Датчик гидростатического давления на основе микрокристаллов антимонида галлия
Currently, silicon and germanium, the most common materials in the production of discrete semiconductor devices and integrated circuits, do not always meet all the requirements to the sensing elements of mechanical quantities sensors. Therefore, it is logical to research the properties of other semi...
Збережено в:
| Дата: | 2015 |
|---|---|
| Автори: | , , , |
| Формат: | Стаття |
| Мова: | Ukrainian |
| Опубліковано: |
PE "Politekhperiodika", Book and Journal Publishers
2015
|
| Теми: | |
| Онлайн доступ: | https://www.tkea.com.ua/index.php/journal/article/view/TKEA2015.4.19 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Technology and design in electronic equipment |
Репозитарії
Technology and design in electronic equipment| id |
oai:tkea.com.ua:article-271 |
|---|---|
| record_format |
ojs |
| spelling |
oai:tkea.com.ua:article-2712025-05-30T19:32:27Z Sensor of hydrostatic pressure based on gallium antimonide microcrystals Датчик гидростатического давления на основе микрокристаллов антимонида галлия Druzhinin, A. A. Maryamova, I. I. Kutrakov, A. P. Liakh-Kaguy, N. S. gallium antimonide sensor hydrostatic pressure антимонид галлия датчик гидростатическое давление Currently, silicon and germanium, the most common materials in the production of discrete semiconductor devices and integrated circuits, do not always meet all the requirements to the sensing elements of mechanical quantities sensors. Therefore, it is logical to research the properties of other semiconductor materials that could be used as sensing elements in such sensors. A3B5 semiconductor compounds seem promising for such purpose.The effect of hydrostatic pressure up to 5000 bar on the resistance of n-type antimonide gallium whiskers doped by Se or Te was studied. Coefficient of hydrostatic pressure for these crystals was determined, it equals Kh = (16.5–20.0).10–5 bar–1 at 20°C. Temperature dependence of resistance and coefficient Kh for these crystals in the temperature range ±60°c was studied. Design of the developed hydrostatic pressure sensor based on GaSb whiskers and its characteristics are presented. The possibility to decrease the temperature dependence of sensitive element resistance by mounting GaSb whiskers on the substrates fabricated from materials with different temperature coefficient of expansion was examined. It was shown that mounting of GaSb crystals on Cu substrate gives the optimal result, in this case the temperature coefficient decrease to 0.05%.°C–1, that leads to decrease of output temperature dependence. The main advantages of developed pressure sensor are: the simplified design in comparison with pressure sensors with strain gauges mounted on spring elements; the high sensitivity to pressure that is constant in the wide pressure range; the improvement of sensors metrological characteristics owing to hysteresis absence. The possible application fields of developed sensors are measuring of high and extremely high pressure, chemical and oil industries, measuring of pressure in oil bore-holes, investigation of explosive processes. Исследовано влияние гидростатического давления (до 5000 бар) на сопротивление нитевидных кристаллов антимонида галлия n-типа, легированных селеном или теллуром. Определена величина коэффициента гидростатического давления для этих кристаллов: КГ = (16,5 – 20,0).10–5 бар–1 при 20°С. Исследовано влияние температуры в диапазоне от –60 до +60 °С на сопротивление и коэффициент КГ этих кристаллов. Рассмотрена возможность уменьшения температурной зависимости сопротивления путем закрепления чувствительного элемента датчика на подложках из различных материалов с различным коэффициентом линейного термического расширения. Приведена конструкция разработанного датчика и его основные характеристики. PE "Politekhperiodika", Book and Journal Publishers 2015-08-25 Article Article Peer-reviewed Article application/pdf https://www.tkea.com.ua/index.php/journal/article/view/TKEA2015.4.19 10.15222/TKEA2015.4.19 Technology and design in electronic equipment; No. 4 (2015): Tekhnologiya i konstruirovanie v elektronnoi apparature; 19-23 Технологія та конструювання в електронній апаратурі; № 4 (2015): Технология и конструирование в электронной аппаратуре; 19-23 3083-6549 3083-6530 uk https://www.tkea.com.ua/index.php/journal/article/view/TKEA2015.4.19/239 Copyright (c) 2015 Druzhinin A. A., Maryamova I. I., Kutrakov A. P., Liakh-Kaguy N. S. http://creativecommons.org/licenses/by/4.0/ |
| institution |
Technology and design in electronic equipment |
| baseUrl_str |
|
| datestamp_date |
2025-05-30T19:32:27Z |
| collection |
OJS |
| language |
Ukrainian |
| topic |
антимонид галлия датчик гидростатическое давление |
| spellingShingle |
антимонид галлия датчик гидростатическое давление Druzhinin, A. A. Maryamova, I. I. Kutrakov, A. P. Liakh-Kaguy, N. S. Датчик гидростатического давления на основе микрокристаллов антимонида галлия |
| topic_facet |
gallium antimonide sensor hydrostatic pressure антимонид галлия датчик гидростатическое давление |
| format |
Article |
| author |
Druzhinin, A. A. Maryamova, I. I. Kutrakov, A. P. Liakh-Kaguy, N. S. |
| author_facet |
Druzhinin, A. A. Maryamova, I. I. Kutrakov, A. P. Liakh-Kaguy, N. S. |
| author_sort |
Druzhinin, A. A. |
| title |
Датчик гидростатического давления на основе микрокристаллов антимонида галлия |
| title_short |
Датчик гидростатического давления на основе микрокристаллов антимонида галлия |
| title_full |
Датчик гидростатического давления на основе микрокристаллов антимонида галлия |
| title_fullStr |
Датчик гидростатического давления на основе микрокристаллов антимонида галлия |
| title_full_unstemmed |
Датчик гидростатического давления на основе микрокристаллов антимонида галлия |
| title_sort |
датчик гидростатического давления на основе микрокристаллов антимонида галлия |
| title_alt |
Sensor of hydrostatic pressure based on gallium antimonide microcrystals |
| description |
Currently, silicon and germanium, the most common materials in the production of discrete semiconductor devices and integrated circuits, do not always meet all the requirements to the sensing elements of mechanical quantities sensors. Therefore, it is logical to research the properties of other semiconductor materials that could be used as sensing elements in such sensors. A3B5 semiconductor compounds seem promising for such purpose.The effect of hydrostatic pressure up to 5000 bar on the resistance of n-type antimonide gallium whiskers doped by Se or Te was studied. Coefficient of hydrostatic pressure for these crystals was determined, it equals Kh = (16.5–20.0).10–5 bar–1 at 20°C. Temperature dependence of resistance and coefficient Kh for these crystals in the temperature range ±60°c was studied. Design of the developed hydrostatic pressure sensor based on GaSb whiskers and its characteristics are presented. The possibility to decrease the temperature dependence of sensitive element resistance by mounting GaSb whiskers on the substrates fabricated from materials with different temperature coefficient of expansion was examined. It was shown that mounting of GaSb crystals on Cu substrate gives the optimal result, in this case the temperature coefficient decrease to 0.05%.°C–1, that leads to decrease of output temperature dependence. The main advantages of developed pressure sensor are: the simplified design in comparison with pressure sensors with strain gauges mounted on spring elements; the high sensitivity to pressure that is constant in the wide pressure range; the improvement of sensors metrological characteristics owing to hysteresis absence. The possible application fields of developed sensors are measuring of high and extremely high pressure, chemical and oil industries, measuring of pressure in oil bore-holes, investigation of explosive processes. |
| publisher |
PE "Politekhperiodika", Book and Journal Publishers |
| publishDate |
2015 |
| url |
https://www.tkea.com.ua/index.php/journal/article/view/TKEA2015.4.19 |
| work_keys_str_mv |
AT druzhininaa sensorofhydrostaticpressurebasedongalliumantimonidemicrocrystals AT maryamovaii sensorofhydrostaticpressurebasedongalliumantimonidemicrocrystals AT kutrakovap sensorofhydrostaticpressurebasedongalliumantimonidemicrocrystals AT liakhkaguyns sensorofhydrostaticpressurebasedongalliumantimonidemicrocrystals AT druzhininaa datčikgidrostatičeskogodavleniânaosnovemikrokristallovantimonidagalliâ AT maryamovaii datčikgidrostatičeskogodavleniânaosnovemikrokristallovantimonidagalliâ AT kutrakovap datčikgidrostatičeskogodavleniânaosnovemikrokristallovantimonidagalliâ AT liakhkaguyns datčikgidrostatičeskogodavleniânaosnovemikrokristallovantimonidagalliâ |
| first_indexed |
2025-09-24T17:30:39Z |
| last_indexed |
2025-09-24T17:30:39Z |
| _version_ |
1850410231599726592 |