2025-02-21T07:15:13-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22open-sciencenbuvgovua-54537%22&qt=morelikethis&rows=5
2025-02-21T07:15:13-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22open-sciencenbuvgovua-54537%22&qt=morelikethis&rows=5
2025-02-21T07:15:13-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-21T07:15:13-05:00 DEBUG: Deserialized SOLR response
On application of iterative Newton-Kantorovich process in approximately-iterative method
Saved in:
Main Author: | Ya. P. Vasylenko |
---|---|
Format: | Article |
Language: | English |
Published: |
2016
|
Series: | Transactions of Institute of Mathematics, the NAS of Ukraine |
Online Access: | http://jnas.nbuv.gov.ua/article/UJRN-0000826333 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
2025-02-21T07:15:13-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22open-sciencenbuvgovua-54537%22&qt=morelikethis
2025-02-21T07:15:13-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22open-sciencenbuvgovua-54537%22&qt=morelikethis
2025-02-21T07:15:13-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-21T07:15:13-05:00 DEBUG: Deserialized SOLR response
Similar Items
-
Newton-Kantorovich Iterative Regularization for Nonlinear Ill-Posed Equations Involving Accretive Operators
by: Nguen Byong, et al.
Published: (2005) -
On the approximate solution of nonlinear boundary-value problems by the Newton – Kantorovich method
by: A. A. Bojchuk, et al.
Published: (2020) -
On the approximate solution of weakly nonlinear boundary-value problems by the Newton – Kantorovich method
by: A. A. Boichuk, et al.
Published: (2020) -
A generalization of the Newton—Kantorovich method for systems of nonlinear real equations
by: S. M. Chujko
Published: (2020) -
A generalization of the Newton-Kantorovich theorem in a Banach space
by: S. M. Chuiko
Published: (2018)