LOCAL HEIGHT CALCULATION ERRORS IN THE PLANET SURFACE RELIEF RETRIEVED FROM IMAGES BY THE IMPROVED PHOTOCLINOMETRY METHOD

Subject and Purpose. In this work, the planet surface area relief is calculated using the Improved Photoclinometry Method (IPCM) and starting from a set of source images. Height deviations from the true relief altitudes are studied by computer simulation at small spatial scales (smaller than a quart...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2025
Автори: Dulova, I. A., Bondarenko, N. V.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Видавничий дім «Академперіодика» 2025
Теми:
Онлайн доступ:http://rpra-journal.org.ua/index.php/ra/article/view/1461
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Radio physics and radio astronomy

Репозитарії

Radio physics and radio astronomy
Опис
Резюме:Subject and Purpose. In this work, the planet surface area relief is calculated using the Improved Photoclinometry Method (IPCM) and starting from a set of source images. Height deviations from the true relief altitudes are studied by computer simulation at small spatial scales (smaller than a quarter of the area’s size). We seek to estimate these "local" errors in surface heights and slopes using source images with different signal-to-noise ratios (SNRs).Methods and Methodology. The improved photoclinometry method calculates the most probable relief of a planet surface area from its images. Two optional techniques implement this method. The IPCM-F technique employs the optimum Fourier- transform-based fi ltering in the spatial frequency domain. The IPCM-T uses the finite diff erence method to solve the Poisson equation.Results. Computer experiments on retrieving the surface topography from the source images have shown that the higher the signal-to-noise ratio (SNR) of the initial image, the smaller the size of small-scale features that are reliably reproduced in shape. In the calculations by the IPCM-T technique, the smallest reliably reproduced features are four times the initial image resolution G at SNR ≥ 50 and five times at SNR = 10. With the IPCM-F, the relief features are reliably reproduced starting from spatial scales 9G (SNR ≥ 50) and 17G (SNR ≥ 10). With the IPCM-T, the worst local height error characterizing the smallest reliably reproduced surface features is 0.35σ0 (SNR = 1) and 0.17σ0 (SNR = 50), where σ0is the root-mean-square deviation of the modeled relief height. For both IPCM implementations, larger topographic objects are characterized by local height errors 0.01σ0 to 0.08σ0 (SNR = 50).Conclusions. It has been shown that the surface topography retrieval by the improved photoclinometry method from a set of images with SNR ≥ 50 reliably reproduces shapes of size features ≥ 4G (IPCM-T) and ≥ 9G (IPCM-F). For 8G to 64G size features, the retrieved height local errors are 0.004σ0 to 0.07σ0 (IPCM–T) and 0.01σ0 to 0.08σ0 (IPCM–F). To study smaller, 4G to 8G size features, the topography relief should be reconstructed using the IPCM-F upon the finite diff erence method.Keywords: optimal filtering, height calculation error, planetary surface relief, photometryManuscript submitted  13.09.2024Radio phys. radio astron. 2025, 30(1): 024-040REFERENCES1. Ford, P.G., and Pettengill, G.H., 1992. Venus topography and kilometer-scale slopes. J. Geophys. Res., 97(E8), pp. 13103—13114. DOI: https://doi.org/10.1029/92JE010852. Smith, D.E., Zuber, M.T., Frey, H.V., Garvin, J.B., Head, J.W., Muhleman, D.O.,  Pettengill, G.H., Phillips, R.J., Solomon, S.C., Zwally, H.J., Banerdt, W.B., Duxbury, T.C., Golombek, M.P., Lemoine, F.G., Neumann, G.A., Rowlands, D.D., Aharonson, O., Ford, P.G., Ivanov, A.B., and Johnson, C.L., 2001. Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106(E10), pp. 23689—23722. DOI: https://doi.org/10.1029/2000JE0013643. Smith, D.E., Zuber, M.T., Neumann, G.A., Lemoine, F.G., Mazarico, E., Torrence, M.H., McGarry, J.F., Rowlands, D.D., Head, J.W., Duxbury, T.H., Aharonson, O., Lucey, P.G., Robinson, M.S., Barnouin, O.S., Cavanaugh, J.F., Sun, X., Liiva, P., Mao, Dan-dan, Smith, J.C., and Bartels, A.E., 2010. Initial observations from the Lunar Orbiter Laser Altimeter (LOLA). Geophys. Res. Lett., 37(18), id. L18204. DOI: https://doi.org/10.1029/2010GL0437514. Araki, H., Tazawa, S., Noda, H., Ishihara, Y., Goossens, S., Sasaki, S., Kawano, N., Kamiya, I., Otake, H., Oberst, J., and Shum, C., 2009. Lunar global shape and polar  topography derived from Kaguya-LALT Laser Altimetry. Science, 323(5916), pp. 897—900. DOI: https://doi.org/10.1126/science.11641465. Scholten, F., Oberst, J., Matz, K.D., Roatsch, T., Wählisch, M., Speyerer, E.J., and Robinson, M.S., 2012. GLD100: The near-global lunar 100 m raster DTM from LROC WAC stereo image data. J. Geophys. Res.: Planet, 117(E12). DOI: https://doi.org/10.1029/2011JE0039266. Henriksen, M.R., Manheim, M.R., Burns, K.N., Seymour, P., Speyerer, E.J., Deran, A., Boyd, A.K., Howington-Kraus, E., Rosiek, M.R., Archinal, B.A., and Robinson, M.S., 2017. Extracting accurate and precise topography from LROC narrow angle camera stereo observations. Icarus, 283, pp. 122—137. DOI: https://doi.org/10.1016/j.icarus.2016.05.0127. Van Diggelen, J., 1951. A photometric investigation of the slopes and the heights of the ranges of hills in the Maria of the Moon. Bull. Astron. Inst. Netherlands. 11, pp. 283—289.8. Howard, A.D., Blasius, K.R., and Cutts, J.A., 1982. Photoclinometric determination of the topography of the Martian north polar cap. Icarus, 50(2—3), pp. 245—258. DOI: https://doi.org/10.1016/0019-1035(82)90125-79. Barnes, J.W., Brown, R.H., Soderblom, L., Sotin, C., Le Mouèlic, S., Rodriguez, S., Jaumann, R., Beyer, R.A., Buratti, B.J., Pitman, K., Baines, K.H., Clark, R., and Nicholson, P., 2008. Spectroscopy, morphometry, and photoclinometry of Titan’s dunefields from Cassini/VIMS. Icarus, 195(1), pp. 400—414. DOI:https://doi.org/10.1016/j.icarus.2007.12.00610. Squyres, S.W., 1981. The topography of Ganymede’s grooved terrain. Icarus, 46(2), pp. 156—168. DOI: https://doi.org/10.1016/0019-1035(81)90204-911. Goldspiel, J.M., Squyres, S.W., and Jankowski, D.G., 1993. Topography of small Martian valleys. Icarus, 105(2), pp. 479—500. DOI: https://doi.org/10.1006/icar.1993.114312. Nyquist, H., 1928. Thermal agitation of electric charge in conductors. Phys. Rev., 32, pp. 110—113. DOI: https://doi.org/10.1103/PhysRev.32.11013. Huang, T.S., 1986. Advances in computer vision and image processing. USA: JAI Press.14. Efford, N.D., 1991. Sources of error in the photoclinometric determination of planetary topography: A reappraisal. Earth Moon Planets, 54, pp. 19—58. DOI: https://doi.org/10.1007/BF0005504615. Lohse, V., Heipke, C., and Kirk, R.L., 2006. Derivation of planetary topography using multi-image shape-from shading. Planet. Space Sci. 54(7), pp. 661—674. DOI: https://doi.org/10.1016/j.pss.2006.03.00216. Schenk, P.M., and Moore, J.M., 1995. Volcanic constructs on Ganymede and Enceladus: Topographic evidence from stereo images and photoclinometry. J. Geophys. Res., 100(E9), pp. 19009—19022. DOI: https://doi.org/10.1029/95JE0185417. Korokhin, V., Velikodsky, Yu., Shkuratov, Yu., Kaydash, V., Mall, U., and Videen, G., 2018. Using LROC WAC data for lunar surface photoclinometry. Planet. Space Sci., 160, pp. 120—135. DOI: https://doi.org/10.1016/j.pss.2018.05.02018. Velichko, S., Korokhin, V., Velikodsky, Yu., Kaydash, V., Shkuratov, Yu., Videen, G., Kwiatkowski, T., and Surkov, Ye., 2024. Multiphase photoclinometry as applied to the lunar photometry with LROC NAC data. Planet. Space Sci. 246, id. 105914. DOI: https://doi.org/10.1016/j.pss.2024.10591419. Palmer, E.E., Gaskell, R., Daly, M.G., Barnouin, O.S., Adam, C.D., and Lauretta, D.S., 2022. Practical Stereophotoclinometry for Modeling Shape and Topography on Planetary Missions. Planet. Sci. J. 3(5), id. 102. DOI: https://doi.org/10.3847/PSJ/ac460f20. Ernst, C.M., Daly, R.T., Gaskell, R.W., Barnouin, O.S., Nair, H., Hyatt, B.A., Al Asad, M.M., and Hoch, K.K.W., 2023. High-resolution shape models of Phobos and Deimos from stereophotoclinometry. Earth Planets Space, 75(1), id. 103. DOI: https://doi.org/10.1186/s40623-023-01814-721. Park, R.S., Vaughan, A.T., Konopliv, A.S., Ermakov, A.I., Mastrodemos, N., Castillo-Rogez, J.C., Joy, S.P., Nathues, A., Polanskey, C.A., Rayman, M.D., Riedel, J.E., Raymond, C.A., Russel,l C.T., and Zuber, M.T., 2019. High-resolution shape model of Ceres from stereophotoclinometry using Dawn Imaging Data. Icarus, 319, pp. 812—827. DOI: https://doi.org/10.1016/j.icarus.2018.10.02422. Kornienko, Yu.V., Akimov, L.A., Dulova, I.A., Nguyen, Xuan Anh, and Uvarov, V.N., 1994. Problem of maximal extraсtion of information about an astronomical object from observational data. Kinematika i fizika nebesnykh tel, 10(1),pp. 71—76. Available from: https://www.mao.kiev.ua/index.php/ua/pdf-opener?1994-10/kfnt-1994-10-1-19.pdf [viewed23 January 2025].23. Kornienko, Yu.V., 2006. Statistical Approach to Filtration and the Image Informativity. Telecommunications and Radio Engineering, 65(1—5), pp. 121—170. DOI: https://doi.org/10.1615/TelecomRadEng.v65.i2.3024. Nguen, Suan An’, and Kornienko, Yu.V., 1998. Determination of the relief and radiooptical parameters of a surface area by means of a synthetic aperture radar. Telecommunications and Radio Engineering, 52(5), pp. 29—33. DOI: https://doi.org/10.1615/TelecomRadEng.v52.i5.4025. Dulova, I.A., Kornienko, Yu.V., and Skuratovskiy, S.I., 2008. A clinometric technique for relief derivation from redundant or deficient input data. Telecommunications and Radio Engineering, 67(18), pp. 1605—1620. DOI: https://doi.org/10.1615/TelecomRadEng.v67.i18.1026. Kornienko, Yu.V., Dulova, I.A., and Bondarenko, N.V., 2019. Optimal surface relief retrieval from the set of photometric and altimeter data. In: 50th Lunar and Planetary Science Conf., LPI Contrib. No. 2132, id 1125 [online]. [viewed 24 January 2025]. Available from: https://www.hou.usra.edu/meetings/lpsc2019/pdf/1125.pdf27. Kornienko, Yu.V., Dulova, I.A., and Bondarenko, N.V., 2021. Involvement of altimetry information into the improved photoclinometry method for relief retrieval from a slope field. Radio Phys. Radio Astron., 26(2), pp. 173—188 (in Ukrainian). DOI: https://doi.org/10.15407/rpra26.02.17328. Dulova, I.A., Skuratovsky, S.I., Bondarenko, N.V., and Kornienko, Yu.V., 2008. Reconstruction of the surface topography from single images with the photometric method. Sol. Sys. Res., 42(6), pp. 522—535. DOI: https://doi.org/10.1134/S003809460806005129. Bondarenko, N.V., Dulova, I.A., and Kornienko, Yu.V., 2014. Topography of polygonal structures at the Phoenix landing site on Mars through the relief retrieval from the HiRISE images with the improved photoclinometry method. Sol. Syst. Res., 48(4), pp. 243—258. DOI: https://doi.org/10.1134/S003809461404003030. Bondarenko, N.V., Dulova, I.A., and Kornienko, Yu.V., 2020. Photometric functions and the improved photoclinometry method: mature Lunar mare surfaces. In: 51th Lunar and Planetary Science Conference. Abstract No. 1845 [online]. [viewed 24 January 2025]. Available from: https://www.hou.usra.edu/meetings/lpsc2020/eposter/1845.pdf31. Wildey, R.L., 1990. Radarclinometry of the earth and Venus from Space-Shuttle and Venera-15 imagery. Earth Moon Planets, 48, pp. 197—231. DOI: https://doi.org/10.1007/BF0011385732. Watters, T.R., and Robinson, M.S., 1997. Radar and photoclinometric studies of wrinkle ridges on Mars. J. Geophys. Res., 102(E5), pp. 10889—10903. DOI: https://doi.org/10.1029/97JE0041133. Dulova, I.O., and Bondarenko, N.V., 2023. An improved photoclinometry technique for surface relief retrieval from images: error levels for height and slope estimates. Radio Phys. Radio Astron., 28(4), pp. 304—317 (in Ukrainian). DOI: https://doi.org/10.15407/rpra28.0434. Bayes, T., 1763. An essay towards solving a problem in the doctrine of chances. Philos. Trans. R. Soc. Lond., 53, pp. 360—418.35. Strauss, W.A., 2008. Partial Differential Equations: An Introduction. 2nd ed. USA: John Wiley & Sons.36. Smith, G.D., 1965. Numerical Solution of Partial Difference Equation. London: Oxford University Press.37. Guo, P., 2021. The numerical solution of Poisson equation with Dirichlet boundary conditions. J. Appl. Math. Phys., 9(12), pp. 3007—3018. DOI: https://doi.org/10.4236/jamp.2021.91219438. Zhou, L., and Yu, H., 2018. Error estimate of a high accuracy difference scheme for Poisson equation with two integral boundary conditions. Adv. Diff er. Equ., id. 225. DOI: https://doi.org/10.1186/s13662-018-1682-z39. Jomaa, Z., and Macaskill, C., 2005. The embedded finite difference method for the Poisson equation in a domain with an irregular boundary and Dirichlet boundary conditions. J. Comput. Phys. 202(2). pp. 488—506. DOI: https://doi.org/10.1016/j.jcp.2004.07.01140. Pang, K., and Hord, C.W., 1971. Mariner 7 ultraviolet spectrometer experiment: photometric function and roughness of Mars’ polar cap surface. Icarus, 15(3), pp. 443—453. DOI: https://doi.org/10.1016/0019-1035(71)90121-741. Jehl, A., Pinet, P., Baratoux, D., Daydou, Y., Chevrel, S., Heuripeau, F., Manaud, N., Cord, A., Rosemberg, C., Neukum, G., Gwinner, K., Scholten, F., Hoffman, H., Roatsch, T., and HRSC Team, 2008. Gusev photometric variability as seen from orbit by HRSC/Mars-express. Icarus, 197(2), pp. 403—428. DOI: https://doi.org/10.1016/j.icarus.2008.05.02242. McEwen, A.S., 1991. Photometric Functions for Photoclinometry and Other Applications. Icarus, 92(2), pp. 298—311. DOI: https://doi.org/10.1016/0019-1035(91)90053-V43. Shkuratov, Yu., Kaydash, V., Korokhin, V., Velikodsky, Yu., Opanasenko, N., and Videen, G., 2011. Optical measurements of the Moon as a tool to study its surface. Planet. Space Sci. 59(13), pp. 1326—1371. DOI: https://doi.org/10.1016/j.pss.2011.06.01144. Hapke, B., 1981. Bidirectional reflectance spectroscopy. 1. Theory. J. Geophys. Res., 86, pp. 3039—3054. DOI: https://doi.org/10.1029/JB086iB04p0303945. Born, M., and Wolf, E., 1959. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. 1st ed. London, New York, Paris: Pergamon Press, OCLC 48969150646. Wiener, N., 1948. Cybernetics: or control and communication in the animal and the machine. Cambridge, Massachusetts, USA: MIT Press. Publication date: 2019. DOI: https://doi.org/10.7551/mitpress/11810.001.000147. Korn, G., and Korn, T., 2000. Mathematical handbook for scientists and engineers. Dover Publ., Revised ed.48. Kotelnikov, V.A., 2006. On the transmission capacity of the "ether" and wire in electric communications, 1933. Adv. in Phys. Sci. 49, pp. 744—748 (reprint of the article).