ELECTRICAL AND NOISE PROPERTIES OF A SYMMETRICAL ANTENNA WITH AN ACTIVE BALUN

Subject and Purpose. The paper considers an active receiving antenna composed of a symmetrical passive antenna and an active balun that consists of a diff erential pair of identical low-noise amplifiers and a three-winding differential-input single-ended transformer. The purpose of the paper is deve...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2025
Автор: Tokarsky, P. L.
Формат: Стаття
Мова:English
Опубліковано: Видавничий дім «Академперіодика» 2025
Теми:
Онлайн доступ:http://rpra-journal.org.ua/index.php/ra/article/view/1462
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Radio physics and radio astronomy

Репозитарії

Radio physics and radio astronomy
id oai:ri.kharkov.ua:article-1462
record_format ojs
institution Radio physics and radio astronomy
baseUrl_str
datestamp_date 2025-03-23T08:42:24Z
collection OJS
language English
topic symmetrical antenna
active balun
two-port network
scattering matrix
noise waves’ correlation matrix
spellingShingle symmetrical antenna
active balun
two-port network
scattering matrix
noise waves’ correlation matrix
Tokarsky, P. L.
ELECTRICAL AND NOISE PROPERTIES OF A SYMMETRICAL ANTENNA WITH AN ACTIVE BALUN
topic_facet symmetrical antenna
active balun
two-port network
scattering matrix
noise waves’ correlation matrix
симетрична антена
активний симетрувальний пристрій
чотириполюсник
матриця розсіяння
кореляційна матриця шумових хвиль
format Article
author Tokarsky, P. L.
author_facet Tokarsky, P. L.
author_sort Tokarsky, P. L.
title ELECTRICAL AND NOISE PROPERTIES OF A SYMMETRICAL ANTENNA WITH AN ACTIVE BALUN
title_short ELECTRICAL AND NOISE PROPERTIES OF A SYMMETRICAL ANTENNA WITH AN ACTIVE BALUN
title_full ELECTRICAL AND NOISE PROPERTIES OF A SYMMETRICAL ANTENNA WITH AN ACTIVE BALUN
title_fullStr ELECTRICAL AND NOISE PROPERTIES OF A SYMMETRICAL ANTENNA WITH AN ACTIVE BALUN
title_full_unstemmed ELECTRICAL AND NOISE PROPERTIES OF A SYMMETRICAL ANTENNA WITH AN ACTIVE BALUN
title_sort electrical and noise properties of a symmetrical antenna with an active balun
title_alt ЕЛЕКТРИЧНІ ТА ШУМОВІ ВЛАСТИВОСТІ СИМЕТРИЧНОЇ АНТЕНИ З АКТИВНИМ СИМЕТРУВАЛЬНИМ ПРИСТРОЄМ
description Subject and Purpose. The paper considers an active receiving antenna composed of a symmetrical passive antenna and an active balun that consists of a diff erential pair of identical low-noise amplifiers and a three-winding differential-input single-ended transformer. The purpose of the paper is developing a model of such an active antenna in the form of an equivalent two-port network with analytically determined electrical and noise parameters.Methods and Methodology. The study is based on methods of antenna theory and noise theory of multi-port networks. The passive antenna is conditionally divided into two identical arms, each regarded as a separate independent antenna, which allows representing the entire active antenna as a three-port network. Then, making allowance for the antisymmetric excitation of the three-port network inputs, it has been converted into a cascade of two two-port networks. The first one corresponds to the passive antenna, and the second to the active balun consisting of one low-noise amplifier with transformers added at input and output .Results. Proceeding from a block diagram of the active antenna, seen as a two-port network, analytical expressions were derived to allow calculations of its scattering matrix and the correlation matrix of noise waves. These permit evaluating electrical and noise parameters of the symmetrical antenna with an active balun. A numerical example is presented, which allows comparing parameters of two symmetrical active antennas, one of which uses the active balun, while the other a low-noise amplifier with a passive balun.Conclusions. The block diagrams developed and the explicit relationships obtained allow a greatly simplified analysis of the symmetric antennas that employ active baluns as they do not need resorting to any specialized software. The results may prove useful for calculating the parameters of low-frequency radio telescopes that employ similar antennas in the capacity of phased array elements.Keywords: symmetrical antenna, active balun, two-port network, scattering matrix, noise waves’ correlation matrixManuscript submitted 02.09.2024Radio phys. radio astron. 2025, 30(1): 041-050REFERENCES1. Sevick, J., 2001. Transmission Line Transformers. 4th ed. Atlanta, GA, USA: Noble Publishing.2. Konovalenko, A., Sodin, L., Zakharenko, V., Zarka, P., Ulyanov, O., Sidorchuk, M., Stepkin, S., Tokarsky, P., Melnik, V., Kalinichenko, N., Stanislavsky, A., Koliadin, V., Shepelev, V., Dorovskyy, V., Ryabov, V., Koval, A., Bubnov, I., Yerin, S., Gridin, A., Kulishenko, V., Reznichenko, A., Bortsov, V., Lisachenko, V., Reznik, A., Kvasov, G., Mukha, D., Litvinenko, G., Khristenko, A., Shevchenko, V. V., Shevchenko, V. A., Belov, A., Rudavin, E., Vasylieva, I., Miroshnichenko, A., Vasilenko, N., Olyak, M., Mylostna, K., Skoryk, A., Shevtsova, A., Plakhov, M., Kravtsov, I., Volvach, Y.,  Lytvinenko, O., Shevchuk, N., Zhouk, I., Bovkun, V., Antonov, A., Vavriv, D., Vinogradov, V., Kozhin, R., Kravtsov, A., Bulakh, E., Kuzin, A., Vasilyev, A., Brazhenko, A., Vashchishin, R., Pylaev, O., Koshovyy, V., Lozinsky, A., Ivantyshin, O., Rucker, H. O., Panchenko, M., Fischer, G., Lecacheux, A., Denis, L., Coffre, A., Grießmeier, J.-M., Tagger, M., Girard, J., Charrier, D., Briand, C., and Mann, G., 2016. The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT. Exp. Astron., 42(1), pp. 11—48. DOI: https://doi.org/10.1007/s10686-016-9498-x3. Gonzalez-Esparza, A., Carrillo, A., Andrade, E., Jeyakumar, S., Perez-Enriquez, R., and Kurtz, S., 2002. The MEXART interplanetary scintillation array in Mexico. Geofís. Int., 43(1), pp. 61—73. DOI: https://doi.org/10.22201/igeof.00167169p.2004.43.1.2154. Oraizi, H., 2016. Impedance Matching and BALUNs. In: Z.N. Chen, ed. Handbook of Antenna Technologies. Singapore: Springer Nature, pp. 3350—3428. DOI: https://doi.org/10.1007/978-981-4560-44-3_1335. Costain, C., Lacey, J., and Roger, R., 1969. Large 22-MHz array for radio astronomy. IEEE Trans. Antennas Propag., 17(2), pp. 162—169. DOI:https://doi.org/10.1109/TAP.1969.11394096. Sastry, Ch.V., 1995. The decameter and meter wave radiotelescopes in India and Mauritius. Space Sci. Rev., 72, pp. 629—654. DOI: https://doi.org/10.1007/BF007490087. Abidi, A.A., 2003. General Relations between IP2, IP3, and Offsets in Differential Circuits and the Effects of Feedback, IEEE Trans. Microw. Theory Techn., 51(5), pp. 1610—1612. DOI: https://doi.org/10.1109/TMTT.2003.8101478. Falkovich, I.S., Konovalenko, A.A., Gridin, A.A., Sodin, L.G., Bubnov, I.N., Kalinichenko, N.N., Rashkovskii, S.L., Mukha, D.V., and Tokarsky, P.L., 2011. Wide-band high linearity active dipole for low frequency radio astronomy. Exp. Astron., 32(2), pp. 127—145. DOI: https://doi.org/10.1007/s10686-011-9256-z9. Ellingson, S.W., Taylor, G.B., Craig, J., Hartman, J., Dowell, J., Wolfe, C.N., Clarke, T.E., Hicks, B.C., Kassim, N.E., Ray, P.S., Rickard, L.J., Schinzel, F.K., and Weiler, K.W., 2013. The LWA1 Radio Telescope, IEEE Trans. Antennas Propag., 61(5), pp. 2540—2549. DOI: https://doi.org/10.1109/TAP.2013.224282610. Stewart, K.P., Hicks, B.C., Ray, P.S., Crane, P.C., Kassim, N.E., Bradley, R.F., and Erickson, W.C., 2004. LOFAR antenna development and initial observations of solar bursts. Planet. Space Sci., 52(15), pp. 1351—1355. DOI: https://doi.org/10.1016/j.pss.2004.09.01411. Ellingson, S.W., Simonetti, J.H., and Patterson, C.D., 2007. Design and Evaluation of an Active Antenna for a 29—47 MHz Radio Telescope Array. IEEE Trans. Antennas Propag., 55(3), pp. 826—831. DOI: https://doi.org/10.1109/TAP.2007.89186612. Rosa, G.S., Schuch, N.J., Gomes, N.R., Bergmann, J.R., Echer, E., and Machado, R., 2012. Inexpensive Interferometer for Low Frequency Radio Astronomy. Journal of Communication and Information Systems (JCIS), 27(1). DOI: https://doi.org/10.14209/jcis.2012.513. De Lera Acedo E., Razavi-Ghods, N., Troop, N., Drought, N., and Faulkner, A.J., 2015. SKALA, a log-periodic array antenna for the SKA-low instrument: design, simulations, tests and system considerations. Exp. Astron., 39, pp. 567—594. DOI: https://doi.org/10.1007/s10686-015-9439-014. Shaw, R.D., Hay, S.G., and Ranga, Y., 2012. Development of a Low-Noise Active Balun for a Dual-Polarized Planar Connected Array Antenna for ASKAP. In: 2012 Int. Conf. Electromagnetics in Advanced Applications. Cape Town, South Africa, 02—07 Sept. 2012. DOI: https://doi.org/10.1109/ICEAA.2012.632866615. Sutinjo, A.T., Colegate, T.M., Wayth, R.B., Hall, P.J., de Lera Acedo, E., Booler, T., Faulkner, A.J., Feng, L., Hurley-Walker, N., Juswardy, B., Padhi, S.K., Razavi-Ghods, N., Sokolowski, M., Tingay, S.J., and Bij de Vaate, J.G., 2015. Characterization of a Low-Frequency Radio Astronomy Prototype Array in Western Australia. IEEE Trans. Antennas Propag., 63(12), pp. 5433—5442. DOI: https://doi.org/10.1109/TAP.2015.248750416. Zarka, P., Denis, L., Tagger, M., Girard, J., Coffre, A., Dumez-Viou, C., Taffoureau, C., Charrier, D., Bondonneau, L., Briand, C., Casoli, F., Cecconi, B., Cognard, I., Corbel, S., Dallier, R., Ferrari, C., Grießmeier, J-M., Loh, A., Martin, L., Pommier, M., Semelin, B., Tasse, C., Theureau, G., Tremou, E., Hellbourg, G., Konovalenko, A., Koopmans, L., Tokarsky, P., Ulyanov, O., Vermeulen, R., and Zakharenko, V., 2020. The low-frequency  radio telescope NenuFAR. In: Proc. XXXIIIrd URSI General Assembly and Scientific Symposium. Rome, Italy, 29 August — 5 Sept. 2020, J01-02. [viewed 20.08.2024]. Available from: https://www.ursi.org/proceedings/procGA20/papers/URSIGASS2020SummaryPaperNenuFARnew.pdf17. Tokarsky, P.L., Konovalenko, A.A., Yerin, S.N., and Bubnov, I.N. An Active Antenna Subarray for the Low-Frequency Radio Telescope GURT–Part I: Design and Theoretical Model. IEEE Trans. Antennas Propag., 67(12), pp. 7304—7311. DOI: https://doi.org/10.1109/TAP.2019.292784118. Bubnov, I.N., Konovalenko, O.O., Tokarsky, P.L., Korolev, O.M., Yerin, L.O., and Stanislavsky, S.M. 2021. Creation and approbation of a low-frequency radio astronomy antenna for studying objects of the Universe from the farside of the Moon. Radio Phys. Radio Astron., 26(3), pp. 197—210. DOI: https://doi.org/10.15407/rpra26.03.19719. Stewart, K., Hicks, B., Paravastu, N., Bradley, R., Parashare, C., Erickson, W., Gross, C., Polisensky, E., Crane, P., Ray, P., Kassim, N., and Weiler K., 2005. Recent Progress in Active Antenna Designs for the Long Wavelength Array (LWA), 2005. In: Proc. URSI General Assembly. New Delhi, India, 23—29 Oct. 2005. [viewed  20.08.2024]. Available from: https://www.ursi.org/proceedings/procGA05/pdf/J03-P.15(0981).pdf20. Bradley, R.F., and Parashare, C.R., 2005. Evaluation of the NRL LWA Active Balun Prototype. NRAO NTC-DSL Laboratory Report 01, Rev. A [viewed 20.08.2024]. Available from: https://www.gb.nrao.edu/electronics/edtn/edtn220.pdf21. Korolev, A.M., Zakharenko, V.V., and Ulyanov, O.M., 2016. Radio astronomy ultra-low-noise amplifier for operation at 91 cm wavelength in high RFI environment. Exp. Astron., 41(1—2), pp. 215—221. DOI: https://doi.org/10.1007/s10686-015-9466-x22. Sutinjo, A.T., Ung, D.C.X., and Juswardy, B., 2018. Cold-Source Noise Measurement of a Differential Input Single-Ended Output Low-Noise Amplifier Connected to a Low-Frequency Radio Astronomy Antenna. IEEE Trans. Antennas Propag., 66(10), pp. 5511—5520. DOI: https://doi.org/10.1109/TAP.2018.285428523. Prinsloo, D.S., Maaskant, R., Ivashina, M.V., and Meyer, P., 2014. Mixed-Mode Sensitivity Analysis of a Combined Differential and Common Mode Active Receiving Antenna Providing Near-Hemispherical Field-of-View Coverage. IEEE Trans. Antennas Propag., 32(2), pp. 3951—3961. DOI: https://doi.org/10.1109/TAP.2014.232289624. Dobrowolski, J.A., 2016. Scattering Parameters in RF and Microwave Circuits Analysis and Design. Norwood, MA, USA: Artech House.25. Tokarsky, P.L., 2020. Antenna Analytical Representation by a Two-Port Network. Int. J. Antennas Propag., 2020, id. 2609747. DOI: https://doi.org/10.1155/2020/260974726. Gupta, K., Garg R., and Chandra, R., 1981. Computer-aided design of microwave circuits. Dedham, MA, USA: Artech House.27. Flux Coupled Balun 1:2. [viewed 20.08.2024]. Available from: https://www.macom.com/products/product-detail/MABA-01105028. RF Flux Coupled Transformer 1:4, E-Series. [viewed 20.08.2024]. Available from: https://www.macom.com/products/product-detail/MABAES003129. Russer, P., and Muller, S., 1990. Noise analysis of linear microwave circuits. Int. J. Numer. Model. El., 3, pp. 287—316. DOI: https://doi.org/10.1002/jnm.166003040830. Pospieszalski, M.W., 2010. Interpreting Transistor Noise. IEEE Microwave Mag., 11(6), pp. 61—69. DOI: https://doi.org/10.1109/MMM.2010.93773331. Tokarsky, P.L., Konovalenko, A.A., and Yerin S.N., 2017. Sensitivity of an Active Antenna Array Element for the Low-Frequency Radio Telescope GURT. IEEE Trans. Antennas Propag., 65(9), pp. 4636—4644. DOI: https://doi.org/10.1109/TAP.2017.273023832. Tokarsky, P.L., Konovalenko, A.A., Yerin, S.N., and Bubnov I.N., 2016. Sensitivity of Active Phased Antenna Array Element of GURT Radio Telescope. Radio Phys. Radio Astron., 21(1), pp. 48—57. DOI: https://doi.org/10.15407/rpra21.01.04833. Hicks, B.C., Paravastu-Dalal, N., Stewart, K.P., Erickson, W.C., Ray, P.S., Kassim, N.E., Burns, S., Clarke, T., Schmitt, H., Craig, J., Hartman, J., and Weiler, K.W., 2012. A wide-band, active antenna system for long wavelength radio astronomy. Publ. Astron. Soc. Pac., 124(920), pp. 1090—1104. DOI: https://doi.org/10.1086/66812134. Tokarsky, P.L., Konovalenko, A.A., and Modelski, J.W., 2023. An Active Ribbon Dipole as an Array Element Prototype for the Lunar Very Low Frequency Radio Telescope. IEEE Access, 11, pp. 75225—75235. DOI: https://doi.org/10.1109/ACCESS.2023.3294694 
publisher Видавничий дім «Академперіодика»
publishDate 2025
url http://rpra-journal.org.ua/index.php/ra/article/view/1462
work_keys_str_mv AT tokarskypl electricalandnoisepropertiesofasymmetricalantennawithanactivebalun
AT tokarskypl električnítašumovívlastivostísimetričnoíantenizaktivnimsimetruvalʹnimpristroêm
first_indexed 2025-07-17T11:25:03Z
last_indexed 2025-07-17T11:25:03Z
_version_ 1840039886028013568
spelling oai:ri.kharkov.ua:article-14622025-03-23T08:42:24Z ELECTRICAL AND NOISE PROPERTIES OF A SYMMETRICAL ANTENNA WITH AN ACTIVE BALUN ЕЛЕКТРИЧНІ ТА ШУМОВІ ВЛАСТИВОСТІ СИМЕТРИЧНОЇ АНТЕНИ З АКТИВНИМ СИМЕТРУВАЛЬНИМ ПРИСТРОЄМ Tokarsky, P. L. symmetrical antenna; active balun; two-port network; scattering matrix; noise waves’ correlation matrix симетрична антена; активний симетрувальний пристрій; чотириполюсник; матриця розсіяння; кореляційна матриця шумових хвиль Subject and Purpose. The paper considers an active receiving antenna composed of a symmetrical passive antenna and an active balun that consists of a diff erential pair of identical low-noise amplifiers and a three-winding differential-input single-ended transformer. The purpose of the paper is developing a model of such an active antenna in the form of an equivalent two-port network with analytically determined electrical and noise parameters.Methods and Methodology. The study is based on methods of antenna theory and noise theory of multi-port networks. The passive antenna is conditionally divided into two identical arms, each regarded as a separate independent antenna, which allows representing the entire active antenna as a three-port network. Then, making allowance for the antisymmetric excitation of the three-port network inputs, it has been converted into a cascade of two two-port networks. The first one corresponds to the passive antenna, and the second to the active balun consisting of one low-noise amplifier with transformers added at input and output .Results. Proceeding from a block diagram of the active antenna, seen as a two-port network, analytical expressions were derived to allow calculations of its scattering matrix and the correlation matrix of noise waves. These permit evaluating electrical and noise parameters of the symmetrical antenna with an active balun. A numerical example is presented, which allows comparing parameters of two symmetrical active antennas, one of which uses the active balun, while the other a low-noise amplifier with a passive balun.Conclusions. The block diagrams developed and the explicit relationships obtained allow a greatly simplified analysis of the symmetric antennas that employ active baluns as they do not need resorting to any specialized software. The results may prove useful for calculating the parameters of low-frequency radio telescopes that employ similar antennas in the capacity of phased array elements.Keywords: symmetrical antenna, active balun, two-port network, scattering matrix, noise waves’ correlation matrixManuscript submitted 02.09.2024Radio phys. radio astron. 2025, 30(1): 041-050REFERENCES1. Sevick, J., 2001. Transmission Line Transformers. 4th ed. Atlanta, GA, USA: Noble Publishing.2. Konovalenko, A., Sodin, L., Zakharenko, V., Zarka, P., Ulyanov, O., Sidorchuk, M., Stepkin, S., Tokarsky, P., Melnik, V., Kalinichenko, N., Stanislavsky, A., Koliadin, V., Shepelev, V., Dorovskyy, V., Ryabov, V., Koval, A., Bubnov, I., Yerin, S., Gridin, A., Kulishenko, V., Reznichenko, A., Bortsov, V., Lisachenko, V., Reznik, A., Kvasov, G., Mukha, D., Litvinenko, G., Khristenko, A., Shevchenko, V. V., Shevchenko, V. A., Belov, A., Rudavin, E., Vasylieva, I., Miroshnichenko, A., Vasilenko, N., Olyak, M., Mylostna, K., Skoryk, A., Shevtsova, A., Plakhov, M., Kravtsov, I., Volvach, Y.,  Lytvinenko, O., Shevchuk, N., Zhouk, I., Bovkun, V., Antonov, A., Vavriv, D., Vinogradov, V., Kozhin, R., Kravtsov, A., Bulakh, E., Kuzin, A., Vasilyev, A., Brazhenko, A., Vashchishin, R., Pylaev, O., Koshovyy, V., Lozinsky, A., Ivantyshin, O., Rucker, H. O., Panchenko, M., Fischer, G., Lecacheux, A., Denis, L., Coffre, A., Grießmeier, J.-M., Tagger, M., Girard, J., Charrier, D., Briand, C., and Mann, G., 2016. The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT. Exp. Astron., 42(1), pp. 11—48. DOI: https://doi.org/10.1007/s10686-016-9498-x3. Gonzalez-Esparza, A., Carrillo, A., Andrade, E., Jeyakumar, S., Perez-Enriquez, R., and Kurtz, S., 2002. The MEXART interplanetary scintillation array in Mexico. Geofís. Int., 43(1), pp. 61—73. DOI: https://doi.org/10.22201/igeof.00167169p.2004.43.1.2154. Oraizi, H., 2016. Impedance Matching and BALUNs. In: Z.N. Chen, ed. Handbook of Antenna Technologies. Singapore: Springer Nature, pp. 3350—3428. DOI: https://doi.org/10.1007/978-981-4560-44-3_1335. Costain, C., Lacey, J., and Roger, R., 1969. Large 22-MHz array for radio astronomy. IEEE Trans. Antennas Propag., 17(2), pp. 162—169. DOI:https://doi.org/10.1109/TAP.1969.11394096. Sastry, Ch.V., 1995. The decameter and meter wave radiotelescopes in India and Mauritius. Space Sci. Rev., 72, pp. 629—654. DOI: https://doi.org/10.1007/BF007490087. Abidi, A.A., 2003. General Relations between IP2, IP3, and Offsets in Differential Circuits and the Effects of Feedback, IEEE Trans. Microw. Theory Techn., 51(5), pp. 1610—1612. DOI: https://doi.org/10.1109/TMTT.2003.8101478. Falkovich, I.S., Konovalenko, A.A., Gridin, A.A., Sodin, L.G., Bubnov, I.N., Kalinichenko, N.N., Rashkovskii, S.L., Mukha, D.V., and Tokarsky, P.L., 2011. Wide-band high linearity active dipole for low frequency radio astronomy. Exp. Astron., 32(2), pp. 127—145. DOI: https://doi.org/10.1007/s10686-011-9256-z9. Ellingson, S.W., Taylor, G.B., Craig, J., Hartman, J., Dowell, J., Wolfe, C.N., Clarke, T.E., Hicks, B.C., Kassim, N.E., Ray, P.S., Rickard, L.J., Schinzel, F.K., and Weiler, K.W., 2013. The LWA1 Radio Telescope, IEEE Trans. Antennas Propag., 61(5), pp. 2540—2549. DOI: https://doi.org/10.1109/TAP.2013.224282610. Stewart, K.P., Hicks, B.C., Ray, P.S., Crane, P.C., Kassim, N.E., Bradley, R.F., and Erickson, W.C., 2004. LOFAR antenna development and initial observations of solar bursts. Planet. Space Sci., 52(15), pp. 1351—1355. DOI: https://doi.org/10.1016/j.pss.2004.09.01411. Ellingson, S.W., Simonetti, J.H., and Patterson, C.D., 2007. Design and Evaluation of an Active Antenna for a 29—47 MHz Radio Telescope Array. IEEE Trans. Antennas Propag., 55(3), pp. 826—831. DOI: https://doi.org/10.1109/TAP.2007.89186612. Rosa, G.S., Schuch, N.J., Gomes, N.R., Bergmann, J.R., Echer, E., and Machado, R., 2012. Inexpensive Interferometer for Low Frequency Radio Astronomy. Journal of Communication and Information Systems (JCIS), 27(1). DOI: https://doi.org/10.14209/jcis.2012.513. De Lera Acedo E., Razavi-Ghods, N., Troop, N., Drought, N., and Faulkner, A.J., 2015. SKALA, a log-periodic array antenna for the SKA-low instrument: design, simulations, tests and system considerations. Exp. Astron., 39, pp. 567—594. DOI: https://doi.org/10.1007/s10686-015-9439-014. Shaw, R.D., Hay, S.G., and Ranga, Y., 2012. Development of a Low-Noise Active Balun for a Dual-Polarized Planar Connected Array Antenna for ASKAP. In: 2012 Int. Conf. Electromagnetics in Advanced Applications. Cape Town, South Africa, 02—07 Sept. 2012. DOI: https://doi.org/10.1109/ICEAA.2012.632866615. Sutinjo, A.T., Colegate, T.M., Wayth, R.B., Hall, P.J., de Lera Acedo, E., Booler, T., Faulkner, A.J., Feng, L., Hurley-Walker, N., Juswardy, B., Padhi, S.K., Razavi-Ghods, N., Sokolowski, M., Tingay, S.J., and Bij de Vaate, J.G., 2015. Characterization of a Low-Frequency Radio Astronomy Prototype Array in Western Australia. IEEE Trans. Antennas Propag., 63(12), pp. 5433—5442. DOI: https://doi.org/10.1109/TAP.2015.248750416. Zarka, P., Denis, L., Tagger, M., Girard, J., Coffre, A., Dumez-Viou, C., Taffoureau, C., Charrier, D., Bondonneau, L., Briand, C., Casoli, F., Cecconi, B., Cognard, I., Corbel, S., Dallier, R., Ferrari, C., Grießmeier, J-M., Loh, A., Martin, L., Pommier, M., Semelin, B., Tasse, C., Theureau, G., Tremou, E., Hellbourg, G., Konovalenko, A., Koopmans, L., Tokarsky, P., Ulyanov, O., Vermeulen, R., and Zakharenko, V., 2020. The low-frequency  radio telescope NenuFAR. In: Proc. XXXIIIrd URSI General Assembly and Scientific Symposium. Rome, Italy, 29 August — 5 Sept. 2020, J01-02. [viewed 20.08.2024]. Available from: https://www.ursi.org/proceedings/procGA20/papers/URSIGASS2020SummaryPaperNenuFARnew.pdf17. Tokarsky, P.L., Konovalenko, A.A., Yerin, S.N., and Bubnov, I.N. An Active Antenna Subarray for the Low-Frequency Radio Telescope GURT–Part I: Design and Theoretical Model. IEEE Trans. Antennas Propag., 67(12), pp. 7304—7311. DOI: https://doi.org/10.1109/TAP.2019.292784118. Bubnov, I.N., Konovalenko, O.O., Tokarsky, P.L., Korolev, O.M., Yerin, L.O., and Stanislavsky, S.M. 2021. Creation and approbation of a low-frequency radio astronomy antenna for studying objects of the Universe from the farside of the Moon. Radio Phys. Radio Astron., 26(3), pp. 197—210. DOI: https://doi.org/10.15407/rpra26.03.19719. Stewart, K., Hicks, B., Paravastu, N., Bradley, R., Parashare, C., Erickson, W., Gross, C., Polisensky, E., Crane, P., Ray, P., Kassim, N., and Weiler K., 2005. Recent Progress in Active Antenna Designs for the Long Wavelength Array (LWA), 2005. In: Proc. URSI General Assembly. New Delhi, India, 23—29 Oct. 2005. [viewed  20.08.2024]. Available from: https://www.ursi.org/proceedings/procGA05/pdf/J03-P.15(0981).pdf20. Bradley, R.F., and Parashare, C.R., 2005. Evaluation of the NRL LWA Active Balun Prototype. NRAO NTC-DSL Laboratory Report 01, Rev. A [viewed 20.08.2024]. Available from: https://www.gb.nrao.edu/electronics/edtn/edtn220.pdf21. Korolev, A.M., Zakharenko, V.V., and Ulyanov, O.M., 2016. Radio astronomy ultra-low-noise amplifier for operation at 91 cm wavelength in high RFI environment. Exp. Astron., 41(1—2), pp. 215—221. DOI: https://doi.org/10.1007/s10686-015-9466-x22. Sutinjo, A.T., Ung, D.C.X., and Juswardy, B., 2018. Cold-Source Noise Measurement of a Differential Input Single-Ended Output Low-Noise Amplifier Connected to a Low-Frequency Radio Astronomy Antenna. IEEE Trans. Antennas Propag., 66(10), pp. 5511—5520. DOI: https://doi.org/10.1109/TAP.2018.285428523. Prinsloo, D.S., Maaskant, R., Ivashina, M.V., and Meyer, P., 2014. Mixed-Mode Sensitivity Analysis of a Combined Differential and Common Mode Active Receiving Antenna Providing Near-Hemispherical Field-of-View Coverage. IEEE Trans. Antennas Propag., 32(2), pp. 3951—3961. DOI: https://doi.org/10.1109/TAP.2014.232289624. Dobrowolski, J.A., 2016. Scattering Parameters in RF and Microwave Circuits Analysis and Design. Norwood, MA, USA: Artech House.25. Tokarsky, P.L., 2020. Antenna Analytical Representation by a Two-Port Network. Int. J. Antennas Propag., 2020, id. 2609747. DOI: https://doi.org/10.1155/2020/260974726. Gupta, K., Garg R., and Chandra, R., 1981. Computer-aided design of microwave circuits. Dedham, MA, USA: Artech House.27. Flux Coupled Balun 1:2. [viewed 20.08.2024]. Available from: https://www.macom.com/products/product-detail/MABA-01105028. RF Flux Coupled Transformer 1:4, E-Series. [viewed 20.08.2024]. Available from: https://www.macom.com/products/product-detail/MABAES003129. Russer, P., and Muller, S., 1990. Noise analysis of linear microwave circuits. Int. J. Numer. Model. El., 3, pp. 287—316. DOI: https://doi.org/10.1002/jnm.166003040830. Pospieszalski, M.W., 2010. Interpreting Transistor Noise. IEEE Microwave Mag., 11(6), pp. 61—69. DOI: https://doi.org/10.1109/MMM.2010.93773331. Tokarsky, P.L., Konovalenko, A.A., and Yerin S.N., 2017. Sensitivity of an Active Antenna Array Element for the Low-Frequency Radio Telescope GURT. IEEE Trans. Antennas Propag., 65(9), pp. 4636—4644. DOI: https://doi.org/10.1109/TAP.2017.273023832. Tokarsky, P.L., Konovalenko, A.A., Yerin, S.N., and Bubnov I.N., 2016. Sensitivity of Active Phased Antenna Array Element of GURT Radio Telescope. Radio Phys. Radio Astron., 21(1), pp. 48—57. DOI: https://doi.org/10.15407/rpra21.01.04833. Hicks, B.C., Paravastu-Dalal, N., Stewart, K.P., Erickson, W.C., Ray, P.S., Kassim, N.E., Burns, S., Clarke, T., Schmitt, H., Craig, J., Hartman, J., and Weiler, K.W., 2012. A wide-band, active antenna system for long wavelength radio astronomy. Publ. Astron. Soc. Pac., 124(920), pp. 1090—1104. DOI: https://doi.org/10.1086/66812134. Tokarsky, P.L., Konovalenko, A.A., and Modelski, J.W., 2023. An Active Ribbon Dipole as an Array Element Prototype for the Lunar Very Low Frequency Radio Telescope. IEEE Access, 11, pp. 75225—75235. DOI: https://doi.org/10.1109/ACCESS.2023.3294694  Предмет і мета роботи. У статті розглядається активна приймальна антена, що складається з симетричної пасивної антени та активного симетрувального пристрою у вигляді диференціальної пари ідентичних малошумівних підсилювачів і триобмоткового диференціального вхідного однотактного трансформатора. Метою роботи є розробка моделі такої активної антени, поданої як еквівалентний чотириполюсник з аналітично визначеними електричними та шумовими параметрами.Методи та методологія. Дослідження базується на методах теорії антен і теорії шумних багатополюсників. Пасивна антена є умовно розділеною на два однакових плеча, кожне з яких розглядається як окрема незалежна антена, що дозволяє подати всю активну антену як шестиполюсник. Потім, враховуючи антисиметричне збудження цього шестиполюсника, його було перетворено на каскадне з’єднання двох чотириполюсників. Перший відповідає пасивній антені, а другий — активному симетрувальному пристрою, що складається з одного малошумівного підсилювача з доданими трансформаторами на вході і виході.Результати. З використанням блок-схеми активної антени, яка розглядається як чотириполюсник, було отримано аналітичні вирази для розрахунку її матриці розсіяння та кореляційної матриці шумових хвиль. Це дозволяє оцінити електричні та шумові параметри симетричної антени з активним симетрувальним пристроєм. Наведено числовий приклад, який дозволяє порівняти параметри двох симетричних активних антен, в одному з котрих використовується активний балун, а в іншому — малошумівний підсилювач із пасивним симетрувальним пристроєм.Висновки. Розроблено блок-схеми пристроїв і отримано розрахункові співвідношення, що дозволяють значно спростити аналіз антен з активними симетрувальними пристроями без залучення будь-якого спеціалізованого програмного забезпечення. Результати можуть виявитися корисними для розрахунку параметрів низькочастотних радіотелескопів, які використовують подібні антени як елементи фазованих антенних решіток.Ключові слова: симетрична антена, активний симетрувальний пристрій, чотириполюсник, матриця розсіяння, кореляційна матриця шумових хвильСтаття надійшла до редакції 02.09.2024Radio phys. radio astron. 2025, 30(1): 041-050БІБЛІОГРАФІЧНИЙ СПИСОК1. Sevick, J., 2001. Transmission Line Transformers. 4th ed. Atlanta, GA, USA: Noble Publishing.2. Konovalenko, A., Sodin, L., Zakharenko, V., Zarka, P., Ulyanov, O., Sidorchuk, M., Stepkin, S., Tokarsky, P., Melnik, V., Kalinichenko, N., Stanislavsky, A., Koliadin, V., Shepelev, V., Dorovskyy, V., Ryabov, V., Koval, A., Bubnov, I., Yerin, S., Gridin, A., Kulishenko, V., Reznichenko, A., Bortsov, V., Lisachenko, V., Reznik, A., Kvasov, G., Mukha, D., Litvinenko, G., Khristenko, A., Shevchenko, V. V., Shevchenko, V. A., Belov, A., Rudavin, E., Vasylieva, I., Miroshnichenko, A., Vasilenko, N., Olyak, M., Mylostna, K., Skoryk, A., Shevtsova, A., Plakhov, M., Kravtsov, I., Volvach, Y.,  Lytvinenko, O., Shevchuk, N., Zhouk, I., Bovkun, V., Antonov, A., Vavriv, D., Vinogradov, V., Kozhin, R., Kravtsov, A., Bulakh, E., Kuzin, A., Vasilyev, A., Brazhenko, A., Vashchishin, R., Pylaev, O., Koshovyy, V., Lozinsky, A., Ivantyshin, O., Rucker, H. O., Panchenko, M., Fischer, G., Lecacheux, A., Denis, L., Coffre, A., Grießmeier, J.-M., Tagger, M., Girard, J., Charrier, D., Briand, C., and Mann, G., 2016. The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT. Exp. Astron., 42(1), pp. 11—48. DOI: 10.1007/s10686-016-9498-x3. Gonzalez-Esparza, A., Carrillo, A., Andrade, E., Jeyakumar, S., Perez-Enriquez, R., and Kurtz, S., 2002. The MEXART interplanetary scintillation array in Mexico. Geofís. Int., 43(1), pp. 61—73. DOI: 10.22201/igeof.00167169p.2004.43.1.2154. Oraizi, H., 2016. Impedance Matching and BALUNs. In: Z.N. Chen, ed. Handbook of Antenna Technologies. Singapore: Springer Nature, pp. 3350—3428.5. Costain, C., Lacey, J., and Roger, R., 1969. Large 22-MHz array for radio astronomy. IEEE Trans. Antennas Propag., 17(2), pp. 162—169. DOI:10.1109/TAP.1969.11394096. Sastry, Ch.V., 1995. The decameter and meter wave radiotelescopes in India and Mauritius. Space Sci. Rev., 72, pp. 629—654. DOI: 10.1007/BF007490087. Abidi, A.A., 2003. General Relations between IP2, IP3, and Offsets in Differential Circuits and the Effects of Feedback, IEEE Trans. Microw. Theory Techn., 51(5), pp. 1610—1612. DOI: 10.1109/TMTT.2003.8101478. Falkovich, I.S., Konovalenko, A.A., Gridin, A.A., Sodin, L.G., Bubnov, I.N., Kalinichenko, N.N., Rashkovskii, S.L., Mukha, D.V., and Tokarsky, P.L., 2011. Wide-band high linearity active dipole for low frequency radio astronomy. Exp. Astron., 32(2), pp. 127—145. DOI: 10.1007/s10686-011-9256-z9. Ellingson, S.W., Taylor, G.B., Craig, J., Hartman, J., Dowell, J., Wolfe, C.N., Clarke, T.E., Hicks, B.C., Kassim, N.E., Ray, P.S., Rickard, L.J., Schinzel, F.K., and Weiler, K.W., 2013. The LWA1 Radio Telescope, IEEE Trans. Antennas Propag., 61(5),pp. 2540—2549. DOI: 10.1109/TAP.2013.224282610. Stewart, K.P., Hicks, B.C., Ray, P.S., Crane, P.C., Kassim, N.E., Bradley, R.F., and Erickson, W.C., 2004. LOFAR antenna development and initial observations of solar bursts. Planet. Space Sci., 52(15), pp. 1351—1355. DOI: 10.1016/j.pss.2004.09.01411. Ellingson, S.W., Simonetti, J.H., and Patterson, C.D., 2007. Design and Evaluation of an Active Antenna for a 29—47 MHz Radio Telescope Array. IEEE Trans. Antennas Propag., 55(3), pp. 826—831. DOI: 10.1109/TAP.2007.89186612. Rosa, G.S., Schuch, N.J., Gomes, N.R., Bergmann, J.R., Echer, E., and Machado, R., 2012. Inexpensive Interferometer for Low Frequency Radio Astronomy. Journal of Communication and Information Systems (JCIS), 27(1). DOI: 10.14209/jcis.2012.513. De Lera Acedo E., Razavi-Ghods, N., Troop, N., Drought, N., and Faulkner, A.J., 2015. SKALA, a log-periodic array antenna for the SKA-low instrument: design, simulations, tests and system considerations. Exp. Astron., 39, pp. 567—594. DOI:10.1007/s10686-015-9439-014. Shaw, R.D., Hay, S.G., and Ranga, Y., 2012. Development of a Low-Noise Active Balun for a Dual-Polarized Planar Connected Array Antenna for ASKAP. In: 2012 Int. Conf. Electromagnetics in Advanced Applications. Cape Town, South Africa,02—07 Sept. 2012. DOI: 10.1109/ICEAA.2012.632866615. Sutinjo, A.T., Colegate, T.M., Wayth, R.B., Hall, P.J., de Lera Acedo, E., Booler, T., Faulkner, A.J., Feng, L., Hurley-Walker, N., Juswardy, B., Padhi, S.K., Razavi-Ghods, N., Sokolowski, M., Tingay, S.J., and Bij de Vaate, J.G., 2015. Characterization of a Low-Frequency Radio Astronomy Prototype Array in Western Australia. IEEE Trans. Antennas Propag., 63(12), pp. 5433—5442. DOI: 10.1109/TAP.2015.248750416. Zarka, P., Denis, L., Tagger, M., Girard, J., Coffre, A., Dumez-Viou, C., Taffoureau, C., Charrier, D., Bondonneau, L., Briand, C., Casoli, F., Cecconi, B., Cognard, I., Corbel, S., Dallier, R., Ferrari, C., Grießmeier, J-M., Loh, A., Martin, L., Pommier, M., Semelin, B., Tasse, C., Theureau, G., Tremou, E., Hellbourg, G., Konovalenko, A., Koopmans, L., Tokarsky, P., Ulyanov, O., Vermeulen, R., and Zakharenko, V., 2020. The low-frequency radio telescope NenuFAR. In: Proc. XXXIIIrd URSI General Assembly and Scientific Symposium. Rome, Italy, 29 August — 5 Sept. 2020, J01-02. [viewed 20.08.2024]. Available from: https://www.ursi.org/proceedings/procGA20/papers/URSIGASS2020SummaryPaperNenuFARnew.pdf17. Tokarsky, P.L., Konovalenko, A.A., Yerin, S.N., and Bubnov, I.N. An Active Antenna Subarray for the Low-Frequency Radio Telescope GURT–Part I: Design and Theoretical Model. IEEE Trans. Antennas Propag., 67(12), pp. 7304—7311. DOI:10.1109/TAP.2019.292784118. Bubnov, I.N., Konovalenko, O.O., Tokarsky, P.L., Korolev, O.M., Yerin, L.O., and Stanislavsky, S.M. 2021. Creation and approbation of a low-frequency radio astronomy antenna for studying objects of the Universe from the farside of the Moon. Radio Phys. Radio Astron., 26(3), pp. 197—210. DOI: https://doi.org/10.15407/19. Stewart, K., Hicks, B., Paravastu, N., Bradley, R., Parashare, C., Erickson, W., Gross, C., Polisensky, E., Crane, P., Ray, P., Kassim, N., and Weiler K., 2005. Recent Progress in Active Antenna Designs for the Long Wavelength Array (LWA), 2005. In: Proc. URSI General Assembly. New Delhi, India, 23—29 Oct. 2005. [viewed  20.08.2024]. Available from: https://www.ursi.org/proceedings/procGA05/pdf/J03-P.15(0981).pdf20. Bradley, R.F., and Parashare, C.R., 2005. Evaluation of the NRL LWA Active Balun Prototype. NRAO NTC-DSL Laboratory Report 01, Rev. A [viewed 20.08.2024]. Available from: https://www.gb.nrao.edu/electronics/edtn/edtn220.pdf21. Korolev, A.M., Zakharenko, V.V., and Ulyanov, O.M., 2016. Radio astronomy ultra-low-noise amplifier for operation at 91 cm wavelength in high RFI environment. Exp. Astron., 41(1—2), pp. 215—221. DOI: https://doi.org/10.1007/s10686-015-9466-x22. Sutinjo, A.T., Ung, D.C.X., and Juswardy, B., 2018. Cold-Source Noise Measurement of a Differential Input Single-Ended Output Low-Noise Amplifier Connected to a Low-Frequency Radio Astronomy Antenna. IEEE Trans. Antennas Propag., 66(10), pp. 5511—5520. DOI: 10.1109/TAP.2018.285428523. Prinsloo, D.S., Maaskant, R., Ivashina, M.V., and Meyer, P., 2014. Mixed-Mode Sensitivity Analysis of a Combined Differential and Common Mode Active Receiving Antenna Providing Near-Hemispherical Field-of-View Coverage. IEEE Trans.Antennas Propag., 32(2), pp. 3951—3961. DOI: 10.1109/TAP.2014.232289624. Dobrowolski, J.A., 2016. Scattering Parameters in RF and Microwave Circuits Analysis and Design. Norwood, MA, USA: Artech House.25. Tokarsky, P.L., 2020. Antenna Analytical Representation by a Two-Port Network. Int. J. Antennas Propag., 2020, id. 2609747. DOI: 10.1155/2020/2609747326. Gupta, K., Garg R., and Chandra, R., 1981. Computer-aided design of microwave circuits. Dedham, MA, USA: Artech House.27. Flux Coupled Balun 1:2. [viewed 20.08.2024]. Available from: https://www.macom.com/products/product-detail/MABA-01105028. RF Flux Coupled Transformer 1:4, E-Series. [viewed 20.08.2024]. Available from: https://www.macom.com/products/product-detail/MABAES003129. Russer, P., and Muller, S., 1990. Noise analysis of linear microwave circuits. Int. J. Numer. Model. El., 3, pp. 287—316. DOI: 10.1002/jnm.166003040830. Pospieszalski, M.W., 2010. Interpreting Transistor Noise. IEEE Microwave Mag., 11(6), pp. 61—69. DOI: 10.1109/MMM.2010.93773331. Tokarsky, P.L., Konovalenko, A.A., and Yerin S.N., 2017. Sensitivity of an Active Antenna Array Element for the Low-Frequency Radio Telescope GURT. IEEE Trans. Antennas Propag., 65(9), pp. 4636—4644. DOI: 10.1109/TAP.2017.273023832. Tokarsky, P.L., Konovalenko, A.A., Yerin, S.N., and Bubnov I.N., 2016. Sensitivity of Active Phased Antenna Array Element of GURT Radio Telescope. Radio Phys. Radio Astron., 21(1), pp. 48—57. DOI: 10.15407/rpra21.01.04833. Hicks, B.C., Paravastu-Dalal, N., Stewart, K.P., Erickson, W.C., Ray, P.S., Kassim, N.E., Burns, S., Clarke, T., Schmitt, H., Craig, J., Hartman, J., and Weiler, K.W., 2012. A wide-band, active antenna system for long wavelength radio astronomy. Publ. Astron. Soc. Pac., 124(920), pp. 1090—1104. DOI: 10.1086/66812134. Tokarsky, P.L., Konovalenko, A.A., and Modelski, J.W., 2023. An Active Ribbon Dipole as an Array Element Prototype for the Lunar Very Low Frequency Radio Telescope. IEEE Access, 11, pp. 75225—75235. DOI: 10.1109/ACCESS.2023.3294694  Видавничий дім «Академперіодика» 2025-03-18 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1462 10.15407/rpra30.01.041 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 30, No 1 (2025); 41 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 30, No 1 (2025); 41 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 30, No 1 (2025); 41 2415-7007 1027-9636 10.15407/rpra30.01 en http://rpra-journal.org.ua/index.php/ra/article/view/1462/pdf Copyright (c) 2025 RADIO PHYSICS AND RADIO ASTRONOMY