A 20…25 GHZ RANGE RADIOMETER ( λ = 1.35 cm) FOR INTEGRAL TROPOSPHERIC ABSORPTION MEASUREMENTS

Subject and Purpose. The current research projects in astrophysics are in need of high-sensitivity scientific instruments. The accuracy and sensitivity of observations can be enhanced through the use of large radio telescopes and other radio frequency systems, as well as via application of diagnosti...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2024
Автори: Volkov, V. A., Korolev, O. M., Zakharenko, V. V.
Формат: Стаття
Мова:English
Опубліковано: Видавничий дім «Академперіодика» 2024
Теми:
Онлайн доступ:http://rpra-journal.org.ua/index.php/ra/article/view/1449
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Radio physics and radio astronomy

Репозитарії

Radio physics and radio astronomy
id oai:ri.kharkov.ua:article-1449
record_format ojs
institution Radio physics and radio astronomy
baseUrl_str
datestamp_date 2024-09-19T14:36:43Z
collection OJS
language English
topic radiometer
radio telescope RT-32
atmosphere
atmospheric and space weather systems
радіометр
радіотелескоп РТ-32
атмосфера
системи атмосферної та космічної погоди
spellingShingle radiometer
radio telescope RT-32
atmosphere
atmospheric and space weather systems
радіометр
радіотелескоп РТ-32
атмосфера
системи атмосферної та космічної погоди
Volkov, V. A.
Korolev, O. M.
Zakharenko, V. V.
A 20…25 GHZ RANGE RADIOMETER ( λ = 1.35 cm) FOR INTEGRAL TROPOSPHERIC ABSORPTION MEASUREMENTS
topic_facet radiometer
radio telescope RT-32
atmosphere
atmospheric and space weather systems
радіометр
радіотелескоп РТ-32
атмосфера
системи атмосферної та космічної погоди
format Article
author Volkov, V. A.
Korolev, O. M.
Zakharenko, V. V.
author_facet Volkov, V. A.
Korolev, O. M.
Zakharenko, V. V.
author_sort Volkov, V. A.
title A 20…25 GHZ RANGE RADIOMETER ( λ = 1.35 cm) FOR INTEGRAL TROPOSPHERIC ABSORPTION MEASUREMENTS
title_short A 20…25 GHZ RANGE RADIOMETER ( λ = 1.35 cm) FOR INTEGRAL TROPOSPHERIC ABSORPTION MEASUREMENTS
title_full A 20…25 GHZ RANGE RADIOMETER ( λ = 1.35 cm) FOR INTEGRAL TROPOSPHERIC ABSORPTION MEASUREMENTS
title_fullStr A 20…25 GHZ RANGE RADIOMETER ( λ = 1.35 cm) FOR INTEGRAL TROPOSPHERIC ABSORPTION MEASUREMENTS
title_full_unstemmed A 20…25 GHZ RANGE RADIOMETER ( λ = 1.35 cm) FOR INTEGRAL TROPOSPHERIC ABSORPTION MEASUREMENTS
title_sort 20…25 ghz range radiometer ( λ = 1.35 cm) for integral tropospheric absorption measurements
title_alt РАДІОМЕТР НА ДІАПАЗОН 20…25 ГГЦ (1.35 СМ) ДЛЯ ВИМІРЮВАННЯ ІНТЕГРАЛЬНОГО ТРОПОСФЕРНОГО ПОГЛИНАННЯ
description Subject and Purpose. The current research projects in astrophysics are in need of high-sensitivity scientific instruments. The accuracy and sensitivity of observations can be enhanced through the use of large radio telescopes and other radio frequency systems, as well as via application of diagnostic instruments intended for exploring the radio propagation conditions along the signal paths. The paths traverse all of the Earth’s outer structural shells, from the atmosphere to remote layers of the magnetosphere. The present work is aimed at developing a highly sensitive off-set radiometer, operable in the frequency range of 20…25 GHz (1.35 cm waveband) and capable of monitoring the atmosphere above large centimeter-wavelength radio astronomical instruments, such as the recently developed radio telescope RT-32. The instruments like that should help making account of the integrated tropospheric absorption of the signals arriving from space radio sources and artificial objects in the near space.Methods and Methodology. The modern software that is used for simulating operation of microwave circuits, and the high quality models of microwave units available on the market, allow analyzing various circuit options, thus enabling a full-fledged development of such devices. As long as the intended implementations of the radiometer suggest the use of exclusively standard, commercially available and preferably off-the-shelf components, the development was based on analyzing the parameters and layout of such units.Results. An ultra-high sensitivity, broadband radiometer for the 1.35 cm range has been developed, which is intended for measuring integrated tropospheric absorption of the relevant radio waves. The calculated noise factor of the instrument is 2.3 dB. The extended bandwidth and high stability of the radiometer elements will provide for a sufficient sensitivity of the instrument as operated in conjunction with the receive system of the RT-32 radio telescope.Conclusions. The high-sensitivity, broadband radiometer that has been developed will provide for a much greater operative accuracy of radio astronomical and radio physical research projects. The radiometer, which has potential for further modernization, has been designed for use with the multi-band, high-tech radio telescope RT-32 in the interests of radio astronomy and space science, in particular for monitoring and forecasting the state of atmospheric and space weather systems.Keywords: radiometer, radio telescope RT-32, atmosphere, atmospheric and space weather systemsManuscript submitted  12.12.2023Radio phys. radio astron. 2024, 29(3): 229-235REFERENCES    1. Ulyanov, O.M., Reznichenko, O.M., Zakharenko, V.V., Antyufeyev, A.V., Korolev, A.M., Patoka, O.M., Prisiazhnii, V.I., Poichalo, A.V., Voityuk, V.V., Mamarev, V.N., Ozhinskii, V.V., Vlasenko, V.P., Chmil, V.M., Lebed, V.I., Palamar, M.I., Chaikovskii, A.V., Pasternak, Yu.V., Strembitskii, M.A., Natarov, M.P., Steshenko, S.O., Glamazdyn, V.V., Shubny, A.S., Kirilenko, A.A., Kulik, D.Y., Konovalenko, A.A., Lytvynenko, L.M., and Yatskiv, Y.S., 2019., Creating the RT-32 Radio Telescope on the Basis of MARK- 4B Antenna System. 1. Modernization Project and First Results. Radio Phys. Radio Astron., 24(2), pp. 87—116. DOI: 10.15407/ rpra24.02.087    2. Antyufeyev, A.V., Korolev, A.M., Patoka, O.M., Shulga, V.M., Ulyanov, O.M., Reznichenko, O.M., Zakharenko, V.V., Prisiazh- nii, V.I., Poichalo, A.V., Voityuk ,V.V., Mamarev, V.N., Ozhinskii, V.V., Vlasenko, V.P., Chmil, V.M., Lebed, V.I., Palamar, M.I., Chaikovskii, A.V., Pasternak, Yu.V., Strembitskii, M.A., Natarov, M.P., Steshenko, S.O., Glamazdyn, V.V., Shubny, A.S., Kirilenko, A.A., Kulik, D.Y., and Pylypenko, A.M., 2019. Creating the RT-32 Radio Telescope on the Basis of MARK-4B Antenna System. 2. Estimation of the Possibility for Making Spectral Observations of Radio Astronomical Objects. Radio Phys. Radio Astron., 24(3), pp. 163—183. DOI: https://doi.org/10.15407/rpra24.03.163    3. Ulyanov, O.M., Zakharenko, V.V., Alekseev, E.A., Reznichenko, O.M., Kulahin, I.O., Budnikov, V.V., Prisiazhnii, V.I., Poichalo, A.V., Voityuk ,V.V., Mamarev, V.N., Ozhinskii, V.V., Vlasenko, V.P., Chmil, V.M., Sunduchkov, I.K., Berdar, M.M., Lebed, V.I., Palamar, M.I., Chaikovskii, A.V., Pasternak, Yu.V., Strembitskii, M.A., Natarov, M.P., Steshenko, S.O., Glamazdyn, V.V., Shubny, A.S., Kirilenko, A.A., Kulyk, D.Y., 2020. The RT-32 Radio Telescope on the Basis of MARK-4B Antenna System. 3. Local Oscillators and Self-Noise of the Receiving System. Radio Phys. Radio Astron., 25(3), pp. 175—192. DOI: https://doi.org/10.15407/rpra25.03.175    4. Zakharenko, V.V., 2020. Commissioning of the RT-32 radio telescope — new opportunities for domestic radio astronomy and space navigation. Visn. Nac. Acad. Nauk Ukr., 12, pp. 69—75. DOI: https://doi.org/10.15407/visn2020.12.069    5. Ozhinskyi, V., Vlasenko, V., Poikhalo, A., Prysyazhnyi, V., Voitiuk, V., Yankiv-Vitkovska, L., Ulianov, O., Zakharenko, V., Chmil, V.V., Chmil, V.M., 2022. Utilizing the Radio Telescope RT-32 in Space Geodesy. Ser. Wydawnicza Wspolczesna Nawigacja. T. IV. Wykorzystanie technik nawigacyjnych w lotnictnictwie. Deblin: Lotnicza Akademia Wojskowa, pp. 101—110. DOI: https://indd. adobe.com/view/002119ff-5ae8-45f1-bcfa-0c94c48c06e8    6. Natarov, M., Ulyanov, O., Prisiazhnii, V., Glamazdin, V., Zakharenko, V., Poikhalo, A., Shubnyi, O., Alekseev, E., Voytyuk, V., Chmil, V., Reznichenko, O., Ozhinskyi, V., Vlasenko, V., Palamar, M., 2022. Modernization Possibility of the MARK-4B Antenna System of the RT-32 Radio Telescope for Dual-Band Operation in the S/X Frequency Range. In: 2022 IEEE 2nd Ukrainian Microwave Week (UkrMW). Kharkiv, Ukraine, 14—18 Nov. 2022, pp. 299—304. DOI: https://doi.org/10.1109/UkrMW58013.2022.10037156    7. Vlasenko, V.P., Ozhіnskyі, V.V., Mamarev, V.M., Ulyanov, O.M., Zakharenko, V.V., Palamar, M.I., Chaikovskyi, A.V. 2021., Method of Constructing the Primary Error Matrix of the RT-32 Radio Telescope in an Automated Mode. Space Sci. Technol., 7(3), pp. 66— 75. DOI: https://doi.org/10.15407/knit2021.03.066    8. Sukharev, A., Ryabov, M., Bezrukovs, V., Ulyanov, O., Udovichenko, S., Keir, L., Dubovsky, P., Kudzej, I., Konovalenko, A., Zakharenko, V., Bakun, D., Eglitis, I., 2021. Study of the Fast Variability of the Radio Galaxy 3C 84 (Perseus A) in Optical Bands. Astron. Astrophys. Trans., 32(3), pp. 211—226. DOI: https://doi.org/10.17184/eac.5642    9. Sukharev, A., Ryabov, M., Bezrukovs, V., Orbidans, A. 2022. Investigation of Intra-Day Variability of the Radio Galaxy 3C 84 (Perseus A) Flux Density in Centimeter Range on the RT-32 VIRAC (Latvia) and RT-32 NSFCTC (Ukraine) Radio Telescopes. Astron. Astrophys. Trans., 33(2), pp 49—174. DOI: https://doi.org/10.17184/eac.6477    10. Dicke, R.H., 1946. The Measurement of Thermal Radiation at Microwave Frequencies. Rev. Sci. Instrum., 17(7), pp. 268—275. DOI: https://doi.org/10.1063/1.1770483    11. Macom Technology Solutions Inc., 2022. SPDT Reflective Switch DC 67 GHz MASW-011151 Data Sheet [online]. [Viewed 12 December 2023]. Available from: https://cdn.macom.com/datasheets/MASW-011151.pdf    12. QORVO US, INC., 2021. 17—25 GHz Low Noise Amplifier CMD298C4 Data Sheet [online]. [Viewed 12 December 2023]. Available from: https://www.mouser.com/datasheet/2/412/CMD298C4_Data_Sheet-1950757.pdf    13. Analog Devices Inc., 2022. Wideband, Low Noise Amplifier, Single Positive Supply, 0.01 GHz to 26.5 GHz Data Sheet [online]. [Viewed 12 December 2023]. Available from: https://www.analog.com/media/en/technical-documentation/data-sheets/adl9005. pdf    14. Knowles Precision Devices, 2018. 16 GHz Surface Mount High-Pass Filter H160XHXS Data Sheet [online]. [viewed 12 December 2023]. Available from: https://eu.mouser.com/datasheet/2/218/H160XHXS_Datasheet-3006864.pdf    15. Knowles Precision Devices, 2015. 25.4 GHz Surface Mount LPF L254XF3S Data Sheet [online]. [Viewed 12 December 2023]. Available from: https://www.knowlescapacitors.com/getattachment/Products/Microwave-Products/Lowpass-Filters/L254XF3S- Datasheet.pdf.aspx    16. Analog Devices Inc., 2020. 100MHz to 70GHz Linear-in-dB RMS Power Detector with 35dB Dynamic Range LTC5597 Data Sheet [online]. [Viewed 12 December 2023]. Available from: https://www.analog.com/media/en/technical-documentation/data-sheets/ ltc5597.pdf    17. QucsStudio a free and powerful circuit simulator. Available from: http://qucsstudio.de
publisher Видавничий дім «Академперіодика»
publishDate 2024
url http://rpra-journal.org.ua/index.php/ra/article/view/1449
work_keys_str_mv AT volkovva a2025ghzrangeradiometerl135cmforintegraltroposphericabsorptionmeasurements
AT korolevom a2025ghzrangeradiometerl135cmforintegraltroposphericabsorptionmeasurements
AT zakharenkovv a2025ghzrangeradiometerl135cmforintegraltroposphericabsorptionmeasurements
AT volkovva radíometrnadíapazon2025ggc135smdlâvimírûvannâíntegralʹnogotroposfernogopoglinannâ
AT korolevom radíometrnadíapazon2025ggc135smdlâvimírûvannâíntegralʹnogotroposfernogopoglinannâ
AT zakharenkovv radíometrnadíapazon2025ggc135smdlâvimírûvannâíntegralʹnogotroposfernogopoglinannâ
AT volkovva 2025ghzrangeradiometerl135cmforintegraltroposphericabsorptionmeasurements
AT korolevom 2025ghzrangeradiometerl135cmforintegraltroposphericabsorptionmeasurements
AT zakharenkovv 2025ghzrangeradiometerl135cmforintegraltroposphericabsorptionmeasurements
first_indexed 2024-09-18T04:05:51Z
last_indexed 2024-09-21T04:07:22Z
_version_ 1810777131254284288
spelling oai:ri.kharkov.ua:article-14492024-09-19T14:36:43Z A 20…25 GHZ RANGE RADIOMETER ( λ = 1.35 cm) FOR INTEGRAL TROPOSPHERIC ABSORPTION MEASUREMENTS РАДІОМЕТР НА ДІАПАЗОН 20…25 ГГЦ (1.35 СМ) ДЛЯ ВИМІРЮВАННЯ ІНТЕГРАЛЬНОГО ТРОПОСФЕРНОГО ПОГЛИНАННЯ Volkov, V. A. Korolev, O. M. Zakharenko, V. V. radiometer; radio telescope RT-32; atmosphere; atmospheric and space weather systems радіометр; радіотелескоп РТ-32; атмосфера; системи атмосферної та космічної погоди Subject and Purpose. The current research projects in astrophysics are in need of high-sensitivity scientific instruments. The accuracy and sensitivity of observations can be enhanced through the use of large radio telescopes and other radio frequency systems, as well as via application of diagnostic instruments intended for exploring the radio propagation conditions along the signal paths. The paths traverse all of the Earth’s outer structural shells, from the atmosphere to remote layers of the magnetosphere. The present work is aimed at developing a highly sensitive off-set radiometer, operable in the frequency range of 20…25 GHz (1.35 cm waveband) and capable of monitoring the atmosphere above large centimeter-wavelength radio astronomical instruments, such as the recently developed radio telescope RT-32. The instruments like that should help making account of the integrated tropospheric absorption of the signals arriving from space radio sources and artificial objects in the near space.Methods and Methodology. The modern software that is used for simulating operation of microwave circuits, and the high quality models of microwave units available on the market, allow analyzing various circuit options, thus enabling a full-fledged development of such devices. As long as the intended implementations of the radiometer suggest the use of exclusively standard, commercially available and preferably off-the-shelf components, the development was based on analyzing the parameters and layout of such units.Results. An ultra-high sensitivity, broadband radiometer for the 1.35 cm range has been developed, which is intended for measuring integrated tropospheric absorption of the relevant radio waves. The calculated noise factor of the instrument is 2.3 dB. The extended bandwidth and high stability of the radiometer elements will provide for a sufficient sensitivity of the instrument as operated in conjunction with the receive system of the RT-32 radio telescope.Conclusions. The high-sensitivity, broadband radiometer that has been developed will provide for a much greater operative accuracy of radio astronomical and radio physical research projects. The radiometer, which has potential for further modernization, has been designed for use with the multi-band, high-tech radio telescope RT-32 in the interests of radio astronomy and space science, in particular for monitoring and forecasting the state of atmospheric and space weather systems.Keywords: radiometer, radio telescope RT-32, atmosphere, atmospheric and space weather systemsManuscript submitted  12.12.2023Radio phys. radio astron. 2024, 29(3): 229-235REFERENCES    1. Ulyanov, O.M., Reznichenko, O.M., Zakharenko, V.V., Antyufeyev, A.V., Korolev, A.M., Patoka, O.M., Prisiazhnii, V.I., Poichalo, A.V., Voityuk, V.V., Mamarev, V.N., Ozhinskii, V.V., Vlasenko, V.P., Chmil, V.M., Lebed, V.I., Palamar, M.I., Chaikovskii, A.V., Pasternak, Yu.V., Strembitskii, M.A., Natarov, M.P., Steshenko, S.O., Glamazdyn, V.V., Shubny, A.S., Kirilenko, A.A., Kulik, D.Y., Konovalenko, A.A., Lytvynenko, L.M., and Yatskiv, Y.S., 2019., Creating the RT-32 Radio Telescope on the Basis of MARK- 4B Antenna System. 1. Modernization Project and First Results. Radio Phys. Radio Astron., 24(2), pp. 87—116. DOI: 10.15407/ rpra24.02.087    2. Antyufeyev, A.V., Korolev, A.M., Patoka, O.M., Shulga, V.M., Ulyanov, O.M., Reznichenko, O.M., Zakharenko, V.V., Prisiazh- nii, V.I., Poichalo, A.V., Voityuk ,V.V., Mamarev, V.N., Ozhinskii, V.V., Vlasenko, V.P., Chmil, V.M., Lebed, V.I., Palamar, M.I., Chaikovskii, A.V., Pasternak, Yu.V., Strembitskii, M.A., Natarov, M.P., Steshenko, S.O., Glamazdyn, V.V., Shubny, A.S., Kirilenko, A.A., Kulik, D.Y., and Pylypenko, A.M., 2019. Creating the RT-32 Radio Telescope on the Basis of MARK-4B Antenna System. 2. Estimation of the Possibility for Making Spectral Observations of Radio Astronomical Objects. Radio Phys. Radio Astron., 24(3), pp. 163—183. DOI: https://doi.org/10.15407/rpra24.03.163    3. Ulyanov, O.M., Zakharenko, V.V., Alekseev, E.A., Reznichenko, O.M., Kulahin, I.O., Budnikov, V.V., Prisiazhnii, V.I., Poichalo, A.V., Voityuk ,V.V., Mamarev, V.N., Ozhinskii, V.V., Vlasenko, V.P., Chmil, V.M., Sunduchkov, I.K., Berdar, M.M., Lebed, V.I., Palamar, M.I., Chaikovskii, A.V., Pasternak, Yu.V., Strembitskii, M.A., Natarov, M.P., Steshenko, S.O., Glamazdyn, V.V., Shubny, A.S., Kirilenko, A.A., Kulyk, D.Y., 2020. The RT-32 Radio Telescope on the Basis of MARK-4B Antenna System. 3. Local Oscillators and Self-Noise of the Receiving System. Radio Phys. Radio Astron., 25(3), pp. 175—192. DOI: https://doi.org/10.15407/rpra25.03.175    4. Zakharenko, V.V., 2020. Commissioning of the RT-32 radio telescope — new opportunities for domestic radio astronomy and space navigation. Visn. Nac. Acad. Nauk Ukr., 12, pp. 69—75. DOI: https://doi.org/10.15407/visn2020.12.069    5. Ozhinskyi, V., Vlasenko, V., Poikhalo, A., Prysyazhnyi, V., Voitiuk, V., Yankiv-Vitkovska, L., Ulianov, O., Zakharenko, V., Chmil, V.V., Chmil, V.M., 2022. Utilizing the Radio Telescope RT-32 in Space Geodesy. Ser. Wydawnicza Wspolczesna Nawigacja. T. IV. Wykorzystanie technik nawigacyjnych w lotnictnictwie. Deblin: Lotnicza Akademia Wojskowa, pp. 101—110. DOI: https://indd. adobe.com/view/002119ff-5ae8-45f1-bcfa-0c94c48c06e8    6. Natarov, M., Ulyanov, O., Prisiazhnii, V., Glamazdin, V., Zakharenko, V., Poikhalo, A., Shubnyi, O., Alekseev, E., Voytyuk, V., Chmil, V., Reznichenko, O., Ozhinskyi, V., Vlasenko, V., Palamar, M., 2022. Modernization Possibility of the MARK-4B Antenna System of the RT-32 Radio Telescope for Dual-Band Operation in the S/X Frequency Range. In: 2022 IEEE 2nd Ukrainian Microwave Week (UkrMW). Kharkiv, Ukraine, 14—18 Nov. 2022, pp. 299—304. DOI: https://doi.org/10.1109/UkrMW58013.2022.10037156    7. Vlasenko, V.P., Ozhіnskyі, V.V., Mamarev, V.M., Ulyanov, O.M., Zakharenko, V.V., Palamar, M.I., Chaikovskyi, A.V. 2021., Method of Constructing the Primary Error Matrix of the RT-32 Radio Telescope in an Automated Mode. Space Sci. Technol., 7(3), pp. 66— 75. DOI: https://doi.org/10.15407/knit2021.03.066    8. Sukharev, A., Ryabov, M., Bezrukovs, V., Ulyanov, O., Udovichenko, S., Keir, L., Dubovsky, P., Kudzej, I., Konovalenko, A., Zakharenko, V., Bakun, D., Eglitis, I., 2021. Study of the Fast Variability of the Radio Galaxy 3C 84 (Perseus A) in Optical Bands. Astron. Astrophys. Trans., 32(3), pp. 211—226. DOI: https://doi.org/10.17184/eac.5642    9. Sukharev, A., Ryabov, M., Bezrukovs, V., Orbidans, A. 2022. Investigation of Intra-Day Variability of the Radio Galaxy 3C 84 (Perseus A) Flux Density in Centimeter Range on the RT-32 VIRAC (Latvia) and RT-32 NSFCTC (Ukraine) Radio Telescopes. Astron. Astrophys. Trans., 33(2), pp 49—174. DOI: https://doi.org/10.17184/eac.6477    10. Dicke, R.H., 1946. The Measurement of Thermal Radiation at Microwave Frequencies. Rev. Sci. Instrum., 17(7), pp. 268—275. DOI: https://doi.org/10.1063/1.1770483    11. Macom Technology Solutions Inc., 2022. SPDT Reflective Switch DC 67 GHz MASW-011151 Data Sheet [online]. [Viewed 12 December 2023]. Available from: https://cdn.macom.com/datasheets/MASW-011151.pdf    12. QORVO US, INC., 2021. 17—25 GHz Low Noise Amplifier CMD298C4 Data Sheet [online]. [Viewed 12 December 2023]. Available from: https://www.mouser.com/datasheet/2/412/CMD298C4_Data_Sheet-1950757.pdf    13. Analog Devices Inc., 2022. Wideband, Low Noise Amplifier, Single Positive Supply, 0.01 GHz to 26.5 GHz Data Sheet [online]. [Viewed 12 December 2023]. Available from: https://www.analog.com/media/en/technical-documentation/data-sheets/adl9005. pdf    14. Knowles Precision Devices, 2018. 16 GHz Surface Mount High-Pass Filter H160XHXS Data Sheet [online]. [viewed 12 December 2023]. Available from: https://eu.mouser.com/datasheet/2/218/H160XHXS_Datasheet-3006864.pdf    15. Knowles Precision Devices, 2015. 25.4 GHz Surface Mount LPF L254XF3S Data Sheet [online]. [Viewed 12 December 2023]. Available from: https://www.knowlescapacitors.com/getattachment/Products/Microwave-Products/Lowpass-Filters/L254XF3S- Datasheet.pdf.aspx    16. Analog Devices Inc., 2020. 100MHz to 70GHz Linear-in-dB RMS Power Detector with 35dB Dynamic Range LTC5597 Data Sheet [online]. [Viewed 12 December 2023]. Available from: https://www.analog.com/media/en/technical-documentation/data-sheets/ ltc5597.pdf    17. QucsStudio a free and powerful circuit simulator. Available from: http://qucsstudio.de Предмет і мета роботи. Астрофізичні дослідження потребують все більш чутливих інструментів досліджень. Разом з великими радіотелескопами й системами радіофізичних досліджень підвищенню точності та чутливості спостережень сприяє використання приладів для діагностики шляхів поширення радіосигналів, якими є всі оболонки Землі — від атмосфери до віддалених шарів магнітосфери. Метою роботи є розробка окремого високочутливого радіометра на діапазон 20…25 ГГц (1.35 см) для моніторингу стану атмосфери над великими радіоастрономічними інструментами сантиметрового діапазону, такими, як розроблений нещодавно радіотелескоп РТ-32, для урахування інтегрального тропосферного поглинання сигналів космічних радіоджерел і штучних об’єктів у ближньому космосі.Методи та методологія. Сучасне програмне забезпечення для моделювання роботи надвисокочастотних схем разом і висока точність тих моделей обладнання, що є наявними на ринку НВЧ-блоків, дозволяє проаналізувати різноманітні варіанти схем і виконати повноцінну розробку подібних пристроїв. Оскільки метою практичної реалізації радіометра є використання виключно стандартних, комерційно доступних і, зазвичай, готових компонентів, то розробку проведено шляхом аналізу параметрів і компонування таких наявних блоків.Результати. Виконано розробку надвисокочутливого широкосмугового радіометра на діапазон довжини хвиль 1.35 см для вимірювання інтегрального тропосферного поглинання. Розрахований шумфактор дорівнює 2.3 дБ. Широка смуга та стабільність параметрів елементів радіометра мають забезпечити достатню чутливість для роботи сумісно з приймальною системою радіотелескопа РТ-32.Висновки. Розроблений високочутливий широкосмуговий радіометр сумісно з радіотелескопом РТ-32 надасть змогу проводити радіоастрономічні та радіофізичні дослідження зі значно більшою точністю. Радіометр, який має потенціал для подальшої модернізації, створено з метою використання разом з багатодіапазонним, високотехнологічним радіотелескопом РТ-32 в інтересах радіоастрономії та космічної галузі, а також для моніторингу й прогнозування стану атмосферної та космічної погодних систем.Ключові слова: радіометр, радіотелескоп РТ-32, атмосфера, системи атмосферної та космічної погодиСтаття надійшла до редакції 12.12.2023Radio phys. radio astron. 2024, 29(3): 229-235БІБЛІОГРАФІЧНИЙ СПИСОК    1. Ulyanov, O.M., Reznichenko, O.M., Zakharenko, V.V., Antyufeyev, A.V., Korolev, A.M., Patoka, O.M., Prisiazhnii, V.I., Poichalo, A.V., Voityuk, V.V., Mamarev, V.N., Ozhinskii, V.V., Vlasenko, V.P., Chmil, V.M., Lebed, V.I., Palamar, M.I., Chaikovskii, A.V., Pasternak, Yu.V., Strembitskii, M.A., Natarov, M.P., Steshenko, S.O., Glamazdyn, V.V., Shubny, A.S., Kirilenko, A.A., Kulik, D.Y., Konovalenko, A.A., Lytvynenko, L.M., and Yatskiv, Y.S., 2019., Creating the RT-32 Radio Telescope on the Basis of MARK- 4B Antenna System. 1. Modernization Project and First Results. Radio Phys. Radio Astron., 24(2), pp. 87—116. DOI: 10.15407/ rpra24.02.087    2. Antyufeyev, A.V., Korolev, A.M., Patoka, O.M., Shulga, V.M., Ulyanov, O.M., Reznichenko, O.M., Zakharenko, V.V., Prisiazh- nii, V.I., Poichalo, A.V., Voityuk ,V.V., Mamarev, V.N., Ozhinskii, V.V., Vlasenko, V.P., Chmil, V.M., Lebed, V.I., Palamar, M.I., Chaikovskii, A.V., Pasternak, Yu.V., Strembitskii, M.A., Natarov, M.P., Steshenko, S.O., Glamazdyn, V.V., Shubny, A.S., Kirilenko, A.A., Kulik, D.Y., and Pylypenko, A.M., 2019. Creating the RT-32 Radio Telescope on the Basis of MARK-4B Antenna System. 2. Estimation of the Possibility for Making Spectral Observations of Radio Astronomical Objects. Radio Phys. Radio Astron., 24(3), pp. 163—183. DOI: 10.15407/rpra24.03.163    3. Ulyanov, O.M., Zakharenko, V.V., Alekseev, E.A., Reznichenko, O.M., Kulahin, I.O., Budnikov, V.V., Prisiazhnii, V.I., Poichalo, A.V., Voityuk ,V.V., Mamarev, V.N., Ozhinskii, V.V., Vlasenko, V.P., Chmil, V.M., Sunduchkov, I.K., Berdar, M.M., Lebed, V.I., Palamar, M.I., Chaikovskii, A.V., Pasternak, Yu.V., Strembitskii, M.A., Natarov, M.P., Steshenko, S.O., Glamazdyn, V.V., Shubny, A.S., Kirilenko, A.A., Kulyk, D.Y., 2020. The RT-32 Radio Telescope on the Basis of MARK-4B Antenna System. 3. Local Oscillators and Self-Noise of the Receiving System. Radio Phys. Radio Astron., 25(3), pp. 175—192. DOI: 10.15407/rpra25.03.175    4. Zakharenko, V.V., 2020. Commissioning of the RT-32 radio telescope — new opportunities for domestic radio astronomy and space navigation. Visn. Nac. Acad. Nauk Ukr., 12, pp. 69—75. DOI: 10.15407/visn2020.12.069    5. Ozhinskyi, V., Vlasenko, V., Poikhalo, A., Prysyazhnyi, V., Voitiuk, V., Yankiv-Vitkovska, L., Ulianov, O., Zakharenko, V., Chmil, V.V., Chmil, V.M., 2022. Utilizing the Radio Telescope RT-32 in Space Geodesy. Ser. Wydawnicza Wspolczesna Nawigacja. T. IV. Wykorzystanie technik nawigacyjnych w lotnictnictwie. Deblin: Lotnicza Akademia Wojskowa, pp. 101—110. DOI: https://indd. adobe.com/view/002119ff-5ae8-45f1-bcfa-0c94c48c06e8    6. Natarov, M., Ulyanov, O., Prisiazhnii, V., Glamazdin, V., Zakharenko, V., Poikhalo, A., Shubnyi, O., Alekseev, E., Voytyuk, V., Chmil, V., Reznichenko, O., Ozhinskyi, V., Vlasenko, V., Palamar, M., 2022. Modernization Possibility of the MARK-4B Antenna System of the RT-32 Radio Telescope for Dual-Band Operation in the S/X Frequency Range. In: 2022 IEEE 2nd Ukrainian Microwave Week (UkrMW). Kharkiv, Ukraine, 14—18 Nov. 2022, pp. 299—304. DOI: 10.1109/UkrMW58013.2022.10037156    7. Vlasenko, V.P., Ozhіnskyі, V.V., Mamarev, V.M., Ulyanov, O.M., Zakharenko, V.V., Palamar, M.I., Chaikovskyi, A.V. 2021., Method of Constructing the Primary Error Matrix of the RT-32 Radio Telescope in an Automated Mode. Space Sci. Technol., 7(3), pp. 66— 75. DOI: 10.15407/knit2021.03.066    8. Sukharev, A., Ryabov, M., Bezrukovs, V., Ulyanov, O., Udovichenko, S., Keir, L., Dubovsky, P., Kudzej, I., Konovalenko, A., Zakharenko, V., Bakun, D., Eglitis, I., 2021. Study of the Fast Variability of the Radio Galaxy 3C 84 (Perseus A) in Optical Bands. Astron. Astrophys. Trans., 32(3), pp. 211—226.    9. Sukharev, A., Ryabov, M., Bezrukovs, V., Orbidans, A. 2022. Investigation of Intra-Day Variability of the Radio Galaxy 3C 84 (Perseus A) Flux Density in Centimeter Range on the RT-32 VIRAC (Latvia) and RT-32 NSFCTC (Ukraine) Radio Telescopes. Astron. Astrophys. Trans., 33(2), pp 49—174.    10. Dicke, R.H., 1946. The Measurement of Thermal Radiation at Microwave Frequencies. Rev. Sci. Instrum., 17(7), pp. 268—275. DOI: 10.1063/1.1770483    11. Macom Technology Solutions Inc., 2022. SPDT Reflective Switch DC 67 GHz MASW-011151 Data Sheet [online]. [Viewed 12 December 2023]. Available from: https://cdn.macom.com/datasheets/MASW-011151.pdf    12. QORVO US, INC., 2021. 17—25 GHz Low Noise Amplifier CMD298C4 Data Sheet [online]. [Viewed 12 December 2023]. Available from: https://www.mouser.com/datasheet/2/412/CMD298C4_Data_Sheet-1950757.pdf    13. Analog Devices Inc., 2022. Wideband, Low Noise Amplifier, Single Positive Supply, 0.01 GHz to 26.5 GHz Data Sheet [online]. [Viewed 12 December 2023]. Available from: https://www.analog.com/media/en/technical-documentation/data-sheets/adl9005. pdf    14. Knowles Precision Devices, 2018. 16 GHz Surface Mount High-Pass Filter H160XHXS Data Sheet [online]. [viewed 12 December 2023]. Available from: https://eu.mouser.com/datasheet/2/218/H160XHXS_Datasheet-3006864.pdf    15. Knowles Precision Devices, 2015. 25.4 GHz Surface Mount LPF L254XF3S Data Sheet [online]. [Viewed 12 December 2023]. Available from: https://www.knowlescapacitors.com/getattachment/Products/Microwave-Products/Lowpass-Filters/L254XF3S- Datasheet.pdf.aspx    16. Analog Devices Inc., 2020. 100MHz to 70GHz Linear-in-dB RMS Power Detector with 35dB Dynamic Range LTC5597 Data Sheet [online]. [Viewed 12 December 2023]. Available from: https://www.analog.com/media/en/technical-documentation/data-sheets/ ltc5597.pdf    17. QucsStudio a free and powerful circuit simulator. Available from: http://qucsstudio.de Видавничий дім «Академперіодика» 2024-09-17 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1449 10.15407/rpra29.03.229 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 29, No 3 (2024); 229 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 29, No 3 (2024); 229 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 29, No 3 (2024); 229 2415-7007 1027-9636 10.15407/rpra29.03 en http://rpra-journal.org.ua/index.php/ra/article/view/1449/pdf Copyright (c) 2024 RADIO PHYSICS AND RADIO ASTRONOMY