About complex intelligent technologies for techno-ecological events control in the water area

Aspects of the important task solution of creating complex intelligent decision-making support technologies for the identification of techno-ecological event (TEE) and the optimal selection of the sequence of available measures to reduce the life cycle of this TEE in the water area in order to minim...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2023
Автори: Pisarenko, V.G., Nogin, N.V., Kryachok, A.S., Pisarenko, J.V., Varava, I.A., Koval, A.S.
Формат: Стаття
Мова:English
Опубліковано: PROBLEMS IN PROGRAMMING 2023
Теми:
Онлайн доступ:https://pp.isofts.kiev.ua/index.php/ojs1/article/view/545
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Problems in programming
Завантажити файл: Pdf

Репозитарії

Problems in programming
id pp_isofts_kiev_ua-article-545
record_format ojs
resource_txt_mv ppisoftskievua/41/f1154b80673f49f8572abaaaab41dc41.pdf
spelling pp_isofts_kiev_ua-article-5452023-06-25T08:11:43Z About complex intelligent technologies for techno-ecological events control in the water area Про комплексні інтелектуальні технології управління техно-екологічними подіями в акваторії Pisarenko, V.G. Nogin, N.V. Kryachok, A.S. Pisarenko, J.V. Varava, I.A. Koval, A.S. water area; techno-ecologicalevent; wave classification; information storage; mathematical modeling UDC 519.711; 004.8 акваторія; техно-екологічна подія; класифікація хвиль; інформаційне сховище; математичне моделювання УДК 519.711; 004.8 Aspects of the important task solution of creating complex intelligent decision-making support technologies for the identification of techno-ecological event (TEE) and the optimal selection of the sequence of available measures to reduce the life cycle of this TEE in the water area in order to minimize material losses are considered ("CONTROL_TEE" system). In theV.M. Glushkov Institute of Cybernetics of NAS of Ukraine, Concern "BaltRobotics" (Ukraine-Poland), NTU of Ukraine "Igor Sikorsky KPI" study of the possibility of theoretical development, research and practical implementation of methods and tools that make up the information technology of research design (informational, mathematical, algorithmic, software, technical, organizational support) of robots intended for reconnaissance and neutralization of TEE in a number of environment. For the classifying waves, mathematical models of the propagation of both running and standing waves in the sea area were obtained and solved. The structure of the information storage of the situation center has been developed. In order to create a database wave classification and mathematical and computer modeling were carried out. The deterministic process of sound propagation in a flat waveguide in the homogeneous mode is considered. Special boundary value problems and Cauchy problems are solved for the two-dimensional wave equation and, accordingly, for the Helmholtz equation. Calculation formulas for sound pressure and corresponding to its velocities are obtained in an analytical closed form. In the general case, the tangent and normal components of the velocity vector and the hydrodynamic potential are calculated in the form of Fourier series by the methodology of the works of Bilonosov, Ovsienko, Li, Zinchenko, Zinchenko, Nogin.Prombles in programming 2022; 3-4: 437-445 Розглядаються аспекти, що стосуються вирішення важливого завдання створення комплексних   інтелектуальних   техно- логій підтримки прийняття рішень для ідентифікації виникаючої техно-екологічної події (ТЕП) та оптимального вибору послідовності доступних заходів зі скорочення життєвого циклу даного ТЕП в акваторії з метою мінімізації матері- альних збитків (створення системи «УПРАВЛІННЯ_ТЕП»). В Інституті кібернетики імені В.М. Глушкова НАНУ сумісно з Концерном «BaltRobotics» (Україна – Польща), НТУУ «КПІ ім. Ігоря Сікорського» проводяться вивчення питання можливості теоретичної розробки, дослідження та практичної реалізації методів і засобів, що складають інформаційну технологію дослідницького   проектування   (інформаційне,   математичне,   алгоритмічне,   програмне,   технічне,   організаційне забезпечення) інтелектуалізованих роботів, призначених для розвідки і нейтралізації небезпечних ТЕП у ряді середовищ. Для завдання класифікації хвиль отримано і вирішено математичні моделі поширення, як хвиль, що біжать, так і стоять, в акваторії моря. Розроблено структуру сховища інформації ситуаційного центру. Для створення бази даних інформаційного сховища ситуаційного центру було проведено класифікацію хвиль та відповідне математичне та комп’ютерне моделювання. Розглянуто детермінований процес поширення звуку в плоскому хвилеводі в однорідному режимі. Вирішено спеціальні крайові завдання та завдання Коші для двовимірного хвильового рівняння, і, відповідно, для рівняння Гельмгольця. В аналітичному замкнутому вигляді отримані розрахункові формули для звукового тиску і відповідно до його швидкостей. У загальному випадку за методикою робіт Білоносова, Овсієнка, Лі, Зінченка, Ногіна обчислено у вигляді рядів Фур’є дотичну і нормальну компоненти вектору швидкості і гідродинамічний потенціал.Prombles in programming 2022; 3-4: 437-445 PROBLEMS IN PROGRAMMING ПРОБЛЕМЫ ПРОГРАММИРОВАНИЯ ПРОБЛЕМИ ПРОГРАМУВАННЯ 2023-01-23 Article Article application/pdf https://pp.isofts.kiev.ua/index.php/ojs1/article/view/545 10.15407/pp2022.03-04.437 PROBLEMS IN PROGRAMMING; No 3-4 (2022); 437-445 ПРОБЛЕМЫ ПРОГРАММИРОВАНИЯ; No 3-4 (2022); 437-445 ПРОБЛЕМИ ПРОГРАМУВАННЯ; No 3-4 (2022); 437-445 1727-4907 10.15407/pp2022.03-04 en https://pp.isofts.kiev.ua/index.php/ojs1/article/view/545/598 Copyright (c) 2023 PROBLEMS IN PROGRAMMING
institution Problems in programming
baseUrl_str https://pp.isofts.kiev.ua/index.php/ojs1/oai
datestamp_date 2023-06-25T08:11:43Z
collection OJS
language English
topic water area
techno-ecologicalevent
wave classification
information storage
mathematical modeling
UDC 519.711
004.8
spellingShingle water area
techno-ecologicalevent
wave classification
information storage
mathematical modeling
UDC 519.711
004.8
Pisarenko, V.G.
Nogin, N.V.
Kryachok, A.S.
Pisarenko, J.V.
Varava, I.A.
Koval, A.S.
About complex intelligent technologies for techno-ecological events control in the water area
topic_facet water area
techno-ecologicalevent
wave classification
information storage
mathematical modeling
UDC 519.711
004.8
акваторія
техно-екологічна подія
класифікація хвиль
інформаційне сховище
математичне моделювання
УДК 519.711
004.8
format Article
author Pisarenko, V.G.
Nogin, N.V.
Kryachok, A.S.
Pisarenko, J.V.
Varava, I.A.
Koval, A.S.
author_facet Pisarenko, V.G.
Nogin, N.V.
Kryachok, A.S.
Pisarenko, J.V.
Varava, I.A.
Koval, A.S.
author_sort Pisarenko, V.G.
title About complex intelligent technologies for techno-ecological events control in the water area
title_short About complex intelligent technologies for techno-ecological events control in the water area
title_full About complex intelligent technologies for techno-ecological events control in the water area
title_fullStr About complex intelligent technologies for techno-ecological events control in the water area
title_full_unstemmed About complex intelligent technologies for techno-ecological events control in the water area
title_sort about complex intelligent technologies for techno-ecological events control in the water area
title_alt Про комплексні інтелектуальні технології управління техно-екологічними подіями в акваторії
description Aspects of the important task solution of creating complex intelligent decision-making support technologies for the identification of techno-ecological event (TEE) and the optimal selection of the sequence of available measures to reduce the life cycle of this TEE in the water area in order to minimize material losses are considered ("CONTROL_TEE" system). In theV.M. Glushkov Institute of Cybernetics of NAS of Ukraine, Concern "BaltRobotics" (Ukraine-Poland), NTU of Ukraine "Igor Sikorsky KPI" study of the possibility of theoretical development, research and practical implementation of methods and tools that make up the information technology of research design (informational, mathematical, algorithmic, software, technical, organizational support) of robots intended for reconnaissance and neutralization of TEE in a number of environment. For the classifying waves, mathematical models of the propagation of both running and standing waves in the sea area were obtained and solved. The structure of the information storage of the situation center has been developed. In order to create a database wave classification and mathematical and computer modeling were carried out. The deterministic process of sound propagation in a flat waveguide in the homogeneous mode is considered. Special boundary value problems and Cauchy problems are solved for the two-dimensional wave equation and, accordingly, for the Helmholtz equation. Calculation formulas for sound pressure and corresponding to its velocities are obtained in an analytical closed form. In the general case, the tangent and normal components of the velocity vector and the hydrodynamic potential are calculated in the form of Fourier series by the methodology of the works of Bilonosov, Ovsienko, Li, Zinchenko, Zinchenko, Nogin.Prombles in programming 2022; 3-4: 437-445
publisher PROBLEMS IN PROGRAMMING
publishDate 2023
url https://pp.isofts.kiev.ua/index.php/ojs1/article/view/545
work_keys_str_mv AT pisarenkovg aboutcomplexintelligenttechnologiesfortechnoecologicaleventscontrolinthewaterarea
AT noginnv aboutcomplexintelligenttechnologiesfortechnoecologicaleventscontrolinthewaterarea
AT kryachokas aboutcomplexintelligenttechnologiesfortechnoecologicaleventscontrolinthewaterarea
AT pisarenkojv aboutcomplexintelligenttechnologiesfortechnoecologicaleventscontrolinthewaterarea
AT varavaia aboutcomplexintelligenttechnologiesfortechnoecologicaleventscontrolinthewaterarea
AT kovalas aboutcomplexintelligenttechnologiesfortechnoecologicaleventscontrolinthewaterarea
AT pisarenkovg prokompleksnííntelektualʹnítehnologííupravlínnâtehnoekologíčnimipodíâmivakvatoríí
AT noginnv prokompleksnííntelektualʹnítehnologííupravlínnâtehnoekologíčnimipodíâmivakvatoríí
AT kryachokas prokompleksnííntelektualʹnítehnologííupravlínnâtehnoekologíčnimipodíâmivakvatoríí
AT pisarenkojv prokompleksnííntelektualʹnítehnologííupravlínnâtehnoekologíčnimipodíâmivakvatoríí
AT varavaia prokompleksnííntelektualʹnítehnologííupravlínnâtehnoekologíčnimipodíâmivakvatoríí
AT kovalas prokompleksnííntelektualʹnítehnologííupravlínnâtehnoekologíčnimipodíâmivakvatoríí
first_indexed 2025-07-17T09:41:25Z
last_indexed 2025-07-17T09:41:25Z
_version_ 1850412880273342464
fulltext 437 Прикладне програмне забезпечення УДК 519.711; 004.8 https://doi.org/10.15407/pp2022.03-04.437 ABOUT COMPLEX INTELLIGENT TECHNOLOGIES FOR TECHNO-ECOLOGICAL EVENTS CONTROL IN THE WATER AREA Valery Pisarenko, Nikolai Nogin, Alexandr Kryachok, Julia Pisarenko, Ivan Varava, Alexandr Koval Розглядаються аспекти, що стосуються вирішення важливого завдання створення комплексних інтелектуальних техно- логій підтримки прийняття рішень для ідентифікації виникаючої техно-екологічної події (ТЕП) та оптимального вибо- ру послідовності доступних заходів зі скорочення життєвого циклу даного ТЕП в акваторії з метою мінімізації матері- альних збитків (створення системи «УПРАВЛІННЯ_ТЕП»). В Інституті кібернетики імені В.М. Глушкова НАНУ суміс- но з Концерном «BaltRobotics» (Україна – Польща), НТУУ «КПІ ім. Ігоря Сікорського» проводяться вивчення питання можливості теоретичної розробки, дослідження та практичної реалізації методів і засобів, що складають інформаційну технологію дослідницького проектування (інформаційне, математичне, алгоритмічне, програмне, технічне, організа- ційне забезпечення) інтелектуалізованих роботів, призначених для розвідки і нейтралізації небезпечних ТЕП у ряді середовищ. Для завдання класифікації хвиль отримано і вирішено математичні моделі поширення, як хвиль, що біжать, так і стоять, в акваторії моря. Розроблено структуру сховища інформації ситуаційного центру. Для створення бази да- них інформаційного сховища ситуаційного центру було проведено класифікацію хвиль та відповідне математичне та комп’ютерне моделювання. Розглянуто детермінований процес поширення звуку в плоскому хвилеводі в однорідному режимі. Вирішено спеціальні крайові завдання та завдання Коші для двовимірного хвильового рівняння, і, відповідно, для рівняння Гельмгольця. В аналітичному замкнутому вигляді отримані розрахункові формули для звукового тиску і відповідно до його швидкостей. У загальному випадку за методикою робіт Білоносова, Овсієнка, Лі, Зінченка, Ногіна обчислено у вигляді рядів Фур’є дотичну і нормальну компоненти вектору швидкості і гідродинамічний потенціал. Ключові слова: акваторія, техно-екологічна подія, класифікація хвиль, інформаційне сховище, математичне моделю- вання. Aspects of the important task solution of creating complex intelligent decision-making support technologies for the identi- fication of techno-ecological event (TEE) and the optimal selection of the sequence of available measures to reduce the life cycle of this TEE in the water area in order to minimize material losses are considered (“CONTROL_TEE” system). In the V.M. Glushkov Institute of Cybernetics of NAS of Ukraine, Concern “BaltRobotics” (Ukraine-Poland), NTU of Ukraine “Igor Sikorsky KPI” study of the possibility of theoretical development, research and practical implementation of methods and tools that make up the information technology of research design (informational, mathematical, algorithmic, software, technical, organizational support) of robots intended for reconnaissance and neutralization of TEE in a number of environment. For the classifying waves, mathematical models of the propagation of both running and standing waves in the sea area were obtained and solved. The structure of the information storage of the situation center has been developed. In order to create a database wave classification and mathematical and computer modeling were carried out. The deterministic process of sound propaga- tion in a flat waveguide in the homogeneous mode is considered. Special boundary value problems and Cauchy problems are solved for the two-dimensional wave equation and, accordingly, for the Helmholtz equation. Calculation formulas for sound pressure and corresponding to its velocities are obtained in an analytical closed form. In the general case, the tangent and normal components of the velocity vector and the hydrodynamic potential are calculated in the form of Fourier series by the methodology of the works of Bilonosov, Ovsienko, Li, Zinchenko, Zinchenko, Nogin. Keywords: water area, techno-ecologicalevent, wave classification, information storage, mathematical modeling. Introduction The paper examines aspects relevant to solving the important task of creating complex intelligent decision- making support technologies for identifying an emerging techno-ecological event (TEE) and optimally choosing a sequence of available measures to reduce the life cycle of a given TEE in the water area in order to minimize material damage (creation of an intelligent system “CONTROL_TEE”) [1-6]. For the problem of wave classification, mathematical models of propagation of both traveling and standing waves in the sea are obtained and solved. The structure of the information storage of the situational center has been developed [1]. A deterministic process of sound propagation in a plane wave guide in a uniform regime is considered. Formulation of the problem In the V.M. Glushkov Institute of Cybernetics of NAS of Ukraine, Concern “BaltRobotics” (Ukraine-Poland), NTU of Ukraine “Igor Sikorsky KPI” study of the possibility of theoretical development, research and practical implementation of methods and tools that make up the information technology of research design for reconnaissance and neutralization of TEE in a number of environment. © В.Г. Писаренко, М.В. Ногін, О.С. Крячок, Ю.В. Писаренко, І.А. Варава, О.С. Коваль, 2022 ISSN 1727-4907. Проблеми програмування. 2022. № 3-4. Спеціальний випуск 438 Прикладне програмне забезпечення Suggested Solution Aspects of the important task solution of creating complex intelligent decision-making support technologies for the identification of techno-ecological event (TEE) and the optimal selection of the sequence of available measures to reduce the life cycle of this TEE in the water area in order to minimize material losses are considered (“CONTROL_ TEE” system) of intellectualized robots intended. Statement of the research problem The informational, mathematical, algorithmic, software, technical, organizational support is considered. The structure of the information storage of the situation center has been developed. In order to create a database wave classification and mathematical and computer modeling were carried out. The deterministic process of sound propagation in a flat waveguide in the homogeneous mode is considered. Proposed components of mathematical and software for intelligent monitoring and control systems for TEE For the classifying waves, mathematical models of the propagation of both running and standing waves in the sea area were obtained and solved. Special boundary value problems and the Cauchy problem for the two-dimensional wave equation and, accordingly, for the Helmholtz equation are solved. As a result, calculation formulas for the sound pressure P(x,z,t) and, accordingly, its velocities Прикладне програмне забезпечення Suggested Solution Aspects of the important task solution of creating complex intelligent decision-making support technologies for the identification of techno-ecological event (TEE) and the optimal selection of the sequence of available measures to reduce the life cycle of this TEE in the water area in order to minimize material losses are considered ("CONTROL_TEE" system) of intellectualized robots intended. Statement of the research problem The informational, mathematical, algorithmic, software, technical, organizational support is considered. The structure of the information storage of the situation center has been developed. In order to create a database wave classification and mathematical and computer modeling were carried out. The deterministic process of sound propagation in a flat waveguide in the homogeneous mode is considered. Proposed components of mathematical and software for intelligent monitoring and control systems for TEE For the classifying waves, mathematical models of the propagation of both running and standing waves in the sea area were obtained and solved. Special boundary value problems and the Cauchy problem for the two-dimensional wave equation and, accordingly, for the Helmholtz equation are solved. As a result, calculation formulas for the sound pressure P(x,z,t) and, accordingly, its velocities x P i Vx   =  1 , z P i Vz   =  1 are obtained in an analytical closed form. A qualitative analysis and numerical computer solutions are carried out. Under the sound, in the modern sense of this term, we mean arbitrary vibrations of a liquid or air in the frequency range of 15 Hz - 15 kHz. Note that oscillations with a frequency lower than 15 Hz are called infrasonic, and higher than 15 kHz are called ultrasonic. In accordance with [7, 8], based on the Euler and continuity equations for the sound pressure in a plane waveguide (Fig. 1), the sound pressure has the form ),(),,( zxPetzxP ti−= , (1) where the complex amplitude P(x,z) satisfies the Helmholtz equation 02 2 2 2 2 =+   +   Pk z P x P (2) where k – wave number, c k  = , c – constant sound speed. Fig. 1. Planar waveguide. The general solution of the Helmholtz equation satisfies the boundary conditions on a rigid surface (i.e. here the vertical component of the velocity 0=zV by 0=z and hz = ). As a result, we obtain the Neumann boundary conditions: 0 0 = =  = =  hzx P zx P (3) In accordance with the methodology of works [1, 4] by the Fourier method, the solution of the boundary value problem (2), (3) with the help of the auxiliary Sturm-Liouville problem for an orthogonal system of functions was obtained in the form of a special series of the form: xk m ti xe h mzetzxP −  = − = 0 cos),,(  , (4) where x z h 0 are obtained in an analytical closed form. A qualitative analysis and numerical computer solutions are carried out. Under the sound, in the modern sense of this term, we mean arbitrary vibrations of a liquid or air in the frequency range of 15 Hz - 15 kHz. Note that oscillations with a frequency lower than 15 Hz are called infrasonic, and higher than 15 kHz are called ultrasonic. In accordance with [7, 8], based on the Euler and continuity equations for the sound pressure in a plane waveguide (Fig. 1), the sound pressure has the form Прикладне програмне забезпечення Suggested Solution Aspects of the important task solution of creating complex intelligent decision-making support technologies for the identification of techno-ecological event (TEE) and the optimal selection of the sequence of available measures to reduce the life cycle of this TEE in the water area in order to minimize material losses are considered ("CONTROL_TEE" system) of intellectualized robots intended. Statement of the research problem The informational, mathematical, algorithmic, software, technical, organizational support is considered. The structure of the information storage of the situation center has been developed. In order to create a database wave classification and mathematical and computer modeling were carried out. The deterministic process of sound propagation in a flat waveguide in the homogeneous mode is considered. Proposed components of mathematical and software for intelligent monitoring and control systems for TEE For the classifying waves, mathematical models of the propagation of both running and standing waves in the sea area were obtained and solved. Special boundary value problems and the Cauchy problem for the two-dimensional wave equation and, accordingly, for the Helmholtz equation are solved. As a result, calculation formulas for the sound pressure P(x,z,t) and, accordingly, its velocities x P i Vx   =  1 , z P i Vz   =  1 are obtained in an analytical closed form. A qualitative analysis and numerical computer solutions are carried out. Under the sound, in the modern sense of this term, we mean arbitrary vibrations of a liquid or air in the frequency range of 15 Hz - 15 kHz. Note that oscillations with a frequency lower than 15 Hz are called infrasonic, and higher than 15 kHz are called ultrasonic. In accordance with [7, 8], based on the Euler and continuity equations for the sound pressure in a plane waveguide (Fig. 1), the sound pressure has the form ),(),,( zxPetzxP ti−= , (1) where the complex amplitude P(x,z) satisfies the Helmholtz equation 02 2 2 2 2 =+   +   Pk z P x P (2) where k – wave number, c k  = , c – constant sound speed. Fig. 1. Planar waveguide. The general solution of the Helmholtz equation satisfies the boundary conditions on a rigid surface (i.e. here the vertical component of the velocity 0=zV by 0=z and hz = ). As a result, we obtain the Neumann boundary conditions: 0 0 = =  = =  hzx P zx P (3) In accordance with the methodology of works [1, 4] by the Fourier method, the solution of the boundary value problem (2), (3) with the help of the auxiliary Sturm-Liouville problem for an orthogonal system of functions was obtained in the form of a special series of the form: xk m ti xe h mzetzxP −  = − = 0 cos),,(  , (4) where x z h 0 (1) where the complex amplitude P(x,z) satisfies the Helmholtz equation Прикладне програмне забезпечення Suggested Solution Aspects of the important task solution of creating complex intelligent decision-making support technologies for the identification of techno-ecological event (TEE) and the optimal selection of the sequence of available measures to reduce the life cycle of this TEE in the water area in order to minimize material losses are considered ("CONTROL_TEE" system) of intellectualized robots intended. Statement of the research problem The informational, mathematical, algorithmic, software, technical, organizational support is considered. The structure of the information storage of the situation center has been developed. In order to create a database wave classification and mathematical and computer modeling were carried out. The deterministic process of sound propagation in a flat waveguide in the homogeneous mode is considered. Proposed components of mathematical and software for intelligent monitoring and control systems for TEE For the classifying waves, mathematical models of the propagation of both running and standing waves in the sea area were obtained and solved. Special boundary value problems and the Cauchy problem for the two-dimensional wave equation and, accordingly, for the Helmholtz equation are solved. As a result, calculation formulas for the sound pressure P(x,z,t) and, accordingly, its velocities x P i Vx   =  1 , z P i Vz   =  1 are obtained in an analytical closed form. A qualitative analysis and numerical computer solutions are carried out. Under the sound, in the modern sense of this term, we mean arbitrary vibrations of a liquid or air in the frequency range of 15 Hz - 15 kHz. Note that oscillations with a frequency lower than 15 Hz are called infrasonic, and higher than 15 kHz are called ultrasonic. In accordance with [7, 8], based on the Euler and continuity equations for the sound pressure in a plane waveguide (Fig. 1), the sound pressure has the form ),(),,( zxPetzxP ti−= , (1) where the complex amplitude P(x,z) satisfies the Helmholtz equation 02 2 2 2 2 =+   +   Pk z P x P (2) where k – wave number, c k  = , c – constant sound speed. Fig. 1. Planar waveguide. The general solution of the Helmholtz equation satisfies the boundary conditions on a rigid surface (i.e. here the vertical component of the velocity 0=zV by 0=z and hz = ). As a result, we obtain the Neumann boundary conditions: 0 0 = =  = =  hzx P zx P (3) In accordance with the methodology of works [1, 4] by the Fourier method, the solution of the boundary value problem (2), (3) with the help of the auxiliary Sturm-Liouville problem for an orthogonal system of functions was obtained in the form of a special series of the form: xk m ti xe h mzetzxP −  = − = 0 cos),,(  , (4) where x z h 0 (2) where k – wave number, Прикладне програмне забезпечення Suggested Solution Aspects of the important task solution of creating complex intelligent decision-making support technologies for the identification of techno-ecological event (TEE) and the optimal selection of the sequence of available measures to reduce the life cycle of this TEE in the water area in order to minimize material losses are considered ("CONTROL_TEE" system) of intellectualized robots intended. Statement of the research problem The informational, mathematical, algorithmic, software, technical, organizational support is considered. The structure of the information storage of the situation center has been developed. In order to create a database wave classification and mathematical and computer modeling were carried out. The deterministic process of sound propagation in a flat waveguide in the homogeneous mode is considered. Proposed components of mathematical and software for intelligent monitoring and control systems for TEE For the classifying waves, mathematical models of the propagation of both running and standing waves in the sea area were obtained and solved. Special boundary value problems and the Cauchy problem for the two-dimensional wave equation and, accordingly, for the Helmholtz equation are solved. As a result, calculation formulas for the sound pressure P(x,z,t) and, accordingly, its velocities x P i Vx   =  1 , z P i Vz   =  1 are obtained in an analytical closed form. A qualitative analysis and numerical computer solutions are carried out. Under the sound, in the modern sense of this term, we mean arbitrary vibrations of a liquid or air in the frequency range of 15 Hz - 15 kHz. Note that oscillations with a frequency lower than 15 Hz are called infrasonic, and higher than 15 kHz are called ultrasonic. In accordance with [7, 8], based on the Euler and continuity equations for the sound pressure in a plane waveguide (Fig. 1), the sound pressure has the form ),(),,( zxPetzxP ti−= , (1) where the complex amplitude P(x,z) satisfies the Helmholtz equation 02 2 2 2 2 =+   +   Pk z P x P (2) where k – wave number, c k  = , c – constant sound speed. Fig. 1. Planar waveguide. The general solution of the Helmholtz equation satisfies the boundary conditions on a rigid surface (i.e. here the vertical component of the velocity 0=zV by 0=z and hz = ). As a result, we obtain the Neumann boundary conditions: 0 0 = =  = =  hzx P zx P (3) In accordance with the methodology of works [1, 4] by the Fourier method, the solution of the boundary value problem (2), (3) with the help of the auxiliary Sturm-Liouville problem for an orthogonal system of functions was obtained in the form of a special series of the form: xk m ti xe h mzetzxP −  = − = 0 cos),,(  , (4) where x z h 0 c – constant sound speed. Прикладне програмне забезпечення Suggested Solution Aspects of the important task solution of creating complex intelligent decision-making support technologies for the identification of techno-ecological event (TEE) and the optimal selection of the sequence of available measures to reduce the life cycle of this TEE in the water area in order to minimize material losses are considered ("CONTROL_TEE" system) of intellectualized robots intended. Statement of the research problem The informational, mathematical, algorithmic, software, technical, organizational support is considered. The structure of the information storage of the situation center has been developed. In order to create a database wave classification and mathematical and computer modeling were carried out. The deterministic process of sound propagation in a flat waveguide in the homogeneous mode is considered. Proposed components of mathematical and software for intelligent monitoring and control systems for TEE For the classifying waves, mathematical models of the propagation of both running and standing waves in the sea area were obtained and solved. Special boundary value problems and the Cauchy problem for the two-dimensional wave equation and, accordingly, for the Helmholtz equation are solved. As a result, calculation formulas for the sound pressure P(x,z,t) and, accordingly, its velocities x P i Vx   =  1 , z P i Vz   =  1 are obtained in an analytical closed form. A qualitative analysis and numerical computer solutions are carried out. Under the sound, in the modern sense of this term, we mean arbitrary vibrations of a liquid or air in the frequency range of 15 Hz - 15 kHz. Note that oscillations with a frequency lower than 15 Hz are called infrasonic, and higher than 15 kHz are called ultrasonic. In accordance with [7, 8], based on the Euler and continuity equations for the sound pressure in a plane waveguide (Fig. 1), the sound pressure has the form ),(),,( zxPetzxP ti−= , (1) where the complex amplitude P(x,z) satisfies the Helmholtz equation 02 2 2 2 2 =+   +   Pk z P x P (2) where k – wave number, c k  = , c – constant sound speed. Fig. 1. Planar waveguide. The general solution of the Helmholtz equation satisfies the boundary conditions on a rigid surface (i.e. here the vertical component of the velocity 0=zV by 0=z and hz = ). As a result, we obtain the Neumann boundary conditions: 0 0 = =  = =  hzx P zx P (3) In accordance with the methodology of works [1, 4] by the Fourier method, the solution of the boundary value problem (2), (3) with the help of the auxiliary Sturm-Liouville problem for an orthogonal system of functions was obtained in the form of a special series of the form: xk m ti xe h mzetzxP −  = − = 0 cos),,(  , (4) where x z h 0 Fig. 1. Planar waveguide. The general solution of the Helmholtz equation satisfies the boundary conditions on a rigid surface (i.e. here the vertical component of the velocity Прикладне програмне забезпечення Suggested Solution Aspects of the important task solution of creating complex intelligent decision-making support technologies for the identification of techno-ecological event (TEE) and the optimal selection of the sequence of available measures to reduce the life cycle of this TEE in the water area in order to minimize material losses are considered ("CONTROL_TEE" system) of intellectualized robots intended. Statement of the research problem The informational, mathematical, algorithmic, software, technical, organizational support is considered. The structure of the information storage of the situation center has been developed. In order to create a database wave classification and mathematical and computer modeling were carried out. The deterministic process of sound propagation in a flat waveguide in the homogeneous mode is considered. Proposed components of mathematical and software for intelligent monitoring and control systems for TEE For the classifying waves, mathematical models of the propagation of both running and standing waves in the sea area were obtained and solved. Special boundary value problems and the Cauchy problem for the two-dimensional wave equation and, accordingly, for the Helmholtz equation are solved. As a result, calculation formulas for the sound pressure P(x,z,t) and, accordingly, its velocities x P i Vx   =  1 , z P i Vz   =  1 are obtained in an analytical closed form. A qualitative analysis and numerical computer solutions are carried out. Under the sound, in the modern sense of this term, we mean arbitrary vibrations of a liquid or air in the frequency range of 15 Hz - 15 kHz. Note that oscillations with a frequency lower than 15 Hz are called infrasonic, and higher than 15 kHz are called ultrasonic. In accordance with [7, 8], based on the Euler and continuity equations for the sound pressure in a plane waveguide (Fig. 1), the sound pressure has the form ),(),,( zxPetzxP ti−= , (1) where the complex amplitude P(x,z) satisfies the Helmholtz equation 02 2 2 2 2 =+   +   Pk z P x P (2) where k – wave number, c k  = , c – constant sound speed. Fig. 1. Planar waveguide. The general solution of the Helmholtz equation satisfies the boundary conditions on a rigid surface (i.e. here the vertical component of the velocity 0=zV by 0=z and hz = ). As a result, we obtain the Neumann boundary conditions: 0 0 = =  = =  hzx P zx P (3) In accordance with the methodology of works [1, 4] by the Fourier method, the solution of the boundary value problem (2), (3) with the help of the auxiliary Sturm-Liouville problem for an orthogonal system of functions was obtained in the form of a special series of the form: xk m ti xe h mzetzxP −  = − = 0 cos),,(  , (4) where x z h 0 by Прикладне програмне забезпечення Suggested Solution Aspects of the important task solution of creating complex intelligent decision-making support technologies for the identification of techno-ecological event (TEE) and the optimal selection of the sequence of available measures to reduce the life cycle of this TEE in the water area in order to minimize material losses are considered ("CONTROL_TEE" system) of intellectualized robots intended. Statement of the research problem The informational, mathematical, algorithmic, software, technical, organizational support is considered. The structure of the information storage of the situation center has been developed. In order to create a database wave classification and mathematical and computer modeling were carried out. The deterministic process of sound propagation in a flat waveguide in the homogeneous mode is considered. Proposed components of mathematical and software for intelligent monitoring and control systems for TEE For the classifying waves, mathematical models of the propagation of both running and standing waves in the sea area were obtained and solved. Special boundary value problems and the Cauchy problem for the two-dimensional wave equation and, accordingly, for the Helmholtz equation are solved. As a result, calculation formulas for the sound pressure P(x,z,t) and, accordingly, its velocities x P i Vx   =  1 , z P i Vz   =  1 are obtained in an analytical closed form. A qualitative analysis and numerical computer solutions are carried out. Under the sound, in the modern sense of this term, we mean arbitrary vibrations of a liquid or air in the frequency range of 15 Hz - 15 kHz. Note that oscillations with a frequency lower than 15 Hz are called infrasonic, and higher than 15 kHz are called ultrasonic. In accordance with [7, 8], based on the Euler and continuity equations for the sound pressure in a plane waveguide (Fig. 1), the sound pressure has the form ),(),,( zxPetzxP ti−= , (1) where the complex amplitude P(x,z) satisfies the Helmholtz equation 02 2 2 2 2 =+   +   Pk z P x P (2) where k – wave number, c k  = , c – constant sound speed. Fig. 1. Planar waveguide. The general solution of the Helmholtz equation satisfies the boundary conditions on a rigid surface (i.e. here the vertical component of the velocity 0=zV by 0=z and hz = ). As a result, we obtain the Neumann boundary conditions: 0 0 = =  = =  hzx P zx P (3) In accordance with the methodology of works [1, 4] by the Fourier method, the solution of the boundary value problem (2), (3) with the help of the auxiliary Sturm-Liouville problem for an orthogonal system of functions was obtained in the form of a special series of the form: xk m ti xe h mzetzxP −  = − = 0 cos),,(  , (4) where x z h 0 . As a result, we obtain the Neumann boundary conditions: Прикладне програмне забезпечення Suggested Solution Aspects of the important task solution of creating complex intelligent decision-making support technologies for the identification of techno-ecological event (TEE) and the optimal selection of the sequence of available measures to reduce the life cycle of this TEE in the water area in order to minimize material losses are considered ("CONTROL_TEE" system) of intellectualized robots intended. Statement of the research problem The informational, mathematical, algorithmic, software, technical, organizational support is considered. The structure of the information storage of the situation center has been developed. In order to create a database wave classification and mathematical and computer modeling were carried out. The deterministic process of sound propagation in a flat waveguide in the homogeneous mode is considered. Proposed components of mathematical and software for intelligent monitoring and control systems for TEE For the classifying waves, mathematical models of the propagation of both running and standing waves in the sea area were obtained and solved. Special boundary value problems and the Cauchy problem for the two-dimensional wave equation and, accordingly, for the Helmholtz equation are solved. As a result, calculation formulas for the sound pressure P(x,z,t) and, accordingly, its velocities x P i Vx   =  1 , z P i Vz   =  1 are obtained in an analytical closed form. A qualitative analysis and numerical computer solutions are carried out. Under the sound, in the modern sense of this term, we mean arbitrary vibrations of a liquid or air in the frequency range of 15 Hz - 15 kHz. Note that oscillations with a frequency lower than 15 Hz are called infrasonic, and higher than 15 kHz are called ultrasonic. In accordance with [7, 8], based on the Euler and continuity equations for the sound pressure in a plane waveguide (Fig. 1), the sound pressure has the form ),(),,( zxPetzxP ti−= , (1) where the complex amplitude P(x,z) satisfies the Helmholtz equation 02 2 2 2 2 =+   +   Pk z P x P (2) where k – wave number, c k  = , c – constant sound speed. Fig. 1. Planar waveguide. The general solution of the Helmholtz equation satisfies the boundary conditions on a rigid surface (i.e. here the vertical component of the velocity 0=zV by 0=z and hz = ). As a result, we obtain the Neumann boundary conditions: 0 0 = =  = =  hzx P zx P (3) In accordance with the methodology of works [1, 4] by the Fourier method, the solution of the boundary value problem (2), (3) with the help of the auxiliary Sturm-Liouville problem for an orthogonal system of functions was obtained in the form of a special series of the form: xk m ti xe h mzetzxP −  = − = 0 cos),,(  , (4) where x z h 0 (3) In accordance with the methodology of works [1, 4] by the Fourier method, the solution of the boundary value problem (2), (3) with the help of the auxiliary Sturm-Liouville problem for an orthogonal system of functions was obtained in the form of a special series of the form: z h 439 Прикладне програмне забезпечення Прикладне програмне забезпечення Suggested Solution Aspects of the important task solution of creating complex intelligent decision-making support technologies for the identification of techno-ecological event (TEE) and the optimal selection of the sequence of available measures to reduce the life cycle of this TEE in the water area in order to minimize material losses are considered ("CONTROL_TEE" system) of intellectualized robots intended. Statement of the research problem The informational, mathematical, algorithmic, software, technical, organizational support is considered. The structure of the information storage of the situation center has been developed. In order to create a database wave classification and mathematical and computer modeling were carried out. The deterministic process of sound propagation in a flat waveguide in the homogeneous mode is considered. Proposed components of mathematical and software for intelligent monitoring and control systems for TEE For the classifying waves, mathematical models of the propagation of both running and standing waves in the sea area were obtained and solved. Special boundary value problems and the Cauchy problem for the two-dimensional wave equation and, accordingly, for the Helmholtz equation are solved. As a result, calculation formulas for the sound pressure P(x,z,t) and, accordingly, its velocities x P i Vx   =  1 , z P i Vz   =  1 are obtained in an analytical closed form. A qualitative analysis and numerical computer solutions are carried out. Under the sound, in the modern sense of this term, we mean arbitrary vibrations of a liquid or air in the frequency range of 15 Hz - 15 kHz. Note that oscillations with a frequency lower than 15 Hz are called infrasonic, and higher than 15 kHz are called ultrasonic. In accordance with [7, 8], based on the Euler and continuity equations for the sound pressure in a plane waveguide (Fig. 1), the sound pressure has the form ),(),,( zxPetzxP ti−= , (1) where the complex amplitude P(x,z) satisfies the Helmholtz equation 02 2 2 2 2 =+   +   Pk z P x P (2) where k – wave number, c k  = , c – constant sound speed. Fig. 1. Planar waveguide. The general solution of the Helmholtz equation satisfies the boundary conditions on a rigid surface (i.e. here the vertical component of the velocity 0=zV by 0=z and hz = ). As a result, we obtain the Neumann boundary conditions: 0 0 = =  = =  hzx P zx P (3) In accordance with the methodology of works [1, 4] by the Fourier method, the solution of the boundary value problem (2), (3) with the help of the auxiliary Sturm-Liouville problem for an orthogonal system of functions was obtained in the form of a special series of the form: xk m ti xe h mzetzxP −  = − = 0 cos),,(  , (4) where x z h 0 , (4) where Прикладне програмне забезпечення [Введите текст] 2 22 22 h mkkx  −= . (5) Atlow frequencies, only the first summand ( 0=m ) describes the traveling wave, because now c kkx  = 2 . In our case, in the range of "ordinary frequencies", when Nm , kkx  , we get purely imaginary values [9, 10]: 122 22 −= hk m c ikx  . (6) Thus, the terms of the series, starting from the second, represent waves whose amplitudes decrease quite rapidly as the distance to the point source increases. Finally, when the condition h k h c    ==122 22 is satisfied, then xk is a real value and the first normal wave appears. Thus, waves with numbers satisfying the condition are propagating    = c hN   , where parentheses   – the whole part of number. Fig. 2. Wave numbers of normal waves. Taking into account expressions (4) and (6) for the “frozen” time, we obtain an expression for acoustic pressure in the form: xik N m m xe h mzzxP − =       = 0 cos),(  , where m xk – wave number of m -th mode. The initial condition of the boundary value problem (wave profile) has the following form fig. 3. Fig. 3. Wave Profile. (5) Atlow frequencies, only the first summand (m = 0) describes the traveling wave, because now Прикладне програмне забезпечення [Введите текст] 2 22 22 h mkkx  −= . (5) Atlow frequencies, only the first summand ( 0=m ) describes the traveling wave, because now c kkx  = 2 . In our case, in the range of "ordinary frequencies", when Nm , kkx  , we get purely imaginary values [9, 10]: 122 22 −= hk m c ikx  . (6) Thus, the terms of the series, starting from the second, represent waves whose amplitudes decrease quite rapidly as the distance to the point source increases. Finally, when the condition h k h c    ==122 22 is satisfied, then xk is a real value and the first normal wave appears. Thus, waves with numbers satisfying the condition are propagating    = c hN   , where parentheses   – the whole part of number. Fig. 2. Wave numbers of normal waves. Taking into account expressions (4) and (6) for the “frozen” time, we obtain an expression for acoustic pressure in the form: xik N m m xe h mzzxP − =       = 0 cos),(  , where m xk – wave number of m -th mode. The initial condition of the boundary value problem (wave profile) has the following form fig. 3. Fig. 3. Wave Profile. . In our case, in the range of “ordinary frequencies”, when Прикладне програмне забезпечення [Введите текст] 2 22 22 h mkkx  −= . (5) Atlow frequencies, only the first summand ( 0=m ) describes the traveling wave, because now c kkx  = 2 . In our case, in the range of "ordinary frequencies", when Nm , kkx  , we get purely imaginary values [9, 10]: 122 22 −= hk m c ikx  . (6) Thus, the terms of the series, starting from the second, represent waves whose amplitudes decrease quite rapidly as the distance to the point source increases. Finally, when the condition h k h c    ==122 22 is satisfied, then xk is a real value and the first normal wave appears. Thus, waves with numbers satisfying the condition are propagating    = c hN   , where parentheses   – the whole part of number. Fig. 2. Wave numbers of normal waves. Taking into account expressions (4) and (6) for the “frozen” time, we obtain an expression for acoustic pressure in the form: xik N m m xe h mzzxP − =       = 0 cos),(  , where m xk – wave number of m -th mode. The initial condition of the boundary value problem (wave profile) has the following form fig. 3. Fig. 3. Wave Profile. , we get purely imaginary values [9, 10]: Прикладне програмне забезпечення [Введите текст] 2 22 22 h mkkx  −= . (5) Atlow frequencies, only the first summand ( 0=m ) describes the traveling wave, because now c kkx  = 2 . In our case, in the range of "ordinary frequencies", when Nm , kkx  , we get purely imaginary values [9, 10]: 122 22 −= hk m c ikx  . (6) Thus, the terms of the series, starting from the second, represent waves whose amplitudes decrease quite rapidly as the distance to the point source increases. Finally, when the condition h k h c    ==122 22 is satisfied, then xk is a real value and the first normal wave appears. Thus, waves with numbers satisfying the condition are propagating    = c hN   , where parentheses   – the whole part of number. Fig. 2. Wave numbers of normal waves. Taking into account expressions (4) and (6) for the “frozen” time, we obtain an expression for acoustic pressure in the form: xik N m m xe h mzzxP − =       = 0 cos),(  , where m xk – wave number of m -th mode. The initial condition of the boundary value problem (wave profile) has the following form fig. 3. Fig. 3. Wave Profile. (6) Thus, the terms of the series, starting from the second, represent waves whose amplitudes decrease quite rapidly as the distance to the point source increases. Finally, when the condition Прикладне програмне забезпечення [Введите текст] 2 22 22 h mkkx  −= . (5) Atlow frequencies, only the first summand ( 0=m ) describes the traveling wave, because now c kkx  = 2 . In our case, in the range of "ordinary frequencies", when Nm , kkx  , we get purely imaginary values [9, 10]: 122 22 −= hk m c ikx  . (6) Thus, the terms of the series, starting from the second, represent waves whose amplitudes decrease quite rapidly as the distance to the point source increases. Finally, when the condition h k h c    ==122 22 is satisfied, then xk is a real value and the first normal wave appears. Thus, waves with numbers satisfying the condition are propagating    = c hN   , where parentheses   – the whole part of number. Fig. 2. Wave numbers of normal waves. Taking into account expressions (4) and (6) for the “frozen” time, we obtain an expression for acoustic pressure in the form: xik N m m xe h mzzxP − =       = 0 cos),(  , where m xk – wave number of m -th mode. The initial condition of the boundary value problem (wave profile) has the following form fig. 3. Fig. 3. Wave Profile. is satisfied, then Прикладне програмне забезпечення [Введите текст] 2 22 22 h mkkx  −= . (5) Atlow frequencies, only the first summand ( 0=m ) describes the traveling wave, because now c kkx  = 2 . In our case, in the range of "ordinary frequencies", when Nm , kkx  , we get purely imaginary values [9, 10]: 122 22 −= hk m c ikx  . (6) Thus, the terms of the series, starting from the second, represent waves whose amplitudes decrease quite rapidly as the distance to the point source increases. Finally, when the condition h k h c    ==122 22 is satisfied, then xk is a real value and the first normal wave appears. Thus, waves with numbers satisfying the condition are propagating    = c hN   , where parentheses   – the whole part of number. Fig. 2. Wave numbers of normal waves. Taking into account expressions (4) and (6) for the “frozen” time, we obtain an expression for acoustic pressure in the form: xik N m m xe h mzzxP − =       = 0 cos),(  , where m xk – wave number of m -th mode. The initial condition of the boundary value problem (wave profile) has the following form fig. 3. Fig. 3. Wave Profile. is a real value and the first normal wave appears. Thus, waves with numbers satisfying the condition are propagating Прикладне програмне забезпечення [Введите текст] 2 22 22 h mkkx  −= . (5) Atlow frequencies, only the first summand ( 0=m ) describes the traveling wave, because now c kkx  = 2 . In our case, in the range of "ordinary frequencies", when Nm , kkx  , we get purely imaginary values [9, 10]: 122 22 −= hk m c ikx  . (6) Thus, the terms of the series, starting from the second, represent waves whose amplitudes decrease quite rapidly as the distance to the point source increases. Finally, when the condition h k h c    ==122 22 is satisfied, then xk is a real value and the first normal wave appears. Thus, waves with numbers satisfying the condition are propagating    = c hN   , where parentheses   – the whole part of number. Fig. 2. Wave numbers of normal waves. Taking into account expressions (4) and (6) for the “frozen” time, we obtain an expression for acoustic pressure in the form: xik N m m xe h mzzxP − =       = 0 cos),(  , where m xk – wave number of m -th mode. The initial condition of the boundary value problem (wave profile) has the following form fig. 3. Fig. 3. Wave Profile. , where parentheses [ ] – the whole part of number. Прикладне програмне забезпечення [Введите текст] 2 22 22 h mkkx  −= . (5) Atlow frequencies, only the first summand ( 0=m ) describes the traveling wave, because now c kkx  = 2 . In our case, in the range of "ordinary frequencies", when Nm , kkx  , we get purely imaginary values [9, 10]: 122 22 −= hk m c ikx  . (6) Thus, the terms of the series, starting from the second, represent waves whose amplitudes decrease quite rapidly as the distance to the point source increases. Finally, when the condition h k h c    ==122 22 is satisfied, then xk is a real value and the first normal wave appears. Thus, waves with numbers satisfying the condition are propagating    = c hN   , where parentheses   – the whole part of number. Fig. 2. Wave numbers of normal waves. Taking into account expressions (4) and (6) for the “frozen” time, we obtain an expression for acoustic pressure in the form: xik N m m xe h mzzxP − =       = 0 cos),(  , where m xk – wave number of m -th mode. The initial condition of the boundary value problem (wave profile) has the following form fig. 3. Fig. 3. Wave Profile. Fig. 2. Wave numbers of normal waves. Taking into account expressions (4) and (6) for the “frozen” time, we obtain an expression for acoustic pressure in the form: Прикладне програмне забезпечення [Введите текст] 2 22 22 h mkkx  −= . (5) Atlow frequencies, only the first summand ( 0=m ) describes the traveling wave, because now c kkx  = 2 . In our case, in the range of "ordinary frequencies", when Nm , kkx  , we get purely imaginary values [9, 10]: 122 22 −= hk m c ikx  . (6) Thus, the terms of the series, starting from the second, represent waves whose amplitudes decrease quite rapidly as the distance to the point source increases. Finally, when the condition h k h c    ==122 22 is satisfied, then xk is a real value and the first normal wave appears. Thus, waves with numbers satisfying the condition are propagating    = c hN   , where parentheses   – the whole part of number. Fig. 2. Wave numbers of normal waves. Taking into account expressions (4) and (6) for the “frozen” time, we obtain an expression for acoustic pressure in the form: xik N m m xe h mzzxP − =       = 0 cos),(  , where m xk – wave number of m -th mode. The initial condition of the boundary value problem (wave profile) has the following form fig. 3. Fig. 3. Wave Profile. where Прикладне програмне забезпечення [Введите текст] 2 22 22 h mkkx  −= . (5) Atlow frequencies, only the first summand ( 0=m ) describes the traveling wave, because now c kkx  = 2 . In our case, in the range of "ordinary frequencies", when Nm , kkx  , we get purely imaginary values [9, 10]: 122 22 −= hk m c ikx  . (6) Thus, the terms of the series, starting from the second, represent waves whose amplitudes decrease quite rapidly as the distance to the point source increases. Finally, when the condition h k h c    ==122 22 is satisfied, then xk is a real value and the first normal wave appears. Thus, waves with numbers satisfying the condition are propagating    = c hN   , where parentheses   – the whole part of number. Fig. 2. Wave numbers of normal waves. Taking into account expressions (4) and (6) for the “frozen” time, we obtain an expression for acoustic pressure in the form: xik N m m xe h mzzxP − =       = 0 cos),(  , where m xk – wave number of m -th mode. The initial condition of the boundary value problem (wave profile) has the following form fig. 3. Fig. 3. Wave Profile. – wave number of m-th mode. The initial condition of the boundary value problem (wave profile) has the following form fig. 3. Прикладне програмне забезпечення [Введите текст] 2 22 22 h mkkx  −= . (5) Atlow frequencies, only the first summand ( 0=m ) describes the traveling wave, because now c kkx  = 2 . In our case, in the range of "ordinary frequencies", when Nm , kkx  , we get purely imaginary values [9, 10]: 122 22 −= hk m c ikx  . (6) Thus, the terms of the series, starting from the second, represent waves whose amplitudes decrease quite rapidly as the distance to the point source increases. Finally, when the condition h k h c    ==122 22 is satisfied, then xk is a real value and the first normal wave appears. Thus, waves with numbers satisfying the condition are propagating    = c hN   , where parentheses   – the whole part of number. Fig. 2. Wave numbers of normal waves. Taking into account expressions (4) and (6) for the “frozen” time, we obtain an expression for acoustic pressure in the form: xik N m m xe h mzzxP − =       = 0 cos),(  , where m xk – wave number of m -th mode. The initial condition of the boundary value problem (wave profile) has the following form fig. 3. Fig. 3. Wave Profile. Fig. 3. Wave Profile. 440 Прикладне програмне забезпечення For the model case, the following pressure distribution in a planar waterway is obtained (modulus and real part). Прикладне програмне забезпечення For the model case, the following pressure distribution in a planar waterway is obtained (modulus and real part). Fig. 4. Modulus and real part of the pressure field. We use horizontal sections of the obtained fields to study hydroacoustic signals. In particular, the frequency h c 21 = is called the transverse resonance frequency of the waveguide. Now the width of the waveguide is 12 1  (wavelength 1 1   c = ). Fig. 4. Modulus and real part of the pressure field. We use horizontal sections of the obtained fields to study hydroacoustic signals. In particular, the frequency Прикладне програмне забезпечення For the model case, the following pressure distribution in a planar waterway is obtained (modulus and real part). Fig. 4. Modulus and real part of the pressure field. We use horizontal sections of the obtained fields to study hydroacoustic signals. In particular, the frequency h c 21 = is called the transverse resonance frequency of the waveguide. Now the width of the waveguide is 12 1  (wavelength 1 1   c = ). is called the transverse resonance frequency of the waveguide. Now the width of the waveguide is Прикладне програмне забезпечення For the model case, the following pressure distribution in a planar waterway is obtained (modulus and real part). Fig. 4. Modulus and real part of the pressure field. We use horizontal sections of the obtained fields to study hydroacoustic signals. In particular, the frequency h c 21 = is called the transverse resonance frequency of the waveguide. Now the width of the waveguide is 12 1  (wavelength 1 1   c = ). (wavelength Прикладне програмне забезпечення For the model case, the following pressure distribution in a planar waterway is obtained (modulus and real part). Fig. 4. Modulus and real part of the pressure field. We use horizontal sections of the obtained fields to study hydroacoustic signals. In particular, the frequency h c 21 = is called the transverse resonance frequency of the waveguide. Now the width of the waveguide is 12 1  (wavelength 1 1   c = ). ). Прикладне програмне забезпечення For the model case, the following pressure distribution in a planar waterway is obtained (modulus and real part). Fig. 4. Modulus and real part of the pressure field. We use horizontal sections of the obtained fields to study hydroacoustic signals. In particular, the frequency h c 21 = is called the transverse resonance frequency of the waveguide. Now the width of the waveguide is 12 1  (wavelength 1 1   c = ). Прикладне програмне забезпечення [Введите текст] Fig. 5. Horizontal sections of the field at different depths. In the case of low frequencies, which is very important for practice, below the frequency of the transverse resonance, in our case, in the presence of non-zero boundary conditions, the attenuation of the amplitudes, with an increase in "x", passes so quickly that we can take [9]:       += 00 cos  x c AP , (7) where 0A , 0 determined by the properties of the radiation source. Then 0zV ,       +−= 0 0 sin1    x cic A Vx . (8) Remark. Under zero boundary conditions, the nature of oscillations in the waveguide may differ significantly from that considered above. In this case, the number and location of the field maxima will depend in another way on the superposition of the propagating waves. To do this, we solve a boundary-value problem for the Helmholtz equation with initial conditions under which the pressure profile is represented as a parabola. Boundary conditions on the walls of the waveguide .0 0 = = = = hz P z P 441 Прикладне програмне забезпечення Прикладне програмне забезпечення [Введите текст] Fig. 5. Horizontal sections of the field at different depths. In the case of low frequencies, which is very important for practice, below the frequency of the transverse resonance, in our case, in the presence of non-zero boundary conditions, the attenuation of the amplitudes, with an increase in "x", passes so quickly that we can take [9]:       += 00 cos  x c AP , (7) where 0A , 0 determined by the properties of the radiation source. Then 0zV ,       +−= 0 0 sin1    x cic A Vx . (8) Remark. Under zero boundary conditions, the nature of oscillations in the waveguide may differ significantly from that considered above. In this case, the number and location of the field maxima will depend in another way on the superposition of the propagating waves. To do this, we solve a boundary-value problem for the Helmholtz equation with initial conditions under which the pressure profile is represented as a parabola. Boundary conditions on the walls of the waveguide .0 0 = = = = hz P z P Fig. 5. Horizontal sections of the field at different depths. In the case of low frequencies, which is very important for practice, below the frequency of the transverse resonance, in our case, in the presence of non-zero boundary conditions, the attenuation of the amplitudes, with an increase in “x”, passes so quickly that we can take [9]: Прикладне програмне забезпечення [Введите текст] Fig. 5. Horizontal sections of the field at different depths. In the case of low frequencies, which is very important for practice, below the frequency of the transverse resonance, in our case, in the presence of non-zero boundary conditions, the attenuation of the amplitudes, with an increase in "x", passes so quickly that we can take [9]:       += 00 cos  x c AP , (7) where 0A , 0 determined by the properties of the radiation source. Then 0zV ,       +−= 0 0 sin1    x cic A Vx . (8) Remark. Under zero boundary conditions, the nature of oscillations in the waveguide may differ significantly from that considered above. In this case, the number and location of the field maxima will depend in another way on the superposition of the propagating waves. To do this, we solve a boundary-value problem for the Helmholtz equation with initial conditions under which the pressure profile is represented as a parabola. Boundary conditions on the walls of the waveguide .0 0 = = = = hz P z P (7) where Прикладне програмне забезпечення [Введите текст] Fig. 5. Horizontal sections of the field at different depths. In the case of low frequencies, which is very important for practice, below the frequency of the transverse resonance, in our case, in the presence of non-zero boundary conditions, the attenuation of the amplitudes, with an increase in "x", passes so quickly that we can take [9]:       += 00 cos  x c AP , (7) where 0A , 0 determined by the properties of the radiation source. Then 0zV ,       +−= 0 0 sin1    x cic A Vx . (8) Remark. Under zero boundary conditions, the nature of oscillations in the waveguide may differ significantly from that considered above. In this case, the number and location of the field maxima will depend in another way on the superposition of the propagating waves. To do this, we solve a boundary-value problem for the Helmholtz equation with initial conditions under which the pressure profile is represented as a parabola. Boundary conditions on the walls of the waveguide .0 0 = = = = hz P z P determined by the properties of the radiation source. Then Прикладне програмне забезпечення [Введите текст] Fig. 5. Horizontal sections of the field at different depths. In the case of low frequencies, which is very important for practice, below the frequency of the transverse resonance, in our case, in the presence of non-zero boundary conditions, the attenuation of the amplitudes, with an increase in "x", passes so quickly that we can take [9]:       += 00 cos  x c AP , (7) where 0A , 0 determined by the properties of the radiation source. Then 0zV ,       +−= 0 0 sin1    x cic A Vx . (8) Remark. Under zero boundary conditions, the nature of oscillations in the waveguide may differ significantly from that considered above. In this case, the number and location of the field maxima will depend in another way on the superposition of the propagating waves. To do this, we solve a boundary-value problem for the Helmholtz equation with initial conditions under which the pressure profile is represented as a parabola. Boundary conditions on the walls of the waveguide .0 0 = = = = hz P z P , Прикладне програмне забезпечення [Введите текст] Fig. 5. Horizontal sections of the field at different depths. In the case of low frequencies, which is very important for practice, below the frequency of the transverse resonance, in our case, in the presence of non-zero boundary conditions, the attenuation of the amplitudes, with an increase in "x", passes so quickly that we can take [9]:       += 00 cos  x c AP , (7) where 0A , 0 determined by the properties of the radiation source. Then 0zV ,       +−= 0 0 sin1    x cic A Vx . (8) Remark. Under zero boundary conditions, the nature of oscillations in the waveguide may differ significantly from that considered above. In this case, the number and location of the field maxima will depend in another way on the superposition of the propagating waves. To do this, we solve a boundary-value problem for the Helmholtz equation with initial conditions under which the pressure profile is represented as a parabola. Boundary conditions on the walls of the waveguide .0 0 = = = = hz P z P (8) Remark. Under zero boundary conditions, the nature of oscillations in the waveguide may differ significantly from that considered above. In this case, the number and location of the field maxima will depend in another way on the superposition of the propagating waves. To do this, we solve a boundary-value problem for the Helmholtz equation with initial conditions under which the pressure profile is represented as a parabola. Boundary conditions on the walls of the waveguide Прикладне програмне забезпечення [Введите текст] Fig. 5. Horizontal sections of the field at different depths. In the case of low frequencies, which is very important for practice, below the frequency of the transverse resonance, in our case, in the presence of non-zero boundary conditions, the attenuation of the amplitudes, with an increase in "x", passes so quickly that we can take [9]:       += 00 cos  x c AP , (7) where 0A , 0 determined by the properties of the radiation source. Then 0zV ,       +−= 0 0 sin1    x cic A Vx . (8) Remark. Under zero boundary conditions, the nature of oscillations in the waveguide may differ significantly from that considered above. In this case, the number and location of the field maxima will depend in another way on the superposition of the propagating waves. To do this, we solve a boundary-value problem for the Helmholtz equation with initial conditions under which the pressure profile is represented as a parabola. Boundary conditions on the walls of the waveguide .0 0 = = = = hz P z P Прикладне програмне забезпечення Fig. 6. Modulus and real part of parabolic wave profile. The analytical expression for calculating the acoustic pressure field is obtained in the form   ( ) ( )  ( )  ( ) x kc hkcN k e k h kc z h k titctzxP 12 )(12 0 3 2 23 22 )12( 1 )( 121 12sin )sin()cos(8),,( + −+ − =  +  + −       + −=         , (9) where  – water density. A detailed examination of the behavior of the profile of the real part of the pressure shows that in some areas the initial parabolic wave becomes almost flat or changes its sign several times depending on the depth (Fig. 9). Fig. 7. Modulus and real part of the parabolic wave pressure field. Fig. 6. Modulus and real part of parabolic wave profile. The analytical expression for calculating the acoustic pressure field is obtained in the form Прикладне програмне забезпечення Fig. 6. Modulus and real part of parabolic wave profile. The analytical expression for calculating the acoustic pressure field is obtained in the form   ( ) ( )  ( )  ( ) x kc hkcN k e k h kc z h k titctzxP 12 )(12 0 3 2 23 22 )12( 1 )( 121 12sin )sin()cos(8),,( + −+ − =  +  + −       + −=         , (9) where  – water density. A detailed examination of the behavior of the profile of the real part of the pressure shows that in some areas the initial parabolic wave becomes almost flat or changes its sign several times depending on the depth (Fig. 9). Fig. 7. Modulus and real part of the parabolic wave pressure field. (9) where Прикладне програмне забезпечення Fig. 6. Modulus and real part of parabolic wave profile. The analytical expression for calculating the acoustic pressure field is obtained in the form   ( ) ( )  ( )  ( ) x kc hkcN k e k h kc z h k titctzxP 12 )(12 0 3 2 23 22 )12( 1 )( 121 12sin )sin()cos(8),,( + −+ − =  +  + −       + −=         , (9) where  – water density. A detailed examination of the behavior of the profile of the real part of the pressure shows that in some areas the initial parabolic wave becomes almost flat or changes its sign several times depending on the depth (Fig. 9). Fig. 7. Modulus and real part of the parabolic wave pressure field. – water density. 442 Прикладне програмне забезпечення A detailed examination of the behavior of the profile of the real part of the pressure shows that in some areas the initial parabolic wave becomes almost flat or changes its sign several times depending on the depth (Fig. 9). Прикладне програмне забезпечення Fig. 6. Modulus and real part of parabolic wave profile. The analytical expression for calculating the acoustic pressure field is obtained in the form   ( ) ( )  ( )  ( ) x kc hkcN k e k h kc z h k titctzxP 12 )(12 0 3 2 23 22 )12( 1 )( 121 12sin )sin()cos(8),,( + −+ − =  +  + −       + −=         , (9) where  – water density. A detailed examination of the behavior of the profile of the real part of the pressure shows that in some areas the initial parabolic wave becomes almost flat or changes its sign several times depending on the depth (Fig. 9). Fig. 7. Modulus and real part of the parabolic wave pressure field. Fig. 7. Modulus and real part of the parabolic wave pressure field. Прикладне програмне забезпечення [Введите текст] Fig. 8. Wave profiles at different times. Fig. 9. Feature of parabolic wave propagation. Conclusions The paper shows that analytical solutions of the Helmholtz equation for a plane waveguide can be obtained not only as a sum of normal waves, but also as special series that take into account the characteristics of the radiation source. To develop a database of the situational center information storage waves were classified and the corresponding mathematical and computer modeling was carried out. Література 1. Pisarenko J., Melkumyan E. The Structure of the Information Storage «CONTROL_TEA» for UAV Applications // 2019 IEEE 5th InternationalConferenceActualProblemsofUnmannedAerialVehiclesDevelopments, APUAVD-2019 Proceedings, 2019, P. 274–277. 2. Pysarenko V., Gulchak O., Pisarenko J. Technology for Improve the Safety of Ships from Methane Emissions Using UAVs // 2020 IEEE 6th International Conference on Methods and Systems of Navigation and Motion Control, MSNMC-2020 Proceedings, 2020, P. 93–96. 3. Melkumian K., Pisarenko J., Koval A. Organization of Regional Situational Centers of the Intelligent System «CONTROL_TEA» using UAVs //2021 IEEE 6th International Conference on Actual Problems of Unmanned Aerial Vehicles Development, APUAVD-2021 Proceedings, 2021, P. 37-40. 4. М. В. Ногін. Аналітичний розв’язок крайової задачі для рівнянь Нав’є – Стокса між двома співвісними циліндрами // Тези 17-ої Міжнародної наукової конференції імені академікаМихайла Кравчука (19 – 20 травня 2016 р., Київ, НТУУ «КПИ»). Том 1. Диференціальні та інтегральні рівняння, їх застосування. К.: НУТУ «КПІ». Том 1. 2016. С. 218 – 219. 5. В. Г. Писаренко, С. В. Корнеєв, Ю. В. Писаренко. Методи і засоби дослідження техно-екологічнихподій // Тези 17-ої Міжнародної наукової конференції імені академікаМихайла Кравчука (19 – 20 травня 2016 р., Київ, НТУУ «КПИ»). Том 1. Диференціальні та інтегральні рівняння, їх застосування. К.: НУТУ «КПІ». Том 1. 2016. С.226-229. 6. V.G. Pisarenko, S.V. Korneev, J.V. Pisarenko, I.A. Varava. FUZZY UNDERWATER IMAGE RECOGNITION //Kompiuterna matematyka. – 2018. № 1.- P. 90-96. http://nbuv.gov.ua/UJRN/Koma_2018_1_13 7. В.Г. Гринченко, И.В. Вовк, В.Т. Маципура. Основы акустики / К. : Наукова думка, 2007. — 640с. 8. Куперман Ц.А., Енсен Ф.Б. В сб. «Подводная акустика и обработкасигналов». М.: «Мир», 1985, с. 116-124. 9. Завадский В.Ю. Моделирование волновых процессов. – М.: Наука, 1991. – 248 с. 10. Скучик Е. Основы акустики М.: Мир, 1976. — 520 с. References 1. Pisarenko J., Melkumyan E. The Structure of the Information Storage «CONTROL_TEA» for UAV Applications // 2019 IEEE 5th International Conference Actual Problems of Unmanned Aerial Vehicles Developments, APUAVD-2019 Proceedings. − 2019. − P. 274 - 277. Fig. 8. Wave profiles at different times. 443 Прикладне програмне забезпечення Прикладне програмне забезпечення [Введите текст] Fig. 8. Wave profiles at different times. Fig. 9. Feature of parabolic wave propagation. Conclusions The paper shows that analytical solutions of the Helmholtz equation for a plane waveguide can be obtained not only as a sum of normal waves, but also as special series that take into account the characteristics of the radiation source. To develop a database of the situational center information storage waves were classified and the corresponding mathematical and computer modeling was carried out. Література 1. Pisarenko J., Melkumyan E. The Structure of the Information Storage «CONTROL_TEA» for UAV Applications // 2019 IEEE 5th InternationalConferenceActualProblemsofUnmannedAerialVehiclesDevelopments, APUAVD-2019 Proceedings, 2019, P. 274–277. 2. Pysarenko V., Gulchak O., Pisarenko J. Technology for Improve the Safety of Ships from Methane Emissions Using UAVs // 2020 IEEE 6th International Conference on Methods and Systems of Navigation and Motion Control, MSNMC-2020 Proceedings, 2020, P. 93–96. 3. Melkumian K., Pisarenko J., Koval A. Organization of Regional Situational Centers of the Intelligent System «CONTROL_TEA» using UAVs //2021 IEEE 6th International Conference on Actual Problems of Unmanned Aerial Vehicles Development, APUAVD-2021 Proceedings, 2021, P. 37-40. 4. М. В. Ногін. Аналітичний розв’язок крайової задачі для рівнянь Нав’є – Стокса між двома співвісними циліндрами // Тези 17-ої Міжнародної наукової конференції імені академікаМихайла Кравчука (19 – 20 травня 2016 р., Київ, НТУУ «КПИ»). Том 1. Диференціальні та інтегральні рівняння, їх застосування. К.: НУТУ «КПІ». Том 1. 2016. С. 218 – 219. 5. В. Г. Писаренко, С. В. Корнеєв, Ю. В. Писаренко. Методи і засоби дослідження техно-екологічнихподій // Тези 17-ої Міжнародної наукової конференції імені академікаМихайла Кравчука (19 – 20 травня 2016 р., Київ, НТУУ «КПИ»). Том 1. Диференціальні та інтегральні рівняння, їх застосування. К.: НУТУ «КПІ». Том 1. 2016. С.226-229. 6. V.G. Pisarenko, S.V. Korneev, J.V. Pisarenko, I.A. Varava. FUZZY UNDERWATER IMAGE RECOGNITION //Kompiuterna matematyka. – 2018. № 1.- P. 90-96. http://nbuv.gov.ua/UJRN/Koma_2018_1_13 7. В.Г. Гринченко, И.В. Вовк, В.Т. Маципура. Основы акустики / К. : Наукова думка, 2007. — 640с. 8. Куперман Ц.А., Енсен Ф.Б. В сб. «Подводная акустика и обработкасигналов». М.: «Мир», 1985, с. 116-124. 9. Завадский В.Ю. Моделирование волновых процессов. – М.: Наука, 1991. – 248 с. 10. Скучик Е. Основы акустики М.: Мир, 1976. — 520 с. References 1. Pisarenko J., Melkumyan E. The Structure of the Information Storage «CONTROL_TEA» for UAV Applications // 2019 IEEE 5th International Conference Actual Problems of Unmanned Aerial Vehicles Developments, APUAVD-2019 Proceedings. − 2019. − P. 274 - 277. Fig. 9. Feature of parabolic wave propagation. Conclusions The paper shows that analytical solutions of the Helmholtz equation for a plane waveguide can be obtained not only as a sum of normal waves, but also as special series that take into account the characteristics of the radiation source. To develop a database of the situational center information storage waves were classified and the corresponding mathematical and computer modeling was carried out. Література 1. Pisarenko J., Melkumyan E. The Structure of the Information Storage «CONTROL_TEA» for UAV Applications // 2019 IEEE 5th In ternationalConferenceActualProblemsofUnmannedAerialVehiclesDevelopments, APUAVD-2019 Proceedings, 2019, P. 274–277. 2. Pysarenko V., Gulchak O., Pisarenko J. Technology for Improve the Safety of Ships from Methane Emissions Using UAVs // 2020 IEEE 6th International Conference on Methods and Systems of Navigation and Motion Control, MSNMC-2020 Proceedings, 2020, P. 93–96. 3. Melkumian K., Pisarenko J., Koval A. Organization of Regional Situational Centers of the Intelligent System «CONTROL_TEA» using UAVs //2021 IEEE 6th International Conference on Actual Problems of Unmanned Aerial Vehicles Development, APUAVD-2021 Proceedings, 2021, P. 37-40. 4. М. В. Ногін. Аналітичний розв’язок крайової задачі для рівнянь Нав’є – Стокса між двома співвісними циліндрами // Тези 17-ої Міжнародної наукової конференції імені академікаМихайла Кравчука (19 – 20 травня 2016 р., Київ, НТУУ «КПИ»). Том 1. Диференціальні та інтегральні рівняння, їх застосування. К.: НУТУ «КПІ». Том 1. 2016. С. 218 – 219. 5. В. Г. Писаренко, С. В. Корнеєв, Ю. В. Писаренко. Методи і засоби дослідження техно-екологічнихподій // Тези 17-ої Міжнародної наукової конференції імені академікаМихайла Кравчука (19 – 20 травня 2016 р., Київ, НТУУ «КПИ»). Том 1. Диференціальні та інтегральні рівняння, їх застосування. К.: НУТУ «КПІ». Том 1. 2016. С.226-229. 6. V.G. Pisarenko, S.V. Korneev, J.V. Pisarenko, I.A. Varava. FUZZY UNDERWATER IMAGE RECOGNITION //Kompiuterna matematyka. – 2018. № 1.- P. 90-96. http://nbuv.gov.ua/UJRN/Koma_2018_1_13 7. В.Г. Гринченко, И.В. Вовк, В.Т. Маципура. Основы акустики / К. : Наукова думка, 2007. — 640с. 8. Куперман Ц.А., Енсен Ф.Б. В сб. «Подводная акустика и обработкасигналов». М.: «Мир», 1985, с. 116-124. 9. Завадский В.Ю. Моделирование волновых процессов. – М.: Наука, 1991. – 248 с. 10. Скучик Е. Основы акустики М.: Мир, 1976. — 520 с. References 1. Pisarenko J., Melkumyan E. The Structure of the Information Storage «CONTROL_TEA» for UAV Applications // 2019 IEEE 5th International Conference Actual Problems of Unmanned Aerial Vehicles Developments, APUAVD-2019 Proceedings. − 2019. − P. 274 - 277. 2. Pysarenko V., Gulchak O., Pisarenko J. Technology for Improve the Safety of Ships from Methane Emissions Using UAVs // 2020 IEEE 6th International Conference on Methods and Systems of Navigation and Motion Control, MSNMC-2020 Proceedings. − 2020. − P. 93 - 96. 3. Melkumian K., Pisarenko J., Koval A. Organization of Regional Situational Centers of the Intelligent System «CONTROL_TEA» using UAVs //2021 IEEE 6th International Conference on Actual Problems of Unmanned Aerial Vehicles Development, APUAVD-2021 Proceedings. − 2021. − P. 37 - 40. 4. M. V. Nogin. Analytical analysis of the regional problem for the alignment of the Nave - Stokes between two spiky cylinders // Abstracts of the 17th International Scientific Conference named after Academician Mikhail Kravchuk (19-20 January 2016, Kiev, NTUU “KPI”). − К.: NUTU “KPI”. − Volume 1. − 2016. − P. 218 - 219. 5. V. G. Pisarenko, S. V. Korneev, Yu. V. Pisarenko. Methods and methods for investigating techno-ecological approaches // Abstracts of the 17th International Scientific Conference named after Academician Mikhail Kravchuk (May 19-20, 2016, Kiev, NTUU “KPI”). − К.: NTUU “KPI”. − Volume 1. − 2016. − P. 226 - 229. 6. V.G. Pisarenko, S.V. Korneev, J.V. Pisarenko, I.A. Varava. FUZZY UNDERWATER IMAGE RECOGNITION // Kompiuterna matematyka. - 2018. − No. 1. − P. 90 - 96. http://nbuv.gov.ua/UJRN/Koma_2018_1_13 7. V.G. Grinchenko, I.V. Vovk, V.T. Matzipura. Fundamentals of acoustics / K .: Naukova Dumka. − 2007. – 640 p. 8. Kuperman Ts.A., Ensen F.B. On Sat. “Underwater Acoustics and Signal Processing”. M.: Mir. − 1985. − P. 116 - 124. 9. Zavadsky V.Yu. Modeling of wave processes. – M.: Nauka. − 1991. – 248 p. 10. Skuchik E. Fundamentals of acoustics. − M.: Mir. − 1976. – 520 p. Received 03.08.2022 444 Прикладне програмне забезпечення About the authors: Valery Georgiyovych Pysarenko1, Address: 04004, Kyiv, Velika Vasylkivska St., 43, ap 38 Doctor of Physical and Mathematical Sciences, Head of Department of Mathematical Problems of Applied Informatics Number of publications in Ukrainian publications: 212 Number of foreign publications: 20. Hirsch index: 3. https://orcid.org/0000-0001-7798-7673 Mykola Vasyliovych Nogin2, Address: 03143, Kyiv, Akademik Zabolotny St., 156/2, ap. 41-B Candidate of Physical and Mathematical Sciences, Docent (Cathedra of Software Engineering in Energy) Number of publications in Ukrainian publications: 120 Number of foreign publications: 12. Hirsch index: 2. ORCID 0000-0002-9142-2692 Oleksandr Stepanovych Kryachok1,2 Candidate of Technical Sciences, Docent (Cathedra of Software Engineering in Energy), Senior Researcher of Department of Mathematical Problems of Applied Informatics Address: 03187, Kyiv, Akademika Glushkova Ave., 40, building 3, ap. 517 Number of publications in Ukrainian publications: 70. Number of foreign publications: 11. Hirsch index: 3. ORCID 0000-0003-4829-635X Pysarenko Yuliya Valeryivna1, Candidate of Technical Sciences, Senior Researcher of Laboratory of Virtual Environment Systems for the Organization of Scientific Research Address: 03143, Kyiv, Akademika Zabolotny St., 156/2, ap. 41-B Number of publications in Ukrainian publications: 110. Number of foreign publications: 10. Hirsch index: 4. http://orcid.org/0000-0001-8357-8614 Varava Ivan Andriyovych1,2 Docent (Cathedra of Software Engineering in Energy), Leading Software Engineer of Department of Mathematical Problems of Applied Informatics Address: 04079, Kyiv, Tiraspolska St., 60, ap. 21 Number of publications in Ukrainian publications: 26. Number of foreign publications: 3. Hirsch index: 2 https://orcid.org/0000-0001-9874-016X 445 Прикладне програмне забезпечення Alexander Sergeevich Koval1,2, Assistant (Cathedra of Technical Cybernetics, Cathedra of Information Systems and Technologies), Junior Researcher of Department of Mathematical Problems of Applied Informatics Address: 03187, Kyiv, Akademika Glushkova Ave., 40, building 1, ap. 611 Number of publications in Ukrainian publications: 20. Number of foreign publications: 4. Hirsch index: 2. https://orcid.org/0000-0002-9265-2748 Прізвища та ініціали авторів і назва доповіді українською мовою: Писаренко В.Г., Ногін М.В., Крячок О.С., Писаренко Ю.В., Варава І.А., Коваль О.С. Про комплексні інтелектуальні технології управління техно-екологічними подіями в акваторії Прізвища та ініціали авторів і назва доповіді англійською мовою: Pisarenko V. G., Nogin N. V., Kryachok A. S, Pisarenko J.V., Varava I. A., Koval A. S. About complex intelligent technologies for techno-ecological events control in the water area Контакти для редактора: Писаренко Юлія Валеріївна, старший науковий співробітник Інститут кібернетики імені В. М. Глушкова НАН України, e-mail: pisarenkojv@gmail.com, телефон: +38(067)596-08-57