2025-02-22T17:22:15-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22open-sciencenbuvgovua-73940%22&qt=morelikethis&rows=5
2025-02-22T17:22:15-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22open-sciencenbuvgovua-73940%22&qt=morelikethis&rows=5
2025-02-22T17:22:15-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T17:22:15-05:00 DEBUG: Deserialized SOLR response
Some sufficient conditions for convergence and absolute stability to perturbations of branched continued fractions with real elements
Saved in:
Main Authors: | T. M. Antonova, V. R. Hladun |
---|---|
Format: | Article |
Language: | English |
Published: |
2014
|
Series: | Applied problems of mechanics and mathematics |
Online Access: | http://jnas.nbuv.gov.ua/article/UJRN-0000422989 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
2025-02-22T17:22:15-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22open-sciencenbuvgovua-73940%22&qt=morelikethis
2025-02-22T17:22:15-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22open-sciencenbuvgovua-73940%22&qt=morelikethis
2025-02-22T17:22:15-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T17:22:15-05:00 DEBUG: Deserialized SOLR response
Similar Items
-
Some sets of relative stability to perturbations of branched continued fractions with complex elements and variable number of branches of branching
by: V. R. Hladun
Published: (2014) -
On one convergence criterion of branched continued fractions of the special form with real elements
by: T. M. Antonova, et al.
Published: (2016) -
Convergence criteria of branched continued fraction with positive elements
by: D. I. Bodnar, et al.
Published: (2015) -
Sufficient conditions for equivalent convergence of sequence of different approximants for two-dimensional continued fractions
by: T. M. Antonova, et al.
Published: (2015) -
On convergence of one class of corresponding two-dimensional branched continued fractions
by: T. M. Antonova, et al.
Published: (2020)