2025-02-23T11:18:35-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22open-sciencenbuvgovua-91860%22&qt=morelikethis&rows=5
2025-02-23T11:18:35-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22open-sciencenbuvgovua-91860%22&qt=morelikethis&rows=5
2025-02-23T11:18:35-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T11:18:35-05:00 DEBUG: Deserialized SOLR response
Application of intelligent systems of computer vision for object identifi cation against noise background
Saved in:
Main Author: | E. V. Shapovalov |
---|---|
Format: | Article |
Language: | English |
Published: |
2012
|
Series: | Technical diagnostics and non-destructive testing |
Online Access: | http://jnas.nbuv.gov.ua/article/UJRN-0000468678 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
2025-02-23T11:18:35-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22open-sciencenbuvgovua-91860%22&qt=morelikethis
2025-02-23T11:18:35-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22open-sciencenbuvgovua-91860%22&qt=morelikethis
2025-02-23T11:18:35-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T11:18:35-05:00 DEBUG: Deserialized SOLR response
Similar Items
-
Fingerprints identifi cation in various populations of Ukraine
by: Z. Sluzhynska, et al.
Published: (2014) -
Quasioptimum Algorithm for Detecting Narrow-Band Signals against a Random Noise Background
by: Galushko, V. G., et al.
Published: (2013) -
Methods of artificial intelligence in software control system for equipment of critical sizes inspection on the basis of computer vision
by: S. M. Avakov, et al.
Published: (2018) -
One approach to recognizing geometric objects in computer vision problems
by: V. M. Tereshchenko, et al.
Published: (2016) -
Application of computer vision methods to detect fire in the premises
by: V. M. Tereshchenko, et al.
Published: (2017)