2025-02-23T06:40:57-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22open-sciencenbuvgovua-113038%22&qt=morelikethis&rows=5
2025-02-23T06:40:57-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22open-sciencenbuvgovua-113038%22&qt=morelikethis&rows=5
2025-02-23T06:40:57-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T06:40:57-05:00 DEBUG: Deserialized SOLR response
Mittag-Leffler stability and stabilization of some classes of time-varying fractional systems
Saved in:
Main Author: | F. Omri |
---|---|
Format: | Article |
Language: | English |
Published: |
2024
|
Series: | Ukrainian Mathematical Journal |
Online Access: | http://jnas.nbuv.gov.ua/article/UJRN-0001504019 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
2025-02-23T06:40:57-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22open-sciencenbuvgovua-113038%22&qt=morelikethis
2025-02-23T06:40:57-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22open-sciencenbuvgovua-113038%22&qt=morelikethis
2025-02-23T06:40:57-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T06:40:57-05:00 DEBUG: Deserialized SOLR response
Similar Items
-
Fractional calculus of a unified Mittag-Leffler function
by: Prajapati, J.C., et al.
Published: (2014) -
Fractional Calculus of a Unified Mittag-Leffler Function
by: J. C. Prajapati, et al.
Published: (2014) -
A class of fractional integral operators involving a certain general multiindex Mittag-Leffler function
by: H. M. Srivastava, et al.
Published: (2023) -
A fractional order Covid-19 epidemic model with Mittag-Leffler kernel
by: H. Khan, et al.
Published: (2021) -
Approximations of the Mittag-Leffler operator function with exponential accuracy and their application to solving evolution equations with fractional derivative in time
by: I. P. Gavrilyuk, et al.
Published: (2022)