SPAСETIME ANALYSIS OF AN ELECTROMAGNETIC AIRY PULSE AFTER ITS INTERACTION WITH A PLANAR BOUNDARY IN UNIFORMLY ACCELERATED RELATIVISTIC MOTION

Subject and Purpose. The transformation peculiarities that the electromagnetic pulses get when heading towards a boundary that performs uniformly accelerated relativistic motion are the present paper concern. A smooth non-stationarity case when the boundary velocity gradually changes from zero to th...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2024
Автори: Zhyla, O. V., Stognii, N. P.
Формат: Стаття
Мова:English
Опубліковано: Видавничий дім «Академперіодика» 2024
Теми:
Онлайн доступ:http://rpra-journal.org.ua/index.php/ra/article/view/1453
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Radio physics and radio astronomy

Репозитарії

Radio physics and radio astronomy
Опис
Резюме:Subject and Purpose. The transformation peculiarities that the electromagnetic pulses get when heading towards a boundary that performs uniformly accelerated relativistic motion are the present paper concern. A smooth non-stationarity case when the boundary velocity gradually changes from zero to the pulse velocity value is considered, with a focus on the spacetime distribution and evolution of the electromagnetic Airy pulse field.Methods and methodology. The study and analysis are carried out by the method of Volterra integral equations which can describe electromagnetic wave propagation in a heterogeneous time-varying medium. In terms of this method, the basic initial boundary value electrodynamical problem on the electromagnetic source radiation in a heterogeneous time-varying medium is formulated, taking into account the boundary and initial conditions. The resolvent method for solving the Volterra integral equation of the second kind is described. Its advantage is analytical solution capabilities and a versatility as to the primary field choice.Results. Analytical solutions to the original integral equation have been obtained. By analysis, it has been found that the secondary field expressions have singularities that can be controlled well enough by a proper choice of numerical modeling parameters. The revealed singularities have been analytically studied. Their action on the Airy pulse was examined and illustrated through simulation modeling using the starting parameter that locates the Airy pulse at any moment in time.Conclusions. In this work, the electromagnetic Airy pulse interaction with a boundary perfoming uniformly accelerated relativistic motion was examined using the Volterra integral equations method. The obtained analytical solutions revealed significant spacetime changes in the Airy pulses. Our analysis indicated possibilities for controlling the secondary field characteristics by a proper choice of modeling parameters. The results have been confirmed by numerical simulations. They provide a basis for further research in this area.Keywords: Airy pulse; electromagnetic waves; Volterra integral equations; resolvent; relativistic motion; uniformly accelerated motionManuscript submitted  25.03.2024Radio phys. radio astron. 2024, 29(4): 271-280REFERENCES1. Duggan, R.P., & Woodhouse, J.E., 2022. Relativistic wave scattering in curved spacetime: applications to cosmology. J. Cosmol. Astropart. Phys., 35(10), pp. 135—140. DOI: https://doi.org/10.1088/1475-7516/2022/10/0102. Ban, Y., & Chen, X., 2023. Scattering of relativistic electrons and analogies with optical phenomena: A study of longitudinal and transverse shifts at step potentials. Phys. Rev., 108(4), pp. 1—9. DOI: https://doi.org/10.1103/PhysRevA.108.0422183. King, M., Wilson, R., Bacon, E.F.J., Dolier, E.J., Frazer, T.P., Goodman, J., Gray, R.J., & McKenna, P., 2023. Perspectives on laser-plasma physics in the relativistic transparency regime. Eur. Phys. J. A, 59(6), 132, 17 p. DOI: https://doi.org/10.1140/epja/s10050-023-01043-24. Whittam, M.R., Lamprianidis, A.G., Augenstein, Y., & Rockstuhl, C., 2023. Identifying regions of minimal backscattering by a relativistically moving sphere. Phys. Rev., 108(4), pp. 456—465. DOI: https://doi.org/10.1103/PhysRevA.108.0435105. Xiao, Y., Zhang, C., & Zhu, Y., 2021. Propagation and control of Airy pulses in nonlinear inhomogeneous media. Phys. Rev., 103(2), pp. 1056—1065. DOI: 10.1103/PhysRevA.103.0238016. Agarwal, P., Shrivastava, R., Kumar, S., & Sinha, S., 2020. Airy wavepackets and their interactions with dispersive and inhomogeneous media. J. Opt. Soc. Am. B, 37(5), pp. 1453—1461. DOI: 10.1364/JOSAB.37.0014537. Felsen, L.B., & Whitman, G.M., 2020. Wave propagation in time-varying media. IEEE Trans. Antennas Propag., 18(2), pp. 242-253. DOI: https://doi.org/10.1109/TAP.1970.11396578. Gaur, D.S., Mishra, A.K., 2024. Reflection and Transmission of Airy Pulse from Controllable Periodic Temporal Boundary. Ann. Phys., 536(9). DOI: https://doi.org/10.1002/andp.2024001419. Hu, Y., Tehranchi, A., Wabnitz, St., Kashyap, R., Chen, Zh., and Morandotti, R., 2015. Improved Intrapulse Raman Scattering Control via Asymmetric Airy Pulses. Phys. Rev. Lett., 114(7), 073901. DOI: https://doi.org/10.1103/PhysRevLett.114.07390110. Nerukh A.G., Khizhnyak, N.A., 1979. Modern problems of non-stationary macroscopic electrodynamics. Sov. Phys. Tech. Phys., 49(2), pp. 225—230.11. Khizhnyak, N.A., 1958. Green’s function of Maxwell’s equations for inhomogeneous media. Sov. Phys. Tech. Phys., 28(7), pp. 1592-1609.12. Landau, L.D., Lifshitz, E.M., 1967. The Field Theory. Moscow: Nauka Publ. (in Russian).13. Nerukh, A.G., and Kuryzheva, O.V., 2018. Transformation of the airy pulse by a jump-like change of the medium permittivity in time. Telecommunications and Radio Engineering, 77(12), pp. 1017—1028. DOI: https://doi.org/10.1615/TelecomRadEng.v77.i12.1014. Nerukh, A., Sakhnenko, N., Benson, T., Sewell, Ph., 2013. Non-stationary electromagnetics. Singapore: Pan Stanford Publishing Pte., рр. 315—325. DOI: https://doi.org/10.1201/b13058