Chen, Z., 2015. Magnetooptical isolators with flat-top responses based on one-dimensional magneto-photonic crystals. Photonics Nanostruct., 17, pp. 15—21. DOI: 10.1016/j.photonics.2015.10.001 18. Xu, B., Zhang, D., Zeng, X., Wang, Y., and Dong, Z., 2019. Magnetic photonic crystal circulator based on gradient changing width waveguide. Optik, 185, pp. 132—137. DOI: 10.1016/j.ijleo.2019.03.054 19. Zeng, C., Wang, Z., and Xie, Y., 2019. Transmission characteristics of linearly polarized light in reflection-type one-dimensional magnetophotonic crystals. Front. Optoelectron., 12, pp. 365—371. DOI: 10.1007/s12200-019-0870-0 20. Ferrari, L., Wu, C., Lepage, D., Zhang, X., and Liu, Zh., 2015. Hyperbolic metamaterials and their applications. Prog. Quantum Electron., 40, pp. 1—40. DOI: 10.1016/j.pquantelec.2014.10.001 21. Mirmoosa, M.S., Kosulnikov, S.Yu., and Simovski, C.R., 2016. Magnetic hyperbolic metamaterial of high-index nanowires. Phys. Rev. B, 94, 075138. DOI: 10.1103/PhysRevB.94.075138 22. Tuz, V.R., Fesenko, V.I., 2020. Magnetically induced topological transitions of hyperbolic dispersion in biaxial gyrotropic media.J. Appl. Phys., 128(1), 013107. DOI: 10.1063/5.0013546 23. Shmat’ko, A.A., Odarenko, E.N., and Mizernik, V.N., 2020. Hyperbolic magnetophotonic crystals with gyrotropic layers. Dispersion characteristics. In: 2020 IEEE Ukrainian Microwave Week (UkrMW). Kharkiv, Ukraine, 21—25 Sept. 2020. Vol. 4, pp. 1094— 1098. DOI: 10.1109/UkrMW49653.2020.9252717 24. Fan, S., Wang, Z., Miller, D.A.B., Villeneuvec, P.R., Haus, H.A., and Joannopoulos, J.D., 2002. Photonic crystal for communication applications. Proc. SPIE, 4870, pp. 298—306. DOI: 10.1117/12.475546 25. Ghosh, R., Ghosh, K.K., and Chakraborty, R., 2013. Narrow band filter using 1D periodic structure with defects for DWDM systems. Opt. Commun., 289, pp. 75—80. DOI: 10.1016/j.optcom.2012.10.001 26. González, L.E.. Segura-Gutierrez, L.M., Ordoñez, J.E., Zambrano, G., and Reina, J.H., 2022. A Multichannel Superconductor-Based Photonic Crystal Optical Filter Tunable in the Visible and Telecom Windows at Cryogenic Temperature. Photonics, 9(7), pp. 485—497. DOI: 10.3390/photonics9070485. 27. Dangi, M.M., Aghdam, A.M., Karimzadeh, R., and Saghaei, H., 2022. Design and simulation of high-quality factor all-optical demultiplexers based on two-dimensional photonic crystal. Opt. Contin., 1(7), pp. 1458—1473. DOI: 10.1364/OPTCON.460044 28. Liu, W., Zhang, L., and Zhang, F., 2022.Performance analysis of three-wavelength multi-channel photonic crystal filters of different sizes. Crystals, 12(1), pp. 91—102. DOI: 10.3390/cryst12010091 29. Djavid, M., Dastjerdi, M.H.T., Philip, M.R., Choudhary, D., Pham, T.T., Khreishah, A., and Nguyen, H.P.T., 2018.Photonic crystal-based permutation switch for optical networks. Photonic Netw. Commun., 35, pp. 90—96. DOI: 10.1007/s11107-017-0719-7 30. Shmat’ko, A.A., Mizernik, V.N., Odarenko, E.N., Shevchenko, N.G., and Butenko, N.S., 2021. Narrow band filtering on the base of tunable magnetophotonic crystal. In: 2021 4th Int. Conf. on Advanced Information and Communication Technologies (AICT). Lviv, Ukraine, 21—25 Sept. 2021. P. 41—45. DOI: 10.1109/AICT52120.2021.9628910 31. Mohmoud, M.Y., Bassou, Gh., Taalbi, A., andChekroun, Z.M., 2012. Optical channel drop filters based on photonic crystal ring resonators. Opt. Commun., 285(3), pp. 368—372. DOI: 10.1016/j.optcom.2011.09.068 32. Ma, Z., and Ogusu, K., 2011. Channel drop filters using photonic crystal Fabry-Perot resonators.Opt. Commun., 284(5), pp. 1192— 1196. DOI: 10.1016/j.optcom.2010.10.050 33. Shmat’ko, A.A., Odarenko, E.N., Mizernik, V.N., and Shevchenko, N. G., 2020. Tunable angular spatial filter based on 1D magnetophotonic crystal. In: 2020 IEEE 15th Int. Conf. on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). Lviv-Slavske, Ukraine, 25—29 Febr. 2020. P. 207—212. DOI: 10.1109/TCSET49122.2020.235424 34. Jafari, R., Sahrai, M., Bozorgzadeh, F., Mohammadi-Asl, R., Ahmadi, D., and Movahednia, M.,2022. Narrow-band transmission filter based on 1D-PCs with a defect layer. Appl. Opt., 61(25), pp. 7463—7468. DOI: 10.1364/AO.452630 35. Zhao, X., Yang, Y., Wen, J., Chen, Z., Zhang, M., Fei, H., and Hao, Y., 2017. Tunable dual-channel filter based on the photonic crystal with air defects. Appl. Opt., 56(19), pp. 5463—5469. DOI: 10.1364/AO.56.005463 36. Gryga, M., Ciprian, D., Gembalova, L., and Hlubina, P., 2023. One-Dimensional Photonic Crystal with a Defect Layer Utilized as an Optical Filter in Narrow Linewidth LED-Based Sources. Crystals, 13(1), 93. DOI: 10.3390/cryst13010093 37. Brown, B.M., Eastham, M.S.P., and Schmidt, K.M., 2013. Periodic differential operators. Operator theory: Advances and Applications. 230. Basel: Springer. 216 p. 38. Shmat’ko, A.A., Mizernik, V.N., Odarenko, E.N., and Lysytsya, V.T., 2017. Dispersion Properties of TM and TE Modes of Gyro- tropic Magnetophotonic Crystals. In: Vakhrushev, A.V. ed. Theoretical foundations and applications of photonic crystals. London: InTech, pp. 47—69. DOI: 10.5772/intechopen.71273 39. Shmat’ko, A.A., Odarenko, E.N., and Mizernik, V.N., 2023. Surface waves Fabry-Perot modes of the finite magnetophotonic crystal in Voigt configuration. J. Electromagn. Waves Appl., 37(6), pp. 827–851. DOI: 10.1080/09205071.2023.2212177 40. Arnaud, J.A., and Saleh, A.A.M., 1974. Guidance of surface waves by multilayer coatings. Appl. Opt., 13(1), pp. 2343—2345. DOI: 10.1364/AO.13.002343 41. Robertson, W.M., and May, M.S., 1999. Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays.Appl. Phys. Lett., 74, pp. 1800—1802. DOI: 10.1063/1.123090 42. Shmat’ko, A.A., Mizernik, V.N., and Odarenko, E.N., 2018. Surface and bulk modes of magnetophotonic crystals. In: 2018 14th Int. Conf. on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). Lviv-Slavske, Ukraine, 20—24 Febr. 2018. P. 436—440. DOI: 10.1109/TCSET.2018.8336235 43. Smolik, G.M., Descharmes, N., and Herzig, H.P., 2018. Toward Bloch Surface Wave-Assisted Spectroscopy in the Mid-Infrared Region. ACS Photonics, 5(4), pp. 1164—1170. DOI: 10.1021/acsphotonics.7b01315 44. Tuz, V.R., Fedorin, I.V., Fesenko, V.I., 2017. Bihyperbolic isofrequency surface in a magnetic-semiconductor superlattice. Opt. Lett., 42 (21), pp. 4561—4564. DOI: 10.1364/OL.42.004561 Видавничий дім «Академперіодика» 2024-03-11 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1436 10.15407/rpra29.01.068 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 29, No 1 (2024); 68 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 29, No 1 (2024); 68 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 29, No 1 (2024); 68 2415-7007 1027-9636 10.15407/rpra29.01 en http://rpra-journal.org.ua/index.php/ra/article/view/1436/pdf Copyright (c) 2024 RADIO PHYSICS AND RADIO ASTRONOMY |