NATURAL ELECTROMAGNETIC MODES OF A COMPOSITE OPEN STRUCTURE INVOLVING A PERFECTLY CONDUCTING STRIP GRATING, AN INHOMOGENEOUS FERRITE LAYER, AND A MONOLAYER OF GRAPHENE

Subject and Purpose. Сonsidered are the natural modes and their correspondent eigenfrequencies of a composite structure which is nonuniform along one of the coordinates and consists of a lossy ferromagnetic layer placed in a static magnetic field. The layer involves a perfectly conducting strip grat...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2024
Автори: Brovenko, A. V., Melezhik, P. N., Poyedinchuk, A. Ye., Senkevych, O. B., Yashina, N. P.
Формат: Стаття
Мова:English
Опубліковано: Видавничий дім «Академперіодика» 2024
Теми:
Онлайн доступ:http://rpra-journal.org.ua/index.php/ra/article/view/1441
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Radio physics and radio astronomy

Репозитарії

Radio physics and radio astronomy
Опис
Резюме:Subject and Purpose. Сonsidered are the natural modes and their correspondent eigenfrequencies of a composite structure which is nonuniform along one of the coordinates and consists of a lossy ferromagnetic layer placed in a static magnetic field. The layer involves a perfectly conducting strip grating at one of its boundaries and a graphene monolayer at the other.Methods and Methodology. The above stated problem can be approached within the analytical regularization procedure developed for dual series equations. The latter concern a broad class of diffraction problems which include, in particular, the diffraction of monochromatic plane waves on strip gratings placed at the boundary of a gyromagnetic medium. The amplitudes of the electromagnetic eigenmodes can be obtained from the infinite set of homogeneous linear algebraic equations solvable within a truncation technique. The roots of the system’s determinant represent complex-valued eigenfrequencies of the system under investigation. The material parameters adopted in our computations for the ferromagnetic layer correspond to such of yttrium iron garnet.Results. A number of numerical programs have been developed which permit analyzing the dependences of wave field eigenfunctions and complex eigenfrequencies upon geometrical parameters of the structure (such as grating slot width and period, and thickness of the lossy layer), as well as on electrodynamic parameters of the ferromagnet and graphene characteristics, specifically the chemical potential and relaxation energy of electrons. A number of behavioral regularities have been established, as well as the effect of non-uniformity of ferrite layer parameters upon the structure’s eigenfrequencies and wave field eigenfunctions.Conclusions. The structure under study has been shown to be is an open oscillatory system with a set of complex-valued natural frequencies demonstrating finite points of accumulation. The real parts of these eigenfrequencies lie in a certain interval determined by characteristic frequencies of the ferrite layer, while the imaginary parts are negative, such that the correspondent natural modes show an exponential decay with time. The grating edges represent the mirrors which the natural surface oscillations are reflected from, being supported at that by the ferromagnetic medium. The results obtained in this paper can be useful for creating the elemental base for microwave devices and the devices themselves.Keywords: ferrite layer; grapheme; stripe grating; analytical regularization procedure; natural oscillations; eigenfrequenciesManuscript submitted 24.02.2024Radio phys. radio astron. 2024, 29(2): 113-126REFERENCES1. Jia, H., Yasumoto, K., and Toyama, H., 2005. Reflection and transmission properties of layered periodic arrays of circular cylinders embedded in magnetized ferrite slab. IEEE Trans. Antennas Propag., 53(3), pp. 1145—1153. DOI: https://doi.org/10.1109/TAP.2004.8426542. Monir, A., Sanada, A., Kubo, H., and Awai, I., 2003. Application of the 2-d finite difference-frequency domain method for the analysis of the dispersion characteristics of ferrite devices. In: Proc. 33rd European Microwave Conference. Munich, Germany, 2–10 Oct. 2003. Munich: IEEE, pp. 1175—1177. DOI: https://doi.org/10.1109/EUMA.2003.3411493. Brovenko, A., Melezhik, P., and Poyedinchuk, A., 2012. Resonance scattering of a plane electromagnetic wave by a ferrite-stripe grating-metamaterial structure. Telecommunications and Radio Engineering, 71(12), pp. 1057—1074. DOI: https://doi.org/10.1615/TelecomRadEng.v71.i12.104. Brovenko, A.V., Melezhik, P.N., Poyedinchuk, A.E., and Troshchilo, A.S., 2020. Diffraction of electromagnetic waves on the com- posite structure "strip grating — ferromagnetic half-space": resonances on surface waves. Radiophys. Elektron., 25(1), pp. 11—20 (in Russian). DOI: https://doi.org/10.15407/rej2020.01.0115. Masalov, S.A., Ryzhak, A.V., Sukharevsky, O.I., and Shkil, V.M., 1999. Physical Foundations of Range Technologies "Stealth". St. Petersburg, Russia: Mozhaisky VIKU Publ. (in Russian).6. Brovenko, A., Vinogradova, E., Melezhik, P., Poyedinchuk, A., and Troschylo, A., 2010. Resonance wave Scattering by strip grating adjusted to ferromagnetic medium. Prog. Electromagn. Res. B, 23, pp. 109—129. DOI: https://doi.org/10.2528/PIERB100122037. Brovenko, A.V., Melezhik, P.N, Poyedinchuk, A.Y., and Yashina, N. P., 2006. Surface resonances of metal stripe grating on the plane boundary of metamaterial. Prog. Electromagn. Res., 63, pp. 209—222. DOI: https://doi.org/10.2528/PIER060524018. Lim, J., Bang, W., Trossman, J., Amanov, D., and Ketterson, J., 2018. Forward volume and surface magnetostatic modes in an yttrium iron garnet film for out-of-plane magnetic fields: Theory and experiment. AIP Advances, 8(5), 056018 DOI: https://doi.org/10.1063/1.50072639. Damon, R.W., and Eshbach, J.R., 1961. Magnetostatic modes on a ferromagnetic slab. J. Phys. Chem. Solids, 19(3—4), pp. 308— 320. DOI: https://doi.org/10.1016/0022-3697(61)90041-510. Gurevich, A.G., and Melkov, G.A., 1994. Magnetic Oscillations and Waves. Moscow: Fizmatgiz (in Russian).11. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Dubonos, S.V., Zhang, Y., Grigorieva, I.V., and Firsov, A.A., 2004. Electric field effect in atomically thin carbon films. Science, 306(5696), pp. 666—669. DOI: https://doi.org/10.1126/science.110289612. Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., and Geim, A.K., 2008. Fine structure constant defines transparency of grapheme. Science, 320, pp. 1308—1308. DOI: https://doi.org/10.1126/science.115696513. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., and Firsov, A.A., 20025. Two-dimensional gas of massless Dirac fermions in grapheme. Nature, 438, pp. 197—200. DOI: https://doi.org/10.1038/nature0423314. Kaipa, C.S.R., Yakovlev, A.B., Hanson, G.W., Padooru, Y.R., and Medina, F., 2012. Mesa enhanced transmission with a graphene- dielectric microstructure at low-terahertz frequencies. Phys. Rev. B, 85, 245407. DOI: https://doi.org/10.1103/PhysRevB.85.24540715. Padooru, Y.R., Yakovlev, A.B., Kaipa, C.S.R., Hanson, G.W., Medina, F., and Mesa, F., 2013. Dual capacitive-inductive nature of periodic graphene patches: Transmission characteristics at low-terahertz frequencies. Phys. Rev. B, 87, 115401. DOI: https://doi.org/10.1103/PhysRevB.87.11540116. Brovenko, A., Melezhik, P., Poyedinchuk, A., Yashina, N., and Granet, G., 2009. Resonant scattering of electromagnetic wave by stripe grating backed with a layer of metamaterial. Prog. Electromagn. Res. B, 15, p. 423—441. DOI: https://doi.org/10.2528/PIERB0905230217. Hanson, G.W., 2008. Dyadic Green’s functions and guided surface waves for a surface conductivity model of grapheme. J. Appl. Phys., 103(6), 064302. DOI: https://doi.org/10.1063/1.289145218. Brovenko, A.V., Melezhik, P.N., Panin, S.B., and Poyedinchuk A.Ye., 2013. Numerical-analytical method for solving problems of the waves diffraction on layered-inhomogeneous medium. Physical Fundamentals of Instrumentation, 2(1), pp. 34—47 (in Russian).19. Brovenko, A., Melezhik, P., Panin, S., and Poyedinchuk, A., 2013. Wave diffraction on a stripe grating at a boundary of a layered inhomogeneous medium: method of analytic regularization. Radiophysics and Quantum Electronics, 56, pp. 238—248. DOI: https://doi.org/10.1007/s11141-013-9429-x20. Shestopalov, V.P., and Sirenko, Yu.K., 1989. Dynamical lattice theory. Kiev: Naukova Dumka Publ. (in Russian).21. Chandezon, J., Granet, G., Melezhik, P.N., Poyedinchuk, A.Ye., Sirenko (ed.), Yu.K., Sjoberg, D., Strom, S. (ed.), Tuchkin, Yu.A., and Yashina, N.P., 2010. Modern theory of grating. Resonant scattering: analysis techniques and phenomena. New York, Springer Sciens+Business Media, LCC.22. Shestopalov, V.P., Tuchkin, Yu.A., Poyedinchuk, A.Ye., and Sirenko, Yu.K., 1997. New methods for solving direct and inverse problems of diffraction theory. Analytical regularization of boundary value problems of electrodynamics. Kharkov: Osnova Publ. (in Russian).23. Stancil, D.D., 1980. Magnetostatic waves in nonuniform bias fields including exchange effects. IEEE Trans. Magn., 16(5), pp. 1153—1155. DOI: https://doi.org/10.1109/TMAG.1980.106074824. Wilts, C.H., and Prasad, S., 1981. Determination of magnetic profiles in implanted. Garnets using ferromagnetic resonance. IEEE Trans. Magn., 17(5), pp. 2405—2414. DOI: https://doi.org/10.1109/TMAG.1981.1061421