2025-02-22T10:01:45-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22open-sciencenbuvgovua-25774%22&qt=morelikethis&rows=5
2025-02-22T10:01:45-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22open-sciencenbuvgovua-25774%22&qt=morelikethis&rows=5
2025-02-22T10:01:45-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T10:01:45-05:00 DEBUG: Deserialized SOLR response
Exact and approximate solutions of spectral problems for the Schrцdinger operator on (−∞,∞) with polynomial potential
Saved in:
Main Author: | V. L. Makarov |
---|---|
Format: | Article |
Language: | English |
Published: |
2018
|
Series: | Ukrainian Mathematical Journal |
Online Access: | http://jnas.nbuv.gov.ua/article/UJRN-0000837278 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
2025-02-22T10:01:45-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22open-sciencenbuvgovua-25774%22&qt=morelikethis
2025-02-22T10:01:45-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22open-sciencenbuvgovua-25774%22&qt=morelikethis
2025-02-22T10:01:45-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T10:01:45-05:00 DEBUG: Deserialized SOLR response
Similar Items
-
Exact solutions of one spectral problem for Schrцdinger differential operator with polynomial potential in R2
by: V. L. Makarov
Published: (2017) -
Exact solutions of spectral problems with the Schrцdinger operator on (–∞, ∞) with polynomial potential obtained via the FD-method
by: V. L. Makarov
Published: (2017) -
On spectral gaps of the Hill – Schrцdinger operator with singular potential
by: V. A. Mikhajlets, et al.
Published: (2018) -
Schrцdinger Operators with Distributional Matrix Potentials
by: V. M. Moliboga
Published: (2015) -
Inverse Scattering Theory for Schrцdinger Operators with Steplike Potentials
by: I. Egorova, et al.
Published: (2015)