SURFACE OSCILLATIONS IN OPEN RESONATORS WITH CURVILINEAR REFLECTORS
Subject and Purpose. The subject of the work is the behavior of "bouncing ball" oscillations and surface oscillations in open resonant systems with curvilinear reflectors embedded in the waveguide transmission line. We seek to determine physical patterns and features of the interaction bet...
Збережено в:
Дата: | 2025 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Видавничий дім «Академперіодика»
2025
|
Теми: | |
Онлайн доступ: | http://rpra-journal.org.ua/index.php/ra/article/view/1464 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Radio physics and radio astronomy |
Репозитарії
Radio physics and radio astronomyРезюме: | Subject and Purpose. The subject of the work is the behavior of "bouncing ball" oscillations and surface oscillations in open resonant systems with curvilinear reflectors embedded in the waveguide transmission line. We seek to determine physical patterns and features of the interaction between volume "bouncing ball" oscillations and surface oscillations in open resonant systems with curvilinear reflectors.Methods and Methodology. Basic quasi-optical techniques were employed. The electric field structures of considered oscillation types were measured using the probe-induced perturbation method. The resonant transmission coefficients of the open oscillating systems and the physical phenomena within them were experimentally studied with the aid of well-known microwave measurement techniques.Results. A hemispherical open resonator (OR) and a mirror-lens resonator (MLR) have been studied to find that surface oscillations in both resonators are excited on the curvilinear surfaces of the reflectors and interact with the "bouncing ball" oscillations under certain conditions. In the hemispherical OR, this interaction occurs when α/2w1 = 0.927, where α is the radius of the curvilinear reflector aperture and w1 is the radius of the fundamental mode field spot on this reflector. In the MLR, the interaction between the fundamental mode oscillation and the surface oscillation localized on the lens surface is observed when α/2w1 = 1.351. Conclusions. The condition of small diffraction loss in the OR is known to be α/2w1 ≥ 1, and the possibility of the excitation of surface oscillations in the OR must always be considered because surface oscillations may mislead the researcher when examining solid dielectric specimens for the electrophysical parameters using the OR method. Thus, it is advisable to hold L/R ≤ 0.73 in the hemispherical OR case and L/F ≤ 0.65 in the MLR case.Keywords: open resonator, mirror-lens resonator, surface oscillations, "bouncing ball" oscillations, resonant transmission coefficient, interaction of oscillationsManuscript submitted 14.11.2024Radio phys. radio astron. 2025, 30(1): 065-073REFERENCES1. Karpisz, T., Salski, B., Koput, P., Krupka, J., and Wojciechowski, M., 2022. Measurement of Uniaxially Anisotropic Dielectrics with a Fabry–Perot Open Resonator in the 20—50 GHz Range. IEEE Microw. Wirel. Compon. Lett., 32(5), pp. 441—443. DOI: https://doi.org/10.1109/LMWC.2022.31559382. Krupka, J., 2021. Microwave Measurements of Electromagnetic Properties of Materials. Materials, 16(17), pp. 1—21. DOI: https://doi.org/10.3390/ma141750973. Elwood, B.D., Grimes, P.K., Kovaca, J., Eibena, M., and Meinersa, G., 2024. Fabry–Perot open resonant cavities for measuring the dielectric parameters of mm-wave optical materials. ArXiv:2411.01058v1 [physics.optics], pp. 1—12. DOI: 10.48550/arXiv.2411.010584. Rahman, R., Taylor, P.C., and Scales, J.A., 2013. A System for Measuring Complex Dielectric Properties of Thin Films at Submillimeter Wavelengths Using an Open Hemispherical Cavity and a Vector Network Analyzer. Rev. Sci. Instrum., 84(8), pp. 083901 (1—10). DOI: https://doi.org/10.1063/1.48168285. Breslavets, A.A., Rong, L., Gang, Z., Voitovich, O.A., Shubny, O.I., Glamazdin, V.V., Natarov, M.P., Rudnev, G.O., Eremenko, Z.E., Prokopenko, A.A., 2022. Hemispherical X Band Microwave Small-Sized Open Resonator for a Wide Range from 1 to 20 Permittivity Characterization of Solid-State Dielectrics. Low Temp. Phys., 48(1), pp. 43—50. DOI: https://doi.org/10.1063/10.00089636. Karpisz, T., Salski, B., Kopyt, P., and Krupka, J., 2019. Measurement of Dielectrics from 20 to 50 GHz with a Fabry–Pérot Open Resonator. IEEE Trans. MTT., 67(5), pp. 1901—1908. DOI: https://doi.org/10.1109/TMTT.2019.29055497. Kayro, N.S., Teterina, D.D., Badin, A.V., and Bilinskii, K.V., 2021. Automated system based on an open resonator for measuring the electrophysical parameters of sheet dielectrics. J. Phys.: Conf. Ser., 1989(1), pp. 012020 (1—5). DOI: https://doi.org/10.1088/1742-6596/1989/1/0120208. Choi, J.J., and Seo, W.B., 2001. Measurements of Dielectric Properties at Ka-Band Using a Fabry-Perot Hemispherical Open Resonator. Int. J. Infrared Milli., 22(12), pp. 1837—1851. DOI: https://doi.org/10.1023/A:10150838195669. Dudorov, S.N., Lioubtchenko, D.V., Mallat, J.A., and Räisänen, A.V., 2005. Differential Open Resonator Method for Permittivity Measurements of Thin Dielectric Film on Substrate. IEEE Trans. Instrum. Meas., 54(5), pp. 1916—1920. DOI: https://doi.org/10.1109/TIM.2005.85335210. Soohoo, R.F., 1963. Nonconfocal multimode resonators for masers. Proc. IEEE, 51(1), pp. 70—75. DOI: https://doi.org/10.1109/PROC.1963.166111. Androsov, V.P., and Kuz’michev, I.K., 1987. Influence on the efficiency of excitation of the open resonator of its parameters and connection with the waveguide. Kharkiv, Institute for Radiophysics and Electronics of AS USSR, Preprint. No. 354, 28 p.12. Kuz’michev, I.K., 1998. Experimental detection and analysis of the morse critical point of open electrodynamical structure involved in diffraction radiation oscillator. In: Third Int. Kharkov Symp. "Physics and Engineering of Millimeter and Submillimeter Waves" (MSMW’98): proc. Kharkiv, Ukraine, 15—17 Sept. 1998, 1, pp. 227—229. DOI: https://doi.org/10.1109/MSMW.1998.75896313. Svishchev, Yu.V., Tuchkin, Yu.A., and Shestopalov, V.P., 1990. Resonance mode tuning in an open resonator with spherical mirrors. Reports of the USSR Academy of Sciences, 312(5), pp. 1111—1114.14. Shestopalov, V.P., 1992. Morse critical points of dispersion equations. Kyiv, Ukraine: Naukova Dumka Publ., pp. 42—52.15. Valitov, R.A. ed., 1969. Submillimeter Wave Technique. Moskow, USSR: Sovetskoe radio Publ., pp. 219–229.16. Frait, Z., and Patton, C.E., 1980. Simple Analytic Method for Microwave Cavity Q Determination. Rev. Sci. Instrum., 51(8), pp. 1092—1094. DOI: https://doi.org/10.1063/1.113636817. Kuzmichev, I.K., 1997. An effi cient method of controlling the coupling between waveguide and open resonator. Telecommunications and Radio Engineering, 51(11—12), pp. 113—118.18. Vertiy, A.A., and Leonov, Yu.I., 1976. Study of the infl uence of probe dimensions on the nature of measured fi eld distributions in open resonant systems. Izv. vuzov. Radioelektronika, 199(2), pp. 105—107.19. Tarasov, L.V., 1981. Physics of processes in coherent optical radiation generators. Moskow, USSR: Radio i Svyaz’ Publ., pp. 197—212.20. Kuzmichev, I.K., 1995. Mirror-lens open resonator. In: Propagation of radio waves in the millimeter and submillimeter ranges. Kharkiv, Ukraine: IRE of NAS Ukraine, pp. 121—131.21. Androsov, V.P., Veliev, E.I., and Vertii, A.A., 1983. Polarization and spectral characteristics of open resonators with internal inhomogeneities. Radiophys. Quantum Electron., 26(3), pp. 234—242. DOI: https://doi.org/10.1007/BF0104509922. Gloge, D., 1964. General method for calculating optical resonators and periodic lens systems. In: Proc. Quasi‐Optics Symposium. New York, USA, 8—10 June 1964. Moskow, USSR: Mir Publ., pp. 280—314. |
---|