Обнаружение аномальных измерений при обработке данных малого объема

This article describes the criteria for detection of outliers power depending on a small size sample. Removing outliers is one of the stages of signals pre-processing. A statistical experiment, in which using a random number generator were received arrays of data, containing several thousand samples...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автор: Popukaylo, V. S.
Формат: Стаття
Мова:Ukrainian
Опубліковано: PE "Politekhperiodika", Book and Journal Publishers 2016
Теми:
Онлайн доступ:https://www.tkea.com.ua/index.php/journal/article/view/TKEA2016.4-5.42
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Technology and design in electronic equipment

Репозитарії

Technology and design in electronic equipment
id oai:tkea.com.ua:article-235
record_format ojs
spelling oai:tkea.com.ua:article-2352025-05-30T19:31:10Z Detection of outliers in processing of small size data Обнаружение аномальных измерений при обработке данных малого объема Popukaylo, V. S. small size data outlier detection criteria anomalous meterages outlier analysis малая выборка грубые ошибки аномальные измерения критерии обнаружения выбросов This article describes the criteria for detection of outliers power depending on a small size sample. Removing outliers is one of the stages of signals pre-processing. A statistical experiment, in which using a random number generator were received arrays of data, containing several thousand samples with normal distribution, with the given mean averages and standard deviation for each n-value, was conducted to solve this problem. Thus, we researched and vividly illustrated the possibility of Grubbs, Dixon, Tietjen — Moore, Irving, Chauvenet, Lvovsky and Romanovsky criteria at studied data sizes from 5 to 20 meterages. Conclusions about the applicability of each criterion for the outliersdetection in processing of small size data were made. Lvovsky criterion was recognized the optimal criterion. Dixon’s criterion was recommended for n ≤ 10. Irwin’s criterion was recommended when n ≥ 10. Tietjen—Moore’scriterion can be recommended for the detection of outliers in small samples for n > 5, since it recognizes errors well in the values of a ¯x + 4σ and has the least amount of I type mistakes. Grubb’s with an unknown standard deviation may be used in samples for n ≥ 15. Chauvenet and Romanovsky criteria cannot be recommended for the detection of outliers in small size data. Рассмотрена мощность критериев обнаружения аномальных измерений в зависимости от объема малой выборки. Исследованы и наглядно проиллюстрированы возможности критериев Граббса, Диксона, Титьена — Мура, Ирвина, Шовене, Львовского и Романовского при объеме исследуемых данных от 5 до 20 измерений. Сделаны выводы о возможности применения каждого из критериев для обнаружения аномальных измерений при обработке данных малого объема. PE "Politekhperiodika", Book and Journal Publishers 2016-10-29 Article Article Peer-reviewed Article application/pdf https://www.tkea.com.ua/index.php/journal/article/view/TKEA2016.4-5.42 10.15222/TKEA2016.4-5.42 Technology and design in electronic equipment; No. 4–5 (2016): Tekhnologiya i konstruirovanie v elektronnoi apparature; 42-46 Технологія та конструювання в електронній апаратурі; № 4–5 (2016): Технология и конструирование в электронной аппаратуре; 42-46 3083-6549 3083-6530 uk https://www.tkea.com.ua/index.php/journal/article/view/TKEA2016.4-5.42/204 Copyright (c) 2016 V. S. Popukaylo http://creativecommons.org/licenses/by/4.0/
institution Technology and design in electronic equipment
baseUrl_str
datestamp_date 2025-05-30T19:31:10Z
collection OJS
language Ukrainian
topic малая выборка
грубые ошибки
аномальные измерения
критерии обнаружения выбросов
spellingShingle малая выборка
грубые ошибки
аномальные измерения
критерии обнаружения выбросов
Popukaylo, V. S.
Обнаружение аномальных измерений при обработке данных малого объема
topic_facet small size data
outlier detection criteria
anomalous meterages
outlier analysis
малая выборка
грубые ошибки
аномальные измерения
критерии обнаружения выбросов
format Article
author Popukaylo, V. S.
author_facet Popukaylo, V. S.
author_sort Popukaylo, V. S.
title Обнаружение аномальных измерений при обработке данных малого объема
title_short Обнаружение аномальных измерений при обработке данных малого объема
title_full Обнаружение аномальных измерений при обработке данных малого объема
title_fullStr Обнаружение аномальных измерений при обработке данных малого объема
title_full_unstemmed Обнаружение аномальных измерений при обработке данных малого объема
title_sort обнаружение аномальных измерений при обработке данных малого объема
title_alt Detection of outliers in processing of small size data
description This article describes the criteria for detection of outliers power depending on a small size sample. Removing outliers is one of the stages of signals pre-processing. A statistical experiment, in which using a random number generator were received arrays of data, containing several thousand samples with normal distribution, with the given mean averages and standard deviation for each n-value, was conducted to solve this problem. Thus, we researched and vividly illustrated the possibility of Grubbs, Dixon, Tietjen — Moore, Irving, Chauvenet, Lvovsky and Romanovsky criteria at studied data sizes from 5 to 20 meterages. Conclusions about the applicability of each criterion for the outliersdetection in processing of small size data were made. Lvovsky criterion was recognized the optimal criterion. Dixon’s criterion was recommended for n ≤ 10. Irwin’s criterion was recommended when n ≥ 10. Tietjen—Moore’scriterion can be recommended for the detection of outliers in small samples for n > 5, since it recognizes errors well in the values of a ¯x + 4σ and has the least amount of I type mistakes. Grubb’s with an unknown standard deviation may be used in samples for n ≥ 15. Chauvenet and Romanovsky criteria cannot be recommended for the detection of outliers in small size data.
publisher PE "Politekhperiodika", Book and Journal Publishers
publishDate 2016
url https://www.tkea.com.ua/index.php/journal/article/view/TKEA2016.4-5.42
work_keys_str_mv AT popukaylovs detectionofoutliersinprocessingofsmallsizedata
AT popukaylovs obnaruženieanomalʹnyhizmerenijpriobrabotkedannyhmalogoobʺema
first_indexed 2025-09-24T17:30:35Z
last_indexed 2025-09-24T17:30:35Z
_version_ 1850410226768936960