MODELING OF RESONANCE EFFECTS IN ONE-DIMENSIONAL PERIODIC DIFFRACTION GRATINGS CONTAINING GRAPHENE STRIPS Part 1. MATHEMATICAL JUSTIFICATION OF THE SPECTRAL METHOD

Subject and Purpose. This paper presents a theoretical study of the interaction between monochromatic electromagnetic radiation and a one-dimensional periodic strip grating. The grating consists of periodically alternating perfectly conducting and graphene strips located at the boundary of a planar...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2025
Автори: Poyedinchuk, A. Ye., Melezhik, P. N., Brovenko, A. V., Khutoryan, E. M., Senkevych, O. B., Yashina, N. P.
Формат: Стаття
Мова:English
Опубліковано: Видавничий дім «Академперіодика» 2025
Теми:
Онлайн доступ:http://rpra-journal.org.ua/index.php/ra/article/view/1473
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Radio physics and radio astronomy

Репозитарії

Radio physics and radio astronomy
id oai:ri.kharkov.ua:article-1473
record_format ojs
institution Radio physics and radio astronomy
baseUrl_str
datestamp_date 2025-09-16T09:06:09Z
collection OJS
language English
topic graphene
one-dimensional periodic diffraction strip grating
compact operator
resonance
Hilbert space
surface conductivity
spellingShingle graphene
one-dimensional periodic diffraction strip grating
compact operator
resonance
Hilbert space
surface conductivity
Poyedinchuk, A. Ye.
Melezhik, P. N.
Brovenko, A. V.
Khutoryan, E. M.
Senkevych, O. B.
Yashina, N. P.
MODELING OF RESONANCE EFFECTS IN ONE-DIMENSIONAL PERIODIC DIFFRACTION GRATINGS CONTAINING GRAPHENE STRIPS Part 1. MATHEMATICAL JUSTIFICATION OF THE SPECTRAL METHOD
topic_facet graphene
one-dimensional periodic diffraction strip grating
compact operator
resonance
Hilbert space
surface conductivity

format Article
author Poyedinchuk, A. Ye.
Melezhik, P. N.
Brovenko, A. V.
Khutoryan, E. M.
Senkevych, O. B.
Yashina, N. P.
author_facet Poyedinchuk, A. Ye.
Melezhik, P. N.
Brovenko, A. V.
Khutoryan, E. M.
Senkevych, O. B.
Yashina, N. P.
author_sort Poyedinchuk, A. Ye.
title MODELING OF RESONANCE EFFECTS IN ONE-DIMENSIONAL PERIODIC DIFFRACTION GRATINGS CONTAINING GRAPHENE STRIPS Part 1. MATHEMATICAL JUSTIFICATION OF THE SPECTRAL METHOD
title_short MODELING OF RESONANCE EFFECTS IN ONE-DIMENSIONAL PERIODIC DIFFRACTION GRATINGS CONTAINING GRAPHENE STRIPS Part 1. MATHEMATICAL JUSTIFICATION OF THE SPECTRAL METHOD
title_full MODELING OF RESONANCE EFFECTS IN ONE-DIMENSIONAL PERIODIC DIFFRACTION GRATINGS CONTAINING GRAPHENE STRIPS Part 1. MATHEMATICAL JUSTIFICATION OF THE SPECTRAL METHOD
title_fullStr MODELING OF RESONANCE EFFECTS IN ONE-DIMENSIONAL PERIODIC DIFFRACTION GRATINGS CONTAINING GRAPHENE STRIPS Part 1. MATHEMATICAL JUSTIFICATION OF THE SPECTRAL METHOD
title_full_unstemmed MODELING OF RESONANCE EFFECTS IN ONE-DIMENSIONAL PERIODIC DIFFRACTION GRATINGS CONTAINING GRAPHENE STRIPS Part 1. MATHEMATICAL JUSTIFICATION OF THE SPECTRAL METHOD
title_sort modeling of resonance effects in one-dimensional periodic diffraction gratings containing graphene strips part 1. mathematical justification of the spectral method
title_alt МОДЕЛЮВАННЯ РЕЗОНАНСНИХ ЕФЕКТІВ В ОДНОВИМІРНИХ ПЕРІОДИЧНИХ ДИФРАКЦІЙНИХ ҐРАТКАХ, ЩО МІСТЯТЬ СТРІЧКИ ГРАФЕНУ Частина 1. ОБГРУНТУВАННЯ СПЕКТРАЛЬНОГО МЕТОДУ
description Subject and Purpose. This paper presents a theoretical study of the interaction between monochromatic electromagnetic radiation and a one-dimensional periodic strip grating. The grating consists of periodically alternating perfectly conducting and graphene strips located at the boundary of a planar dielectric layer. The aim is to provide a mathematical justification for the spectral method analysis of resonance effects arising during the interaction of electromagnetic radiation with the strip grating.Methods and Methodology. The mathematical justification of the spectral method is based on the theory of non-self-adjoint compact operators in Hilbert spaces and the theory of compact analytic operator functions. In particular, we apply Keldysh’s theorems on the completeness of eigenvectors and associated vectors of non-self-adjoint compact operators, as well as the operator generalization of Rouché’s theorem for analytic operator functions.Results. The spectral approach to solving the diffraction problem of a one-dimensional periodic strip grating, which includes graphene strips, has received a rigorous mathematical treatment. It has been established that the diffraction field can be repre- sented as an expansion in eigenfunctions of the spectral problem, where the spectral parameter (eigenvalue) enters linearly into the boundary condition of conjugation on the graphene strips. The existence of the spectral problem solution has been proved in the case of small widths of the perfectly conducting strips. The completeness of the system of eigenfunctions (eigenvectors) in the corresponding Hilbert space has been demonstrated. As a consequence, in an unbounded region, there is a possibility to expand the diffraction field in resonance terms. An equation for resonance frequencies has been derived, indicating that the imaginary part of the spectral parameter equals the imaginary part of the surface conductivity of the graphene strips in the grating.Conclusions. The developed spectral method enables effective analysis of resonance effects that occur when electromagnetic radiation interacts with a one-dimensional periodic diffraction grating that includes graphene strips. This method can be used in the mathematical modeling of various devices and systems that utilize such gratings.Keywords: graphene; one-dimensional periodic diffraction strip grating; compact operator; resonance; Hilbert space; surface conductivityManuscript submitted  07.07.2025Radio phys. radio astron. 2025, 30(3): 163-173REFERENCES    1. Low, T., and Avouris, P., 2014. Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano, 8(2), pp. 1086— 1101. DOI: https://doi.org/10.1021/nn406627u    2. Chandezon, J., Granet, G., Melezhik, P.N., Poyedinchuk, A.Ye., Sirenko, Yu.K. (ed.), Sjoberg, D., Strom, S. (ed.), Tuchkin, Yu.A., and Yashina, N.P., 2010. Modern theory of gratings. Resonant scattering: analysis techniques and phenomena. New York, Springer Science + Business Media, LCC.    3. Shestopalov, V.P., and Sirenko, Yu.K., 1989. Dynamical theory of gratings. Kiev: Naukova Dumka Publ.    4. Rotenberg, M., 1962. Application of Sturmian Functions to the Schrödinger Three-Body Problem: Elastic e+-H Scattering. Ann. Phys., 19(2), pp. 262—278. DOI: https://doi.org/10.1016/0003-4916(62)90219-1    5. Shestopalov, V.P., 1987. Spectral Theory and Excitation of Open Structures. Kiev: Naukova Dumka Publ.    6. Hanson, G. W., 2008. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys., 103(6), 064302(8 pp.). DOI: https://doi.org/10.1063/1.2891452    7. Wood, R.W., 1935. Anomalous Diffraction Gratings. Phys. Rev., 48(12), pp. 928—936. DOI: https://doi.org/10.1103/PhysRev.48.928    8. Banach, S., 1948. Course of Functional Analysis. Kyiv: Radyanska Shkola Publ. (in Ukrainian).    9. Rouché, E., 1861. Mémoire on the Lagrange Series. Journal de l’École Polytechnique, 22, pp. 193—224.    10. Krein, M.G., 1947. On linear completely continuous operators in functional spaces with two norms. Zb. prac’ In-tu Mat. Akad. Nauk Ukr. RSR, 9, pp. 104—129 (in Ukrainian).
publisher Видавничий дім «Академперіодика»
publishDate 2025
url http://rpra-journal.org.ua/index.php/ra/article/view/1473
work_keys_str_mv AT poyedinchukaye modelingofresonanceeffectsinonedimensionalperiodicdiffractiongratingscontaininggraphenestripspart1mathematicaljustificationofthespectralmethod
AT melezhikpn modelingofresonanceeffectsinonedimensionalperiodicdiffractiongratingscontaininggraphenestripspart1mathematicaljustificationofthespectralmethod
AT brovenkoav modelingofresonanceeffectsinonedimensionalperiodicdiffractiongratingscontaininggraphenestripspart1mathematicaljustificationofthespectralmethod
AT khutoryanem modelingofresonanceeffectsinonedimensionalperiodicdiffractiongratingscontaininggraphenestripspart1mathematicaljustificationofthespectralmethod
AT senkevychob modelingofresonanceeffectsinonedimensionalperiodicdiffractiongratingscontaininggraphenestripspart1mathematicaljustificationofthespectralmethod
AT yashinanp modelingofresonanceeffectsinonedimensionalperiodicdiffractiongratingscontaininggraphenestripspart1mathematicaljustificationofthespectralmethod
AT poyedinchukaye modelûvannârezonansnihefektívvodnovimírnihperíodičnihdifrakcíjnihgratkahŝomístâtʹstríčkigrafenučastina1obgruntuvannâspektralʹnogometodu
AT melezhikpn modelûvannârezonansnihefektívvodnovimírnihperíodičnihdifrakcíjnihgratkahŝomístâtʹstríčkigrafenučastina1obgruntuvannâspektralʹnogometodu
AT brovenkoav modelûvannârezonansnihefektívvodnovimírnihperíodičnihdifrakcíjnihgratkahŝomístâtʹstríčkigrafenučastina1obgruntuvannâspektralʹnogometodu
AT khutoryanem modelûvannârezonansnihefektívvodnovimírnihperíodičnihdifrakcíjnihgratkahŝomístâtʹstríčkigrafenučastina1obgruntuvannâspektralʹnogometodu
AT senkevychob modelûvannârezonansnihefektívvodnovimírnihperíodičnihdifrakcíjnihgratkahŝomístâtʹstríčkigrafenučastina1obgruntuvannâspektralʹnogometodu
AT yashinanp modelûvannârezonansnihefektívvodnovimírnihperíodičnihdifrakcíjnihgratkahŝomístâtʹstríčkigrafenučastina1obgruntuvannâspektralʹnogometodu
first_indexed 2025-09-17T09:27:31Z
last_indexed 2025-09-17T09:27:31Z
_version_ 1849002227062013952
spelling oai:ri.kharkov.ua:article-14732025-09-16T09:06:09Z MODELING OF RESONANCE EFFECTS IN ONE-DIMENSIONAL PERIODIC DIFFRACTION GRATINGS CONTAINING GRAPHENE STRIPS Part 1. MATHEMATICAL JUSTIFICATION OF THE SPECTRAL METHOD МОДЕЛЮВАННЯ РЕЗОНАНСНИХ ЕФЕКТІВ В ОДНОВИМІРНИХ ПЕРІОДИЧНИХ ДИФРАКЦІЙНИХ ҐРАТКАХ, ЩО МІСТЯТЬ СТРІЧКИ ГРАФЕНУ Частина 1. ОБГРУНТУВАННЯ СПЕКТРАЛЬНОГО МЕТОДУ Poyedinchuk, A. Ye. Melezhik, P. N. Brovenko, A. V. Khutoryan, E. M. Senkevych, O. B. Yashina, N. P. graphene; one-dimensional periodic diffraction strip grating; compact operator; resonance; Hilbert space; surface conductivity Subject and Purpose. This paper presents a theoretical study of the interaction between monochromatic electromagnetic radiation and a one-dimensional periodic strip grating. The grating consists of periodically alternating perfectly conducting and graphene strips located at the boundary of a planar dielectric layer. The aim is to provide a mathematical justification for the spectral method analysis of resonance effects arising during the interaction of electromagnetic radiation with the strip grating.Methods and Methodology. The mathematical justification of the spectral method is based on the theory of non-self-adjoint compact operators in Hilbert spaces and the theory of compact analytic operator functions. In particular, we apply Keldysh’s theorems on the completeness of eigenvectors and associated vectors of non-self-adjoint compact operators, as well as the operator generalization of Rouché’s theorem for analytic operator functions.Results. The spectral approach to solving the diffraction problem of a one-dimensional periodic strip grating, which includes graphene strips, has received a rigorous mathematical treatment. It has been established that the diffraction field can be repre- sented as an expansion in eigenfunctions of the spectral problem, where the spectral parameter (eigenvalue) enters linearly into the boundary condition of conjugation on the graphene strips. The existence of the spectral problem solution has been proved in the case of small widths of the perfectly conducting strips. The completeness of the system of eigenfunctions (eigenvectors) in the corresponding Hilbert space has been demonstrated. As a consequence, in an unbounded region, there is a possibility to expand the diffraction field in resonance terms. An equation for resonance frequencies has been derived, indicating that the imaginary part of the spectral parameter equals the imaginary part of the surface conductivity of the graphene strips in the grating.Conclusions. The developed spectral method enables effective analysis of resonance effects that occur when electromagnetic radiation interacts with a one-dimensional periodic diffraction grating that includes graphene strips. This method can be used in the mathematical modeling of various devices and systems that utilize such gratings.Keywords: graphene; one-dimensional periodic diffraction strip grating; compact operator; resonance; Hilbert space; surface conductivityManuscript submitted  07.07.2025Radio phys. radio astron. 2025, 30(3): 163-173REFERENCES    1. Low, T., and Avouris, P., 2014. Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano, 8(2), pp. 1086— 1101. DOI: https://doi.org/10.1021/nn406627u    2. Chandezon, J., Granet, G., Melezhik, P.N., Poyedinchuk, A.Ye., Sirenko, Yu.K. (ed.), Sjoberg, D., Strom, S. (ed.), Tuchkin, Yu.A., and Yashina, N.P., 2010. Modern theory of gratings. Resonant scattering: analysis techniques and phenomena. New York, Springer Science + Business Media, LCC.    3. Shestopalov, V.P., and Sirenko, Yu.K., 1989. Dynamical theory of gratings. Kiev: Naukova Dumka Publ.    4. Rotenberg, M., 1962. Application of Sturmian Functions to the Schrödinger Three-Body Problem: Elastic e+-H Scattering. Ann. Phys., 19(2), pp. 262—278. DOI: https://doi.org/10.1016/0003-4916(62)90219-1    5. Shestopalov, V.P., 1987. Spectral Theory and Excitation of Open Structures. Kiev: Naukova Dumka Publ.    6. Hanson, G. W., 2008. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys., 103(6), 064302(8 pp.). DOI: https://doi.org/10.1063/1.2891452    7. Wood, R.W., 1935. Anomalous Diffraction Gratings. Phys. Rev., 48(12), pp. 928—936. DOI: https://doi.org/10.1103/PhysRev.48.928    8. Banach, S., 1948. Course of Functional Analysis. Kyiv: Radyanska Shkola Publ. (in Ukrainian).    9. Rouché, E., 1861. Mémoire on the Lagrange Series. Journal de l’École Polytechnique, 22, pp. 193—224.    10. Krein, M.G., 1947. On linear completely continuous operators in functional spaces with two norms. Zb. prac’ In-tu Mat. Akad. Nauk Ukr. RSR, 9, pp. 104—129 (in Ukrainian). Предмет і мета роботи. Теоретично досліджується проблема взаємодії монохроматичного електромагнітного ви- промінювання з одновимірно періодичними стрічковими ґратками. Ґратки утворено ідеально провідними та графе- новими стрічками, що періодично повторюються, які розташовано на межі плоского діелектричного шару. Метою роботи є обґрунтування спектрального методу для дослідження резонансних ефектів, що виникають при взаємодії електромагнітного випромінювання зі стрічковими ґратками.Методи та методологія. Для обґрунтування спектрального методу використано результати теорії несамоспряже- них компактних операторів у гільбертових просторах і теорії компактних аналітичних оператор-функцій. Зокрема, теореми Келдиша про повноту власних і приєднаних векторів несамоспряжених компактних операторів і операторне узагальнення теореми Руше для аналітичних оператор-функцій.Результати. Наведено строге математичне трактування спектрального підходу до розв’язання задач дифракції на одновимірно періодичних стрічкових ґратках, що містять стрічки графену. Встановлено, що дифракційне поле можна задати у вигляді ряду за власними функціями спектральної задачі, в якій спектральний параметр (власне значення) лінійно входить у граничну умову спряження на графенових стрічках. Доведено існування розв’язань спектральної задачі для випадку малих ширин ідеально провідних стрічок. Доведено повноту системи власних функцій (векторів) у відповідному гільбертовому просторі. І, як наслідок, обґрунтовано представлення дифракційного поля в нескінчен- ній області у вигляді ряду резонансних членів. Отримано рівняння для резонансних частот — рівність уявних частин спектрального параметра та поверхневої провідності графенових стрічок ґратки.Висновки. Розроблений спектральний метод дозволяє ефективно досліджувати резонансні ефекти, що супрово- джують взаємодію електромагнітного випромінювання з одновимірно періодичними дифракційними ґратками, які містять стрічки графену. Його можна застосовувати для математичного моделювання різних приладів і пристроїв, що використовують стрічкові ґратки, які містять стрічки графену.Ключові слова: графен, одновимірно періодичні дифракційні стрічкові ґратки, компактний оператор, резонанс, гіль- бертовий простір, поверхнева провідністьСтаття надійшла до редакції  07.07.2025Radio phys. radio astron. 2025, 30(3): 163-173БІБЛІОГРАФІЧНИЙ СПИСОК    1. Low, T., and Avouris, P., 2014. Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano, 8(2), pp. 1086— 1101. DOI: 10.1021/nn406627u    2. Chandezon, J., Granet, G., Melezhik, P.N., Poyedinchuk, A.Ye., Sirenko, Yu.K. (ed.), Sjoberg, D., Strom, S. (ed.), Tuchkin, Yu.A., and Yashina, N.P., 2010. Modern theory of gratings. Resonant scattering: analysis techniques and phenomena. New York, Springer Science + Business Media, LCC.    3. Shestopalov, V.P., and Sirenko, Yu.K., 1989. Dynamical theory of gratings. Kiev: Naukova Dumka Publ.    4. Rotenberg, M., 1962. Application of Sturmian Functions to the Schrödinger Three-Body Problem: Elastic e-H Scattering.Ann. Phys., 19(2), pp. 262—278. DOI: 10.1016/0003-4916(62)90219-1    5. Shestopalov, V.P., 1987. Spectral Theory and Excitation of Open Structures. Kiev: Naukova Dumka Publ.    6. Hanson, G. W., 2008. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys., 103(6), 064302(8 pp.). DOI: 10.1063/1.2891452    7. Wood, R.W., 1935. Anomalous Diffraction Gratings. Phys. Rev., 48(12), pp. 928—936. DOI: 10.1103/PhysRev.48.928    8. Banach, S., 1948. Course of Functional Analysis. Kyiv: Radyanska Shkola Publ. (in Ukrainian).    9. Rouché, E., 1861. Mémoire on the Lagrange Series. Journal de l’École Polytechnique, 22, pp. 193—224.    10. Krein, M.G., 1947. On linear completely continuous operators in functional spaces with two norms. Zb. prac’ In-tu Mat. Akad. Nauk Ukr. RSR, 9, pp. 104—129 (in Ukrainian). Видавничий дім «Академперіодика» 2025-09-11 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1473 10.15407/rpra30.03.163 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 30, No 3 (2025); 163 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 30, No 3 (2025); 163 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 30, No 3 (2025); 163 2415-7007 1027-9636 10.15407/rpra30.03 en http://rpra-journal.org.ua/index.php/ra/article/view/1473/pdf Copyright (c) 2025 RADIO PHYSICS AND RADIO ASTRONOMY