2025-02-23T03:49:14-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22open-sciencenbuvgovua-40423%22&qt=morelikethis&rows=5
2025-02-23T03:49:14-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22open-sciencenbuvgovua-40423%22&qt=morelikethis&rows=5
2025-02-23T03:49:14-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T03:49:14-05:00 DEBUG: Deserialized SOLR response
Kolmogorov inequalities for the norms of the Riesz derivatives of functions of many variables
Saved in:
Main Author: | N. V. Parfinovych |
---|---|
Format: | Article |
Language: | English |
Published: |
2017
|
Series: | Ukrainian Mathematical Bulletin |
Online Access: | http://jnas.nbuv.gov.ua/article/UJRN-0000820278 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
2025-02-23T03:49:14-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22open-sciencenbuvgovua-40423%22&qt=morelikethis
2025-02-23T03:49:14-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22open-sciencenbuvgovua-40423%22&qt=morelikethis
2025-02-23T03:49:14-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T03:49:14-05:00 DEBUG: Deserialized SOLR response
Similar Items
-
Sharp Kolmogorov-type inequalities for norms of fractional derivatives of multivariate functions
by: Babenko, V.F., et al.
Published: (2010) -
Kolmogorov type inequalities for norms of fractional derivatives of functions defined on the positive half-line
by: O. Kozynenko, et al.
Published: (2020) -
Kolmogorov widths of the anisotropic Besov classes of periodic functions of many variables
by: V. V. Myroniuk
Published: (2016) -
Kolmogorov widths and bilinear approximations of the classes of periodic functions of one and many variables
by: A. S. Romaniuk
Published: (2018) -
Estimation of the uniform norm of one-dimensional Riesz potential of a partial derivative of a function with bounded Laplacian
by: V. F. Babenko, et al.
Published: (2016)