SURFACE OSCILLATIONS IN OPEN RESONATORS WITH CURVILINEAR REFLECTORS

Subject and Purpose. The subject of the work is the behavior of "bouncing ball" oscillations and surface oscillations in open resonant systems with curvilinear reflectors embedded in the waveguide transmission line. We seek to determine physical patterns and features of the interaction bet...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2025
Автори: Kuzmychov, I. K., Lukash, O. S., Senkevych, O. B., Gribovsky, O. V.
Формат: Стаття
Мова:English
Опубліковано: Видавничий дім «Академперіодика» 2025
Теми:
Онлайн доступ:http://rpra-journal.org.ua/index.php/ra/article/view/1464
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Radio physics and radio astronomy

Репозитарії

Radio physics and radio astronomy
id oai:ri.kharkov.ua:article-1464
record_format ojs
institution Radio physics and radio astronomy
baseUrl_str
datestamp_date 2025-03-20T10:28:10Z
collection OJS
language English
topic open resonator
mirror-lens resonator
surface oscillations
"bouncing ball" oscillations
resonant transmission coefficient
interaction of oscillations
spellingShingle open resonator
mirror-lens resonator
surface oscillations
"bouncing ball" oscillations
resonant transmission coefficient
interaction of oscillations
Kuzmychov, I. K.
Lukash, O. S.
Senkevych, O. B.
Gribovsky, O. V.
SURFACE OSCILLATIONS IN OPEN RESONATORS WITH CURVILINEAR REFLECTORS
topic_facet open resonator
mirror-lens resonator
surface oscillations
"bouncing ball" oscillations
resonant transmission coefficient
interaction of oscillations
відкритий резонатор
дзеркально-лінзовий резонатор
поверхневі коливання
коливання «стрибаючий м’ячик»
резонансний коефіцієнт передачі
взаємодія коливань
format Article
author Kuzmychov, I. K.
Lukash, O. S.
Senkevych, O. B.
Gribovsky, O. V.
author_facet Kuzmychov, I. K.
Lukash, O. S.
Senkevych, O. B.
Gribovsky, O. V.
author_sort Kuzmychov, I. K.
title SURFACE OSCILLATIONS IN OPEN RESONATORS WITH CURVILINEAR REFLECTORS
title_short SURFACE OSCILLATIONS IN OPEN RESONATORS WITH CURVILINEAR REFLECTORS
title_full SURFACE OSCILLATIONS IN OPEN RESONATORS WITH CURVILINEAR REFLECTORS
title_fullStr SURFACE OSCILLATIONS IN OPEN RESONATORS WITH CURVILINEAR REFLECTORS
title_full_unstemmed SURFACE OSCILLATIONS IN OPEN RESONATORS WITH CURVILINEAR REFLECTORS
title_sort surface oscillations in open resonators with curvilinear reflectors
title_alt ПОВЕРХНЕВІ КОЛИВАННЯ У ВІДКРИТИХ РЕЗОНАТОРАХ З КРИВОЛІНІЙНИМИ ВІДБИВАЧАМИ
description Subject and Purpose. The subject of the work is the behavior of "bouncing ball" oscillations and surface oscillations in open resonant systems with curvilinear reflectors embedded in the waveguide transmission line. We seek to determine physical patterns and features of the interaction between volume "bouncing ball" oscillations and surface oscillations in open resonant systems with curvilinear reflectors.Methods and Methodology. Basic quasi-optical techniques were employed. The electric field structures of considered oscillation types were measured using the probe-induced perturbation method. The resonant transmission coefficients of the open oscillating systems and the physical phenomena within them were experimentally studied with the aid of well-known microwave measurement techniques.Results. A hemispherical open resonator (OR) and a mirror-lens resonator (MLR) have been studied to find that surface oscillations in both resonators are excited on the curvilinear surfaces of the reflectors and interact with the "bouncing ball" oscillations under certain conditions. In the hemispherical OR, this interaction occurs when α/2w1 =  0.927, where α is the radius of the curvilinear reflector aperture and w1 is the radius of the fundamental mode field spot on this reflector. In the MLR, the interaction between the fundamental mode oscillation and the surface oscillation localized on the lens surface is observed when α/2w1 = 1.351. Conclusions. The condition of small diffraction loss in the OR is known to be α/2w1 ≥ 1, and the possibility of the excitation of surface oscillations in the OR must always be considered because surface oscillations may mislead the researcher when examining solid dielectric specimens for the electrophysical parameters using the OR method. Thus, it is advisable to hold L/R ≤ 0.73 in the hemispherical OR case and L/F ≤ 0.65 in the MLR case.Keywords: open resonator, mirror-lens resonator, surface oscillations, "bouncing ball" oscillations, resonant transmission coefficient, interaction of oscillationsManuscript submitted 14.11.2024Radio phys. radio astron. 2025, 30(1): 065-073REFERENCES1. Karpisz, T., Salski, B., Koput, P., Krupka, J., and Wojciechowski, M., 2022. Measurement of Uniaxially Anisotropic Dielectrics with a Fabry–Perot Open Resonator in the 20—50 GHz Range. IEEE Microw. Wirel. Compon. Lett., 32(5), pp. 441—443. DOI: https://doi.org/10.1109/LMWC.2022.31559382. Krupka, J., 2021. Microwave Measurements of Electromagnetic Properties of Materials. Materials, 16(17), pp. 1—21. DOI: https://doi.org/10.3390/ma141750973. Elwood, B.D., Grimes, P.K., Kovaca, J., Eibena, M., and Meinersa, G., 2024. Fabry–Perot open resonant cavities for measuring the dielectric parameters of mm-wave optical materials. ArXiv:2411.01058v1 [physics.optics], pp. 1—12. DOI: 10.48550/arXiv.2411.010584. Rahman, R., Taylor, P.C., and Scales, J.A., 2013. A System for Measuring Complex Dielectric Properties of Thin Films at Submillimeter Wavelengths Using an Open Hemispherical Cavity and a Vector Network Analyzer. Rev. Sci. Instrum., 84(8), pp. 083901 (1—10). DOI: https://doi.org/10.1063/1.48168285. Breslavets, A.A., Rong, L., Gang, Z., Voitovich, O.A., Shubny, O.I., Glamazdin, V.V., Natarov, M.P., Rudnev, G.O., Eremenko, Z.E., Prokopenko, A.A., 2022. Hemispherical X Band Microwave Small-Sized Open Resonator for a Wide Range from 1 to 20 Permittivity Characterization of Solid-State Dielectrics. Low Temp. Phys., 48(1), pp. 43—50. DOI: https://doi.org/10.1063/10.00089636. Karpisz, T., Salski, B., Kopyt, P., and Krupka, J., 2019. Measurement of Dielectrics from 20 to 50 GHz with a Fabry–Pérot Open Resonator. IEEE Trans. MTT., 67(5), pp. 1901—1908. DOI: https://doi.org/10.1109/TMTT.2019.29055497. Kayro, N.S., Teterina, D.D., Badin, A.V., and Bilinskii, K.V., 2021. Automated system based on an open resonator for measuring the electrophysical parameters of sheet dielectrics. J. Phys.: Conf. Ser., 1989(1), pp. 012020 (1—5). DOI: https://doi.org/10.1088/1742-6596/1989/1/0120208. Choi, J.J., and Seo, W.B., 2001. Measurements of Dielectric Properties at Ka-Band Using a Fabry-Perot Hemispherical Open Resonator. Int. J. Infrared Milli., 22(12), pp. 1837—1851. DOI: https://doi.org/10.1023/A:10150838195669. Dudorov, S.N., Lioubtchenko, D.V., Mallat, J.A., and Räisänen, A.V., 2005. Differential Open Resonator Method for Permittivity Measurements of Thin Dielectric Film on Substrate. IEEE Trans. Instrum. Meas., 54(5), pp. 1916—1920. DOI: https://doi.org/10.1109/TIM.2005.85335210. Soohoo, R.F., 1963. Nonconfocal multimode resonators for masers. Proc. IEEE, 51(1), pp. 70—75. DOI: https://doi.org/10.1109/PROC.1963.166111. Androsov, V.P., and Kuz’michev, I.K., 1987. Influence on the efficiency of excitation of the open resonator of its parameters and connection with the waveguide. Kharkiv, Institute for Radiophysics and Electronics of AS USSR, Preprint. No. 354, 28 p.12. Kuz’michev, I.K., 1998. Experimental detection and analysis of the morse critical point of open electrodynamical structure involved in diffraction radiation oscillator. In: Third Int. Kharkov Symp. "Physics and Engineering of Millimeter and Submillimeter Waves" (MSMW’98): proc. Kharkiv, Ukraine, 15—17 Sept. 1998, 1, pp. 227—229. DOI: https://doi.org/10.1109/MSMW.1998.75896313. Svishchev, Yu.V., Tuchkin, Yu.A., and Shestopalov, V.P., 1990. Resonance mode tuning in an open resonator with spherical mirrors. Reports of the USSR Academy of Sciences, 312(5), pp. 1111—1114.14. Shestopalov, V.P., 1992. Morse critical points of dispersion equations. Kyiv, Ukraine: Naukova Dumka Publ., pp. 42—52.15. Valitov, R.A. ed., 1969. Submillimeter Wave Technique. Moskow, USSR: Sovetskoe radio Publ., pp. 219–229.16. Frait, Z., and Patton, C.E., 1980. Simple Analytic Method for Microwave Cavity Q Determination. Rev. Sci. Instrum., 51(8), pp. 1092—1094. DOI: https://doi.org/10.1063/1.113636817. Kuzmichev, I.K., 1997. An effi cient method of controlling the coupling between waveguide and open resonator. Telecommunications and Radio Engineering, 51(11—12), pp. 113—118.18. Vertiy, A.A., and Leonov, Yu.I., 1976. Study of the infl uence of probe dimensions on the nature of measured fi eld distributions in open resonant systems. Izv. vuzov. Radioelektronika, 199(2), pp. 105—107.19. Tarasov, L.V., 1981. Physics of processes in coherent optical radiation generators. Moskow, USSR: Radio i Svyaz’ Publ., pp. 197—212.20. Kuzmichev, I.K., 1995. Mirror-lens open resonator. In: Propagation of radio waves in the millimeter and submillimeter ranges. Kharkiv, Ukraine: IRE of NAS Ukraine, pp. 121—131.21. Androsov, V.P., Veliev, E.I., and Vertii, A.A., 1983. Polarization and spectral characteristics of open resonators with internal inhomogeneities. Radiophys. Quantum Electron., 26(3), pp. 234—242. DOI: https://doi.org/10.1007/BF0104509922. Gloge, D., 1964. General method for calculating optical resonators and periodic lens systems. In: Proc. Quasi‐Optics Symposium. New York, USA, 8—10 June 1964. Moskow, USSR: Mir Publ., pp. 280—314.
publisher Видавничий дім «Академперіодика»
publishDate 2025
url http://rpra-journal.org.ua/index.php/ra/article/view/1464
work_keys_str_mv AT kuzmychovik surfaceoscillationsinopenresonatorswithcurvilinearreflectors
AT lukashos surfaceoscillationsinopenresonatorswithcurvilinearreflectors
AT senkevychob surfaceoscillationsinopenresonatorswithcurvilinearreflectors
AT gribovskyov surfaceoscillationsinopenresonatorswithcurvilinearreflectors
AT kuzmychovik poverhnevíkolivannâuvídkritihrezonatorahzkrivolíníjnimivídbivačami
AT lukashos poverhnevíkolivannâuvídkritihrezonatorahzkrivolíníjnimivídbivačami
AT senkevychob poverhnevíkolivannâuvídkritihrezonatorahzkrivolíníjnimivídbivačami
AT gribovskyov poverhnevíkolivannâuvídkritihrezonatorahzkrivolíníjnimivídbivačami
first_indexed 2025-03-19T04:14:32Z
last_indexed 2025-03-21T04:05:38Z
_version_ 1827175072694009856
spelling oai:ri.kharkov.ua:article-14642025-03-20T10:28:10Z SURFACE OSCILLATIONS IN OPEN RESONATORS WITH CURVILINEAR REFLECTORS ПОВЕРХНЕВІ КОЛИВАННЯ У ВІДКРИТИХ РЕЗОНАТОРАХ З КРИВОЛІНІЙНИМИ ВІДБИВАЧАМИ Kuzmychov, I. K. Lukash, O. S. Senkevych, O. B. Gribovsky, O. V. open resonator; mirror-lens resonator; surface oscillations; "bouncing ball" oscillations; resonant transmission coefficient; interaction of oscillations відкритий резонатор; дзеркально-лінзовий резонатор; поверхневі коливання; коливання «стрибаючий м’ячик»; резонансний коефіцієнт передачі; взаємодія коливань Subject and Purpose. The subject of the work is the behavior of "bouncing ball" oscillations and surface oscillations in open resonant systems with curvilinear reflectors embedded in the waveguide transmission line. We seek to determine physical patterns and features of the interaction between volume "bouncing ball" oscillations and surface oscillations in open resonant systems with curvilinear reflectors.Methods and Methodology. Basic quasi-optical techniques were employed. The electric field structures of considered oscillation types were measured using the probe-induced perturbation method. The resonant transmission coefficients of the open oscillating systems and the physical phenomena within them were experimentally studied with the aid of well-known microwave measurement techniques.Results. A hemispherical open resonator (OR) and a mirror-lens resonator (MLR) have been studied to find that surface oscillations in both resonators are excited on the curvilinear surfaces of the reflectors and interact with the "bouncing ball" oscillations under certain conditions. In the hemispherical OR, this interaction occurs when α/2w1 =  0.927, where α is the radius of the curvilinear reflector aperture and w1 is the radius of the fundamental mode field spot on this reflector. In the MLR, the interaction between the fundamental mode oscillation and the surface oscillation localized on the lens surface is observed when α/2w1 = 1.351. Conclusions. The condition of small diffraction loss in the OR is known to be α/2w1 ≥ 1, and the possibility of the excitation of surface oscillations in the OR must always be considered because surface oscillations may mislead the researcher when examining solid dielectric specimens for the electrophysical parameters using the OR method. Thus, it is advisable to hold L/R ≤ 0.73 in the hemispherical OR case and L/F ≤ 0.65 in the MLR case.Keywords: open resonator, mirror-lens resonator, surface oscillations, "bouncing ball" oscillations, resonant transmission coefficient, interaction of oscillationsManuscript submitted 14.11.2024Radio phys. radio astron. 2025, 30(1): 065-073REFERENCES1. Karpisz, T., Salski, B., Koput, P., Krupka, J., and Wojciechowski, M., 2022. Measurement of Uniaxially Anisotropic Dielectrics with a Fabry–Perot Open Resonator in the 20—50 GHz Range. IEEE Microw. Wirel. Compon. Lett., 32(5), pp. 441—443. DOI: https://doi.org/10.1109/LMWC.2022.31559382. Krupka, J., 2021. Microwave Measurements of Electromagnetic Properties of Materials. Materials, 16(17), pp. 1—21. DOI: https://doi.org/10.3390/ma141750973. Elwood, B.D., Grimes, P.K., Kovaca, J., Eibena, M., and Meinersa, G., 2024. Fabry–Perot open resonant cavities for measuring the dielectric parameters of mm-wave optical materials. ArXiv:2411.01058v1 [physics.optics], pp. 1—12. DOI: 10.48550/arXiv.2411.010584. Rahman, R., Taylor, P.C., and Scales, J.A., 2013. A System for Measuring Complex Dielectric Properties of Thin Films at Submillimeter Wavelengths Using an Open Hemispherical Cavity and a Vector Network Analyzer. Rev. Sci. Instrum., 84(8), pp. 083901 (1—10). DOI: https://doi.org/10.1063/1.48168285. Breslavets, A.A., Rong, L., Gang, Z., Voitovich, O.A., Shubny, O.I., Glamazdin, V.V., Natarov, M.P., Rudnev, G.O., Eremenko, Z.E., Prokopenko, A.A., 2022. Hemispherical X Band Microwave Small-Sized Open Resonator for a Wide Range from 1 to 20 Permittivity Characterization of Solid-State Dielectrics. Low Temp. Phys., 48(1), pp. 43—50. DOI: https://doi.org/10.1063/10.00089636. Karpisz, T., Salski, B., Kopyt, P., and Krupka, J., 2019. Measurement of Dielectrics from 20 to 50 GHz with a Fabry–Pérot Open Resonator. IEEE Trans. MTT., 67(5), pp. 1901—1908. DOI: https://doi.org/10.1109/TMTT.2019.29055497. Kayro, N.S., Teterina, D.D., Badin, A.V., and Bilinskii, K.V., 2021. Automated system based on an open resonator for measuring the electrophysical parameters of sheet dielectrics. J. Phys.: Conf. Ser., 1989(1), pp. 012020 (1—5). DOI: https://doi.org/10.1088/1742-6596/1989/1/0120208. Choi, J.J., and Seo, W.B., 2001. Measurements of Dielectric Properties at Ka-Band Using a Fabry-Perot Hemispherical Open Resonator. Int. J. Infrared Milli., 22(12), pp. 1837—1851. DOI: https://doi.org/10.1023/A:10150838195669. Dudorov, S.N., Lioubtchenko, D.V., Mallat, J.A., and Räisänen, A.V., 2005. Differential Open Resonator Method for Permittivity Measurements of Thin Dielectric Film on Substrate. IEEE Trans. Instrum. Meas., 54(5), pp. 1916—1920. DOI: https://doi.org/10.1109/TIM.2005.85335210. Soohoo, R.F., 1963. Nonconfocal multimode resonators for masers. Proc. IEEE, 51(1), pp. 70—75. DOI: https://doi.org/10.1109/PROC.1963.166111. Androsov, V.P., and Kuz’michev, I.K., 1987. Influence on the efficiency of excitation of the open resonator of its parameters and connection with the waveguide. Kharkiv, Institute for Radiophysics and Electronics of AS USSR, Preprint. No. 354, 28 p.12. Kuz’michev, I.K., 1998. Experimental detection and analysis of the morse critical point of open electrodynamical structure involved in diffraction radiation oscillator. In: Third Int. Kharkov Symp. "Physics and Engineering of Millimeter and Submillimeter Waves" (MSMW’98): proc. Kharkiv, Ukraine, 15—17 Sept. 1998, 1, pp. 227—229. DOI: https://doi.org/10.1109/MSMW.1998.75896313. Svishchev, Yu.V., Tuchkin, Yu.A., and Shestopalov, V.P., 1990. Resonance mode tuning in an open resonator with spherical mirrors. Reports of the USSR Academy of Sciences, 312(5), pp. 1111—1114.14. Shestopalov, V.P., 1992. Morse critical points of dispersion equations. Kyiv, Ukraine: Naukova Dumka Publ., pp. 42—52.15. Valitov, R.A. ed., 1969. Submillimeter Wave Technique. Moskow, USSR: Sovetskoe radio Publ., pp. 219–229.16. Frait, Z., and Patton, C.E., 1980. Simple Analytic Method for Microwave Cavity Q Determination. Rev. Sci. Instrum., 51(8), pp. 1092—1094. DOI: https://doi.org/10.1063/1.113636817. Kuzmichev, I.K., 1997. An effi cient method of controlling the coupling between waveguide and open resonator. Telecommunications and Radio Engineering, 51(11—12), pp. 113—118.18. Vertiy, A.A., and Leonov, Yu.I., 1976. Study of the infl uence of probe dimensions on the nature of measured fi eld distributions in open resonant systems. Izv. vuzov. Radioelektronika, 199(2), pp. 105—107.19. Tarasov, L.V., 1981. Physics of processes in coherent optical radiation generators. Moskow, USSR: Radio i Svyaz’ Publ., pp. 197—212.20. Kuzmichev, I.K., 1995. Mirror-lens open resonator. In: Propagation of radio waves in the millimeter and submillimeter ranges. Kharkiv, Ukraine: IRE of NAS Ukraine, pp. 121—131.21. Androsov, V.P., Veliev, E.I., and Vertii, A.A., 1983. Polarization and spectral characteristics of open resonators with internal inhomogeneities. Radiophys. Quantum Electron., 26(3), pp. 234—242. DOI: https://doi.org/10.1007/BF0104509922. Gloge, D., 1964. General method for calculating optical resonators and periodic lens systems. In: Proc. Quasi‐Optics Symposium. New York, USA, 8—10 June 1964. Moskow, USSR: Mir Publ., pp. 280—314. Предмет і мета роботи. Предметом роботи є поведінка коливання типу «стрибаючий м’ячик» та поверхневих коливань у відкритих резонансних системах з криволінійними відбивачами, які включені у хвилевідну лінію передачі. Метою роботи є встановлення фізичних особливостей і закономірностей взаємодії об’ємних коливань типу «стрибаючий м’ячик» та поверхневих коливань у відкритих резонансних системах з криволінійними відбивачами.Методи та методологія. Для вирішення поставлених у роботі завдань використано основні методи квазіоптики: для вимірювання структур електричних полів розглянутих типів коливань було застосовано метод пробного тіла; в експериментальних дослідженнях резонансних коефіцієнтів передачі відкритих коливальних систем і фізичних явищ, що в них відбуваються, використовувалися добре відомі методи НВЧ-вимірювань.Результати. У роботі розглянуто напівсферичний відкритий резонатор (ВР) та дзеркально-лінзовий резонатор (ДЛР). Виявлено, що на криволінійних поверхнях відбивачів обох типів резонаторів можуть збуджуватися поверхневі коливання, які за певних умов взаємодіють із коливанням резонатора «стрибаючий м’ячик». У напівсферичному ВР ця взаємодія має місце за умови α/2w1 = 0.927 (α — радіус апертури криволінійного відбивача, w1 — радіус плями поля основного типу коливань на цьому відбивачі). У ДЛР взаємодія основного типу коливань з поверхневим коливанням, локалізованим на поверхні лінзи, відбувається при α/2w1 = 1.351.Висновок. Відомо, що умови малості дифракційних втрат для ВР визначаються умовою α/2w1 ≥ 1. З огляду на це необхідно враховувати можливість збудження в резонаторі поверхневих коливань, які здатні призвести до невірних результатів при вимірюванні методом ВР електрофізичних параметрів твердих діелектриків. Тому дослідження доцільно проводити при L/R ≤ 0.73 у разі застосування ВР напівсферичної геометрії. Якщо ж використовується ДЛР, то зразки бажано досліджувати за умови L/F ≤ 0.65.Ключові слова: відкритий резонатор, дзеркально-лінзовий резонатор, поверхневі коливання, коливання «стрибаючий м’ячик», резонансний коефіцієнт передачі, взаємодія коливаньСтаття надійшла до редакції 14.11.2024Radio phys. radio astron. 2025, 30(1): 065-073БІБЛІОГРАФІЧНИЙ СПИСОК1. Karpisz, T., Salski, B., Koput, P., Krupka, J., and Wojciechowski, M., 2022. Measurement of Uniaxially Anisotropic Dielectrics with a Fabry–Perot Open Resonator in the 20—50 GHz Range. IEEE Microw. Wirel. Compon. Lett., 32(5), pp. 441—443. DOI: 10.1109/LMWC.2022.31559382. Krupka, J., 2021. Microwave Measurements of Electromagnetic Properties of Materials. Materials, 16(17), pp. 1—21. DOI: 10.3390/ma141750973. Elwood, B.D., Grimes, P.K., Kovaca, J., Eibena, M., and Meinersa, G., 2024. Fabry–Perot open resonant cavities for measuring the dielectric parameters of mm-wave optical materials. ArXiv:2411.01058v1 [physics.optics], pp. 1—12. DOI: 10.48550/arXiv.2411.010584. Rahman, R., Taylor, P.C., and Scales, J.A., 2013. A System for Measuring Complex Dielectric Properties of Thin Films at Submillimeter Wavelengths Using an Open Hemispherical Cavity and a Vector Network Analyzer. Rev. Sci. Instrum., 84(8), pp. 083901 (1—10). DOI: 10.1063/1.48168285. Breslavets, A.A., Rong, L., Gang, Z., Voitovich, O.A., Shubny, O.I., Glamazdin, V.V., Natarov, M.P., Rudnev, G.O., Eremenko, Z.E., Prokopenko, A.A., 2022. Hemispherical X Band Microwave Small-Sized Open Resonator for a Wide Range from 1 to 20 Permittivity Characterization of Solid-State Dielectrics. Low Temp. Phys., 48(1), pp. 43—50. DOI: 10.1063/10.00089636. Karpisz, T., Salski, B., Kopyt, P., and Krupka, J., 2019. Measurement of Dielectrics from 20 to 50 GHz with a Fabry–Pérot Open Resonator. IEEE Trans. MTT., 67(5), pp. 1901—1908. DOI: 10.1109/TMTT.2019.29055497. Kayro, N.S., Teterina, D.D., Badin, A.V., and Bilinskii, K.V., 2021. Automated system based on an open resonator for measuring the electrophysical parameters of sheet dielectrics. J. Phys.: Conf. Ser., 1989(1), pp. 012020 (1—5). DOI: 10.1088/1742-6596/1989/1/0120208. Choi, J.J., and Seo, W.B., 2001. Measurements of Dielectric Properties at Ka-Band Using a Fabry-Perot Hemispherical Open Resonator. Int. J. Infrared Milli., 22(12), pp. 1837—1851. DOI: 10.1023/A:10150838195669. Dudorov, S.N., Lioubtchenko, D.V., Mallat, J.A., and Räisänen, A.V., 2005. Differential Open Resonator Method for Permittivity Measurements of Thin Dielectric Film on Substrate. IEEE Trans. Instrum. Meas., 54(5), pp. 1916—1920. DOI: 10.1109/TIM.2005.85335210. Soohoo, R.F., 1963. Nonconfocal multimode resonators for masers. Proc. IEEE, 51(1), pp. 70—75. DOI: 10.1109/PROC. 1963.166111. Androsov, V.P., and Kuz’michev, I.K., 1987. Influence on the efficiency of excitation of the open resonator of its parameters and connection with the waveguide. Kharkiv, Institute for Radiophysics and Electronics of AS USSR, Preprint. No. 354, 28 p.12. Kuz’michev, I.K., 1998. Experimental detection and analysis of the morse critical point of open electrodynamical structure involved in diffraction radiation oscillator. In: Third Int. Kharkov Symp. "Physics and Engineering of Millimeter and Submillimeter Waves" (MSMW’98): proc. Kharkiv, Ukraine, 15—17 Sept. 1998, 1, pp. 227—229. DOI: 10.1109/MSMW.1998.758 96313. Svishchev, Yu.V., Tuchkin, Yu.A., and Shestopalov, V.P., 1990. Resonance mode tuning in an open resonator with spherical mirrors. Reports of the USSR Academy of Sciences, 312(5), pp. 1111—1114.14. Shestopalov, V.P., 1992. Morse critical points of dispersion equations. Kyiv, Ukraine: Naukova Dumka Publ., pp. 42—52.15. Valitov, R.A. ed., 1969. Submillimeter Wave Technique. Moskow, USSR: Sovetskoe radio Publ., pp. 219–229.16. Frait, Z., and Patton, C.E., 1980. Simple Analytic Method for Microwave Cavity Q Determination. Rev. Sci. Instrum., 51(8), pp. 1092—1094. DOI: 10.1063/1.113636817. Kuzmichev, I.K., 1997. An effi cient method of controlling the coupling between waveguide and open resonator. Telecommunications and Radio Engineering, 51(11—12), pp. 113—118.18. Vertiy, A.A., and Leonov, Yu.I., 1976. Study of the infl uence of probe dimensions on the nature of measured fi eld distributions in open resonant systems. Izv. vuzov. Radioelektronika, 199(2), pp. 105—107.19. Tarasov, L.V., 1981. Physics of processes in coherent optical radiation generators. Moskow, USSR: Radio i Svyaz’ Publ., pp. 197—212.20. Kuzmichev, I.K., 1995. Mirror-lens open resonator. In: Propagation of radio waves in the millimeter and submillimeter ranges. Kharkiv, Ukraine: IRE of NAS Ukraine, pp. 121—131.21. Androsov, V.P., Veliev, E.I., and Vertii, A.A., 1983. Polarization and spectral characteristics of open resonators with internal inhomogeneities. Radiophys. Quantum Electron., 26(3), pp. 234—242. DOI: 10.1007/BF0104509922. Gloge, D., 1964. General method for calculating optical resonators and periodic lens systems. In: Proc. Quasi‐Optics Symposium. New York, USA, 8—10 June 1964. Moskow, USSR: Mir Publ., pp. 280—314. Видавничий дім «Академперіодика» 2025-03-18 Article Article http://rpra-journal.org.ua/index.php/ra/article/view/1464 10.15407/rpra30.01.065 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 30, No 1 (2025); 65 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 30, No 1 (2025); 65 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 30, No 1 (2025); 65 2415-7007 1027-9636 10.15407/rpra30.01 en Copyright (c) 2025 RADIO PHYSICS AND RADIO ASTRONOMY