Високотемпературні сенсори деформації на основі ниткоподібних кристалів фосфіду галію
The paper presents a study of tensoresistive characteristics of p-type GaP whiskers with [111] crystallographic orientation coinciding with the direction of the maximal piezoresistive effect for this material. The authors present a newly-developed technology of creating the ohmic contacts to GaP cry...
Збережено в:
| Дата: | 2019 |
|---|---|
| Автори: | , , |
| Формат: | Стаття |
| Мова: | Ukrainian |
| Опубліковано: |
PE "Politekhperiodika", Book and Journal Publishers
2019
|
| Теми: | |
| Онлайн доступ: | https://www.tkea.com.ua/index.php/journal/article/view/TKEA2019.3-4.26 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Technology and design in electronic equipment |
Репозитарії
Technology and design in electronic equipment| Резюме: | The paper presents a study of tensoresistive characteristics of p-type GaP whiskers with [111] crystallographic orientation coinciding with the direction of the maximal piezoresistive effect for this material. The authors present a newly-developed technology of creating the ohmic contacts to GaP crystals that allows using these crystals at high temperatures (400—600°C). Tensoresistive characteristics of p-type GaP whiskers were studied in the strain range of ±1,2·10–3 rel. un. These studies show that the gauge factor for these crystals at 20°C is rather large. Thus, for p-type GaP crystals with a resistivity of 0.025—0.03 Ω·cm, the gage factor is in the range of 90—95.The study of tensoresistive properties shows that in the temperature range of 20—300°C for p-type GaP crystals with the resistivity of 0,01—0,03 Ω·cm, the gage factor decreases as the temperature rises, but in the temperature range of 300—550°C for this crystals, very slight temperature dependence of the gage factor was observed. In this temperature range, the temperature coefficient of gage factor is no more than –0,03%/°C. In the temperature range of 300—500°C, the value of gage factor is high (40—50). It could be noticed that in the entire investigated temperature range, the strain sensors based on p-type GaP whiskers have the linear resistance vs. strain dependence in the strain range of ±5,0·10–4 rel. un. The developed strain sensors based on p-type GaP whiskers have high mechanical strength at the static and dynamic strain (more than 108 cycles), which makes them operable in dynamic mode. |
|---|