Distributed implementation of neuroevolution of augmenting topologies method

Despite the neuroevolution of augmenting topologies method strengths, like the capability to be used in cases where the formula for a cost function and the topology of the neural network are difficult to determine, one of the main problems of such methods is slow convergence towards optimal results,...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автори: Achour, I.Z., Doroshenko, A.Yu.
Формат: Стаття
Мова:Ukrainian
Опубліковано: PROBLEMS IN PROGRAMMING 2021
Теми:
Онлайн доступ:https://pp.isofts.kiev.ua/index.php/ojs1/article/view/467
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Problems in programming
Завантажити файл: Pdf

Репозитарії

Problems in programming
Опис
Резюме:Despite the neuroevolution of augmenting topologies method strengths, like the capability to be used in cases where the formula for a cost function and the topology of the neural network are difficult to determine, one of the main problems of such methods is slow convergence towards optimal results, especially in cases with complex and challenging environments. This paper proposes the novel distributed implementation of neuroevolution of augmenting topologies method, which considering availability of sufficient computational resources allows drastically speed up the process of optimal neural network configuration search. Batch genome evaluation was implemented for the means of proposed solution performance optimization, fair, and even computational resources usage. The proposed distributed implementation benchmarking shows that the generated neural networks evaluation process gives a manifold increase of efficiency on the demonstrated task and computational environment.Prombles in programming 2021; 3: 03-15