2025-02-22T16:24:29-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22oai%3Ari.kharkov.ua%3Aarticle-968%22&qt=morelikethis&rows=5
2025-02-22T16:24:29-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22oai%3Ari.kharkov.ua%3Aarticle-968%22&qt=morelikethis&rows=5
2025-02-22T16:24:29-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T16:24:29-05:00 DEBUG: Deserialized SOLR response
Optimum Detection of Pair-Correlated Random Point Process with Pair-Correlated Noise
Оптимальное обнаружение парнокоррелированного потока сигналов на фоне парнокоррелированного шума
Saved in:
Main Author: | Stadnik, A. M. |
---|---|
Format: | Article |
Language: | rus |
Published: |
Видавничий дім «Академперіодика»
2013
|
Online Access: | http://rpra-journal.org.ua/index.php/ra/article/view/968 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
2025-02-22T16:24:29-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22oai%3Ari.kharkov.ua%3Aarticle-968%22&qt=morelikethis
2025-02-22T16:24:29-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22oai%3Ari.kharkov.ua%3Aarticle-968%22&qt=morelikethis
2025-02-22T16:24:29-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T16:24:29-05:00 DEBUG: Deserialized SOLR response
Similar Items
-
Correlation functions of Coulomb pair
by: V. I. Vaskivskyi
Published: (2015) -
Correlation functions of Coulomb pair
by: V. I. Vaskivskyi
Published: (2015) -
Impurity-impurity pair correlation function and paramagnetic-to-ferromagnetic transition in the random Ising model
by: Ivaneyko, D., et al.
Published: (2007) -
Critical parameters and pair correlations in confined multicomponent liquids
by: Vasilev, A.N., et al.
Published: (2006) -
Diagnostics of gear pair damage using the methods of biperiodically correlated random processes. Part 1. Theoretical aspects of the problem
by: I. M. Yavorskyi, et al.
Published: (2022)