Comparison of the effectiveness of the Map-Reduce approach and the actor model in solving problems with high connectivity of inp data on the example of the optimization problem for a swarm of particles
The paper defines the notion of distributed problems with bounded input components. Particle Swarm Optimization problem is shown to be an example of such a class. Such a problem's implementation based on the Map-Reduce model (implemented on the Spark framework) and an implementation based on an...
Збережено в:
Дата: | 2021 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Інститут програмних систем НАН України
2021
|
Теми: | |
Онлайн доступ: | https://pp.isofts.kiev.ua/index.php/ojs1/article/view/451 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Problems in programming |
Завантажити файл: |
Репозитарії
Problems in programmingРезюме: | The paper defines the notion of distributed problems with bounded input components. Particle Swarm Optimization problem is shown to be an example of such a class. Such a problem's implementation based on the Map-Reduce model (implemented on the Spark framework) and an implementation based on an actor model with shared memory support (implemented on Strumok DSL) is provided. Both versions' performance assessment is conducted. The hybrid actor model is shown to be an order of magnitude more effective in time and memory efficiency than Map-Reduce implementation. Additional optimization for the hybrid actor model solution is proposed. The prospects of using the hybrid actor model for other similar problems are given. Problems in programming 2021; 1: 49-55 |
---|