RETRIEVAL OF A NON-UNIFORM PROFILE OF RAIN INTENSITY BY SOLVING THE INTEGRAL SCATTERING EQUATION FOR DUAL-FREQUENCY SENSING CASE STUDY
Subject and Purpose. The methods for precipitation remote sensing continue to be developed. One of the trends has been assessing amounts of precipitations to determine whether to issue alerts for large-scale floods and landslides or to make decisions regarding the agricultural land irrigation. The p...
Збережено в:
Дата: | 2024 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Видавничий дім «Академперіодика»
2024
|
Теми: | |
Онлайн доступ: | http://rpra-journal.org.ua/index.php/ra/article/view/1447 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Radio physics and radio astronomy |
Репозитарії
Radio physics and radio astronomyРезюме: | Subject and Purpose. The methods for precipitation remote sensing continue to be developed. One of the trends has been assessing amounts of precipitations to determine whether to issue alerts for large-scale floods and landslides or to make decisions regarding the agricultural land irrigation. The present work focuses on the inverse problem of dual-frequency sensing and its solution through Tikhonov regularization. The goal is to improve the algorithm for solving the inverse problem and retrieve a non-uniform rainfall intensity profile. The retrieval results are enhanced by taking into account the impacts of the signal attenuation and errors in the received power measurements.Methods and Methodology. The retrieval of a non-uniform spatial profile of rain intensity is carried out by the numerical simulation using the integral scattering equation solution via Tikhonov regularization and employing dual-frequency sensing data.Results. The numerical simulations of a non-uniform spatial profile of the rain intensity in the range 0…30 mm/h have been performed at the operating wavelengths 8.2 mm and 3.2 cm and for various errors of the received power measurement and complete attenuation of the signals. It has been observed that the signal attenuation at the shorter (8.2 mm) operating wavelength has a significant effect on the retrieved intensity of rains heavier than 5 mm/h and more distant than 1 km. For the longer (3.2 cm) operating wavelength, the signal attenuation can be neglected when the maximum intensity in the profile is under 30 mm/h and the distance is less than 20 km. The retrieval error of a non-uniform rain intensity profile is shown to be no worse than 40% for the intensities in the profile above 3 mm/h and measurement errors of ±20%.Conclusions. The analysis of the results has shown that the proposed dual-frequency approach to solving the integral scattering equation makes it possible to retrieve a non-uniform rain intensity profile with a maximum error no worse than 40% for rain intensities above 3 mm/h and with the proviso that the error of the received power measurement and complete attenuation of signals at the shorter (8.2 mm) operating wavelength is no worth than ±20%.Keywords: inverse problem, rain intensity, non-uniform profile, signal attenuationManuscript submitted 16.11.2023Radio phys. radio astron. 2024, 29(3): 214-221REFERENCES 1. Mardiana, R., Iguchi, T., Takahashi, N., 2004. A dual-frequency rain profiling method without the use of a surface reference tech- nique. IEEE Trans. Geosci. Remote Sens., 42(10), pp. 2214—2225. DOI: https://doi.org/10.1109/TGRS.2004.834647 2. Haddad, Z.S., Meagher, J.P., Durden, S.L., Smith, E.A., Im, E., 2006. Drop size ambiguities in the retrieval of precipitation profiles from dual-frequency radar measurements. J. Atmos. Sci., 63(1), pp. 204—217. DOI: https://doi.org/10.1175/JAS3589.1 3. Mott, H., 2007. Remote Sensing with Polarimetric Radar. John Wiley & Sons Publ. DOI: https://doi.org/10.1002/0470079819 4. Yanovskyi, F.I., 2003. Meteorological radar systems of aircraft. Kyiv: Ministry of Education and Science of Ukraine National Avia- tion University Publ. (in Ukrainian). 5. Olson, W.S., Kummerow, C.D., Heymsfield, G.M., Giglio, L., 1996. A Method for Combined Passive-Active Microwave Retrievals of Cloud and Precipitation Profiles. J. Appl. Meteorol., 35(10), pp. 1763—1789. DOI: https://doi.org/10.1175/1520-0450(1996)035<1763:AMFCPM>2.0.CO;2 6. Atlas, D., 1964. Advances in radar meteorology. New-York: Academic Press. DOI: https://doi.org/10.1016/S0065-2687(08)60009-6 7. Stout, G.E., Mueller, E.A., 1968. Survey of Relationships between Rainfall Rate and Radar Reflectivity in the Measurement of Precipitation. J. Appl. Meteorol., 7(3), pp. 465—474. DOI: https://doi.org/10.1175/1520-0450(1968)007<0465:SORBRR>2.0.CO;2 8. Zabreiko, P.P, Koshelev, A.I, Krasnoselskiy, M.A, Mikhlin, S.G., Rakovshchik, L.S., Stetsenko, V.Y., 1968. Integral equations. Mos- cow: Nauka Publ. (in Russian). 9. Doviak, R.J., Zrnic, D.S., 1984. Doppler radar and weather observations. Academic Press Publ. 10. Rozenberg, V.I., 1972. Scattering and attenuation of electromagnetic radiation by atmospheric particles. Leningrad: Gidrometeoiz- dat Publ. (in Russian). 11. Rose, C.R., Chandrasekar, V., 2006. A GPM Dual-Frequency Retrieval Algorithm: DSD Profile-Optimization Method. J. Atmos. Oceanic Technol., 23, pp. 1372—1383. DOI: https://doi.org/10.1175/JTECH1921.1 12. Rincon, R.F., Lang, R.H., 2002. Microwave link dual-wavelength measurements of path-average attenuation for the estimation of drop size distributions and rainfall. IEEE Trans. Geosc. Remote Sens., 40(4), pp. 760—770. DOI: https://doi.org/10.1109/TGRS.2002.1006324 13. Munchak, S.J., 2008. Retrieval of Raindrop Size Distribution from Simulated Dual-Frequency Radar Measurements. J. Appl. Me- teorol. Climatol., 47, pp. 223—239. DOI: https://doi.org/10.1175/2007JAMC1524.1 14. Ayvazian, G.M., 1991. Propagation of millimeter and sub millimeter waves in the clouds. Leningrad: Gidrometeoizdat Publ. (in Russian). 15. Goldhirsh, J., Katz, I., 1974. Estimation of raindrop size distribution using multiple wavelength radar systems. Radio Sci., 9, pp. 439—446. DOI: https://doi.org/10.1029/RS009i004p00439 16. Dadali, Y.A., Abshaev, M.T., 1972. Radar measurements of rain and snow. Trudy Vysokogornogo geophisicheskogo instituta, 20, pp. 61—108 (in Russian). 17. Zang, G., Vivekanandan, J., Brandes, E.A., 2003. The shape-slope relation in observed gamma rain drop size distribution: statisti- cal error or useful information? J. Atmos. Oceanic Technol., 20, pp. 1106—1119. DOI: https://doi.org/10.1175/1520-0426(2003)020<1106:TSRIOG>2.0.CO;2 18. Litvinov, I.V., 1974. Structure of atmosphere precipitation. Leningrad: Gidrometeoizdat Publ. (in Russian). 19. Seifert, A., 2005. On the shape-slope relation of drop size distributions in convective rain. J. Appl. Meteorol., 44, pp. 1146—1151. DOI: https://doi.org/10.1175/JAM2254.1 20. Colton, D.L., Kress, R., 1983. Integral equation methods in scattering theory. New York: Wiley Publ. 21. Morozov, V.A., 1987. Regular methods for solution of ill-posed problems. Мoscow: Nauka Publ. (in Russian). 22. Twomey, S., 1996. Introduction to the mathematics of inversion in remote sensing and indirect measurements. New York: Dover Publ. Inc. 23. Shifrin, K.S., Zolotov, I.G., 1996. Spectral attenuation and aerosol particle size distribution. Appl. Opt., 35(12), pp. 2114—2124. DOI: https://doi.org/10.1364/AO.35.002114 24. Walters, P.T., 1980. Practical applications of inverting spectral turbidity data to provide aerosol size distribution. Appl. Opt., 19(14), pp. 2353—2365. DOI: https://doi.org/10.1364/AO.19.002353 25. Linkova, A.M., 2017. Reconstruction of rain intensity by solving the integral scattering equation for two-frequency sounding. Radiofiz. Elektron., 22(3), pp. 23—32 (in Russian). DOI: https://doi.org/10.15407/rej2017.03.023 26. Linkova, A.M., 2021. Influence of the measurement error of the received power on the retrieval of rain intensity by the solution of the integral equation of scattering at double frequency sensing. Radiofiz. Elektron., 26(2), pp. 16—22 (in Ukrainian). 27. Linkova, A.M., 2021. Taking into account the signal attenuation for retrieval of rain intensity by double-frequency sensing. Ra- diofiz. Elektron., 26(3), pp. 3—10 (in Ukrainian). DOI: https://doi.org/10.15407/rej2021.03.003 28. Tikhonov, A.N, Arsenin, V.Ya., 1979. Methods for solving the ill-posed problems. 2nd ed. Мoscow: Nauka Publ. (in Russian). 29. Meneghini, R., Kumagai, H., Wang, J.R., Iguchi, T., Kozu, T., 1997. Microphysical retrievals over stratiform rain using measure- ments from an airborne dual-wavelength radar radiometer. IEEE Trans. Geosci. Remote Sens., 35(3), pp. 487—506. DOI: https://doi.org/10.1109/36.581956 30. Voitovych, O.A., Linkova, A.M., Khlopov, G.I., 2011. Double frequency profiling of rain parameters. Radiofiz. Elektron., 2(16)(3), pp. 51—60 (in Russian). 31. Menenghini, R, Jones, J.A., Gesell, L.H., 1987. Analysis of a dual-wavelength surface reference radar technique. IEEE Trans. Geosc. Remote Sens., 25, pp. 456—471. DOI: https://doi.org/10.1109/TGRS.1987.289857 32. Salman U.M., 1967. Radar study of the structure of showers and thunderstorms. Trudy Glavnoy geophisicheskoy laboratorii, 72, pp. 46—65 (in Russian). |
---|