About complex intelligent technologies for techno-ecological events control in the water area
Aspects of the important task solution of creating complex intelligent decision-making support technologies for the identification of techno-ecological event (TEE) and the optimal selection of the sequence of available measures to reduce the life cycle of this TEE in the water area in order to minim...
Збережено в:
| Дата: | 2023 |
|---|---|
| Автори: | , , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
PROBLEMS IN PROGRAMMING
2023
|
| Теми: | |
| Онлайн доступ: | https://pp.isofts.kiev.ua/index.php/ojs1/article/view/545 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Problems in programming |
| Завантажити файл: | |
Репозитарії
Problems in programming| id |
pp_isofts_kiev_ua-article-545 |
|---|---|
| record_format |
ojs |
| resource_txt_mv |
ppisoftskievua/41/f1154b80673f49f8572abaaaab41dc41.pdf |
| spelling |
pp_isofts_kiev_ua-article-5452023-06-25T08:11:43Z About complex intelligent technologies for techno-ecological events control in the water area Про комплексні інтелектуальні технології управління техно-екологічними подіями в акваторії Pisarenko, V.G. Nogin, N.V. Kryachok, A.S. Pisarenko, J.V. Varava, I.A. Koval, A.S. water area; techno-ecologicalevent; wave classification; information storage; mathematical modeling UDC 519.711; 004.8 акваторія; техно-екологічна подія; класифікація хвиль; інформаційне сховище; математичне моделювання УДК 519.711; 004.8 Aspects of the important task solution of creating complex intelligent decision-making support technologies for the identification of techno-ecological event (TEE) and the optimal selection of the sequence of available measures to reduce the life cycle of this TEE in the water area in order to minimize material losses are considered ("CONTROL_TEE" system). In theV.M. Glushkov Institute of Cybernetics of NAS of Ukraine, Concern "BaltRobotics" (Ukraine-Poland), NTU of Ukraine "Igor Sikorsky KPI" study of the possibility of theoretical development, research and practical implementation of methods and tools that make up the information technology of research design (informational, mathematical, algorithmic, software, technical, organizational support) of robots intended for reconnaissance and neutralization of TEE in a number of environment. For the classifying waves, mathematical models of the propagation of both running and standing waves in the sea area were obtained and solved. The structure of the information storage of the situation center has been developed. In order to create a database wave classification and mathematical and computer modeling were carried out. The deterministic process of sound propagation in a flat waveguide in the homogeneous mode is considered. Special boundary value problems and Cauchy problems are solved for the two-dimensional wave equation and, accordingly, for the Helmholtz equation. Calculation formulas for sound pressure and corresponding to its velocities are obtained in an analytical closed form. In the general case, the tangent and normal components of the velocity vector and the hydrodynamic potential are calculated in the form of Fourier series by the methodology of the works of Bilonosov, Ovsienko, Li, Zinchenko, Zinchenko, Nogin.Prombles in programming 2022; 3-4: 437-445 Розглядаються аспекти, що стосуються вирішення важливого завдання створення комплексних інтелектуальних техно- логій підтримки прийняття рішень для ідентифікації виникаючої техно-екологічної події (ТЕП) та оптимального вибору послідовності доступних заходів зі скорочення життєвого циклу даного ТЕП в акваторії з метою мінімізації матері- альних збитків (створення системи «УПРАВЛІННЯ_ТЕП»). В Інституті кібернетики імені В.М. Глушкова НАНУ сумісно з Концерном «BaltRobotics» (Україна – Польща), НТУУ «КПІ ім. Ігоря Сікорського» проводяться вивчення питання можливості теоретичної розробки, дослідження та практичної реалізації методів і засобів, що складають інформаційну технологію дослідницького проектування (інформаційне, математичне, алгоритмічне, програмне, технічне, організаційне забезпечення) інтелектуалізованих роботів, призначених для розвідки і нейтралізації небезпечних ТЕП у ряді середовищ. Для завдання класифікації хвиль отримано і вирішено математичні моделі поширення, як хвиль, що біжать, так і стоять, в акваторії моря. Розроблено структуру сховища інформації ситуаційного центру. Для створення бази даних інформаційного сховища ситуаційного центру було проведено класифікацію хвиль та відповідне математичне та комп’ютерне моделювання. Розглянуто детермінований процес поширення звуку в плоскому хвилеводі в однорідному режимі. Вирішено спеціальні крайові завдання та завдання Коші для двовимірного хвильового рівняння, і, відповідно, для рівняння Гельмгольця. В аналітичному замкнутому вигляді отримані розрахункові формули для звукового тиску і відповідно до його швидкостей. У загальному випадку за методикою робіт Білоносова, Овсієнка, Лі, Зінченка, Ногіна обчислено у вигляді рядів Фур’є дотичну і нормальну компоненти вектору швидкості і гідродинамічний потенціал.Prombles in programming 2022; 3-4: 437-445 PROBLEMS IN PROGRAMMING ПРОБЛЕМЫ ПРОГРАММИРОВАНИЯ ПРОБЛЕМИ ПРОГРАМУВАННЯ 2023-01-23 Article Article application/pdf https://pp.isofts.kiev.ua/index.php/ojs1/article/view/545 10.15407/pp2022.03-04.437 PROBLEMS IN PROGRAMMING; No 3-4 (2022); 437-445 ПРОБЛЕМЫ ПРОГРАММИРОВАНИЯ; No 3-4 (2022); 437-445 ПРОБЛЕМИ ПРОГРАМУВАННЯ; No 3-4 (2022); 437-445 1727-4907 10.15407/pp2022.03-04 en https://pp.isofts.kiev.ua/index.php/ojs1/article/view/545/598 Copyright (c) 2023 PROBLEMS IN PROGRAMMING |
| institution |
Problems in programming |
| baseUrl_str |
https://pp.isofts.kiev.ua/index.php/ojs1/oai |
| datestamp_date |
2023-06-25T08:11:43Z |
| collection |
OJS |
| language |
English |
| topic |
water area techno-ecologicalevent wave classification information storage mathematical modeling UDC 519.711 004.8 |
| spellingShingle |
water area techno-ecologicalevent wave classification information storage mathematical modeling UDC 519.711 004.8 Pisarenko, V.G. Nogin, N.V. Kryachok, A.S. Pisarenko, J.V. Varava, I.A. Koval, A.S. About complex intelligent technologies for techno-ecological events control in the water area |
| topic_facet |
water area techno-ecologicalevent wave classification information storage mathematical modeling UDC 519.711 004.8 акваторія техно-екологічна подія класифікація хвиль інформаційне сховище математичне моделювання УДК 519.711 004.8 |
| format |
Article |
| author |
Pisarenko, V.G. Nogin, N.V. Kryachok, A.S. Pisarenko, J.V. Varava, I.A. Koval, A.S. |
| author_facet |
Pisarenko, V.G. Nogin, N.V. Kryachok, A.S. Pisarenko, J.V. Varava, I.A. Koval, A.S. |
| author_sort |
Pisarenko, V.G. |
| title |
About complex intelligent technologies for techno-ecological events control in the water area |
| title_short |
About complex intelligent technologies for techno-ecological events control in the water area |
| title_full |
About complex intelligent technologies for techno-ecological events control in the water area |
| title_fullStr |
About complex intelligent technologies for techno-ecological events control in the water area |
| title_full_unstemmed |
About complex intelligent technologies for techno-ecological events control in the water area |
| title_sort |
about complex intelligent technologies for techno-ecological events control in the water area |
| title_alt |
Про комплексні інтелектуальні технології управління техно-екологічними подіями в акваторії |
| description |
Aspects of the important task solution of creating complex intelligent decision-making support technologies for the identification of techno-ecological event (TEE) and the optimal selection of the sequence of available measures to reduce the life cycle of this TEE in the water area in order to minimize material losses are considered ("CONTROL_TEE" system). In theV.M. Glushkov Institute of Cybernetics of NAS of Ukraine, Concern "BaltRobotics" (Ukraine-Poland), NTU of Ukraine "Igor Sikorsky KPI" study of the possibility of theoretical development, research and practical implementation of methods and tools that make up the information technology of research design (informational, mathematical, algorithmic, software, technical, organizational support) of robots intended for reconnaissance and neutralization of TEE in a number of environment. For the classifying waves, mathematical models of the propagation of both running and standing waves in the sea area were obtained and solved. The structure of the information storage of the situation center has been developed. In order to create a database wave classification and mathematical and computer modeling were carried out. The deterministic process of sound propagation in a flat waveguide in the homogeneous mode is considered. Special boundary value problems and Cauchy problems are solved for the two-dimensional wave equation and, accordingly, for the Helmholtz equation. Calculation formulas for sound pressure and corresponding to its velocities are obtained in an analytical closed form. In the general case, the tangent and normal components of the velocity vector and the hydrodynamic potential are calculated in the form of Fourier series by the methodology of the works of Bilonosov, Ovsienko, Li, Zinchenko, Zinchenko, Nogin.Prombles in programming 2022; 3-4: 437-445 |
| publisher |
PROBLEMS IN PROGRAMMING |
| publishDate |
2023 |
| url |
https://pp.isofts.kiev.ua/index.php/ojs1/article/view/545 |
| work_keys_str_mv |
AT pisarenkovg aboutcomplexintelligenttechnologiesfortechnoecologicaleventscontrolinthewaterarea AT noginnv aboutcomplexintelligenttechnologiesfortechnoecologicaleventscontrolinthewaterarea AT kryachokas aboutcomplexintelligenttechnologiesfortechnoecologicaleventscontrolinthewaterarea AT pisarenkojv aboutcomplexintelligenttechnologiesfortechnoecologicaleventscontrolinthewaterarea AT varavaia aboutcomplexintelligenttechnologiesfortechnoecologicaleventscontrolinthewaterarea AT kovalas aboutcomplexintelligenttechnologiesfortechnoecologicaleventscontrolinthewaterarea AT pisarenkovg prokompleksnííntelektualʹnítehnologííupravlínnâtehnoekologíčnimipodíâmivakvatoríí AT noginnv prokompleksnííntelektualʹnítehnologííupravlínnâtehnoekologíčnimipodíâmivakvatoríí AT kryachokas prokompleksnííntelektualʹnítehnologííupravlínnâtehnoekologíčnimipodíâmivakvatoríí AT pisarenkojv prokompleksnííntelektualʹnítehnologííupravlínnâtehnoekologíčnimipodíâmivakvatoríí AT varavaia prokompleksnííntelektualʹnítehnologííupravlínnâtehnoekologíčnimipodíâmivakvatoríí AT kovalas prokompleksnííntelektualʹnítehnologííupravlínnâtehnoekologíčnimipodíâmivakvatoríí |
| first_indexed |
2025-07-17T09:41:25Z |
| last_indexed |
2025-07-17T09:41:25Z |
| _version_ |
1850412880273342464 |
| fulltext |
437
Прикладне програмне забезпечення
УДК 519.711; 004.8 https://doi.org/10.15407/pp2022.03-04.437
ABOUT COMPLEX INTELLIGENT
TECHNOLOGIES FOR TECHNO-ECOLOGICAL
EVENTS CONTROL IN THE WATER AREA
Valery Pisarenko, Nikolai Nogin, Alexandr Kryachok,
Julia Pisarenko, Ivan Varava, Alexandr Koval
Розглядаються аспекти, що стосуються вирішення важливого завдання створення комплексних інтелектуальних техно-
логій підтримки прийняття рішень для ідентифікації виникаючої техно-екологічної події (ТЕП) та оптимального вибо-
ру послідовності доступних заходів зі скорочення життєвого циклу даного ТЕП в акваторії з метою мінімізації матері-
альних збитків (створення системи «УПРАВЛІННЯ_ТЕП»). В Інституті кібернетики імені В.М. Глушкова НАНУ суміс-
но з Концерном «BaltRobotics» (Україна – Польща), НТУУ «КПІ ім. Ігоря Сікорського» проводяться вивчення питання
можливості теоретичної розробки, дослідження та практичної реалізації методів і засобів, що складають інформаційну
технологію дослідницького проектування (інформаційне, математичне, алгоритмічне, програмне, технічне, організа-
ційне забезпечення) інтелектуалізованих роботів, призначених для розвідки і нейтралізації небезпечних ТЕП у ряді
середовищ. Для завдання класифікації хвиль отримано і вирішено математичні моделі поширення, як хвиль, що біжать,
так і стоять, в акваторії моря. Розроблено структуру сховища інформації ситуаційного центру. Для створення бази да-
них інформаційного сховища ситуаційного центру було проведено класифікацію хвиль та відповідне математичне та
комп’ютерне моделювання. Розглянуто детермінований процес поширення звуку в плоскому хвилеводі в однорідному
режимі. Вирішено спеціальні крайові завдання та завдання Коші для двовимірного хвильового рівняння, і, відповідно,
для рівняння Гельмгольця. В аналітичному замкнутому вигляді отримані розрахункові формули для звукового тиску і
відповідно до його швидкостей. У загальному випадку за методикою робіт Білоносова, Овсієнка, Лі, Зінченка, Ногіна
обчислено у вигляді рядів Фур’є дотичну і нормальну компоненти вектору швидкості і гідродинамічний потенціал.
Ключові слова: акваторія, техно-екологічна подія, класифікація хвиль, інформаційне сховище, математичне моделю-
вання.
Aspects of the important task solution of creating complex intelligent decision-making support technologies for the identi-
fication of techno-ecological event (TEE) and the optimal selection of the sequence of available measures to reduce the life
cycle of this TEE in the water area in order to minimize material losses are considered (“CONTROL_TEE” system). In the
V.M. Glushkov Institute of Cybernetics of NAS of Ukraine, Concern “BaltRobotics” (Ukraine-Poland), NTU of Ukraine “Igor
Sikorsky KPI” study of the possibility of theoretical development, research and practical implementation of methods and tools
that make up the information technology of research design (informational, mathematical, algorithmic, software, technical,
organizational support) of robots intended for reconnaissance and neutralization of TEE in a number of environment. For the
classifying waves, mathematical models of the propagation of both running and standing waves in the sea area were obtained
and solved. The structure of the information storage of the situation center has been developed. In order to create a database
wave classification and mathematical and computer modeling were carried out. The deterministic process of sound propaga-
tion in a flat waveguide in the homogeneous mode is considered. Special boundary value problems and Cauchy problems are
solved for the two-dimensional wave equation and, accordingly, for the Helmholtz equation. Calculation formulas for sound
pressure and corresponding to its velocities are obtained in an analytical closed form. In the general case, the tangent and
normal components of the velocity vector and the hydrodynamic potential are calculated in the form of Fourier series by the
methodology of the works of Bilonosov, Ovsienko, Li, Zinchenko, Zinchenko, Nogin.
Keywords: water area, techno-ecologicalevent, wave classification, information storage, mathematical modeling.
Introduction
The paper examines aspects relevant to solving the important task of creating complex intelligent decision-
making support technologies for identifying an emerging techno-ecological event (TEE) and optimally choosing a
sequence of available measures to reduce the life cycle of a given TEE in the water area in order to minimize material
damage (creation of an intelligent system “CONTROL_TEE”) [1-6].
For the problem of wave classification, mathematical models of propagation of both traveling and standing
waves in the sea are obtained and solved.
The structure of the information storage of the situational center has been developed [1].
A deterministic process of sound propagation in a plane wave guide in a uniform regime is considered.
Formulation of the problem
In the V.M. Glushkov Institute of Cybernetics of NAS of Ukraine, Concern “BaltRobotics” (Ukraine-Poland),
NTU of Ukraine “Igor Sikorsky KPI” study of the possibility of theoretical development, research and practical
implementation of methods and tools that make up the information technology of research design for reconnaissance
and neutralization of TEE in a number of environment.
© В.Г. Писаренко, М.В. Ногін, О.С. Крячок, Ю.В. Писаренко, І.А. Варава, О.С. Коваль, 2022
ISSN 1727-4907. Проблеми програмування. 2022. № 3-4. Спеціальний випуск
438
Прикладне програмне забезпечення
Suggested Solution
Aspects of the important task solution of creating complex intelligent decision-making support technologies
for the identification of techno-ecological event (TEE) and the optimal selection of the sequence of available measures
to reduce the life cycle of this TEE in the water area in order to minimize material losses are considered (“CONTROL_
TEE” system) of intellectualized robots intended.
Statement of the research problem
The informational, mathematical, algorithmic, software, technical, organizational support is considered.
The structure of the information storage of the situation center has been developed. In order to create a database
wave classification and mathematical and computer modeling were carried out. The deterministic process of sound
propagation in a flat waveguide in the homogeneous mode is considered.
Proposed components of mathematical and software for intelligent monitoring and control
systems for TEE
For the classifying waves, mathematical models of the propagation of both running and standing waves in the
sea area were obtained and solved.
Special boundary value problems and the Cauchy problem for the two-dimensional wave equation and,
accordingly, for the Helmholtz equation are solved. As a result, calculation formulas for the sound pressure P(x,z,t)
and, accordingly, its velocities
Прикладне програмне забезпечення
Suggested Solution
Aspects of the important task solution of creating complex intelligent decision-making support technologies for
the identification of techno-ecological event (TEE) and the optimal selection of the sequence of available measures to
reduce the life cycle of this TEE in the water area in order to minimize material losses are considered
("CONTROL_TEE" system) of intellectualized robots intended.
Statement of the research problem
The informational, mathematical, algorithmic, software, technical, organizational support is considered. The
structure of the information storage of the situation center has been developed. In order to create a database wave
classification and mathematical and computer modeling were carried out. The deterministic process of sound
propagation in a flat waveguide in the homogeneous mode is considered.
Proposed components of mathematical and software for intelligent monitoring and control
systems for TEE
For the classifying waves, mathematical models of the propagation of both running and standing waves in the
sea area were obtained and solved.
Special boundary value problems and the Cauchy problem for the two-dimensional wave equation and,
accordingly, for the Helmholtz equation are solved. As a result, calculation formulas for the sound pressure P(x,z,t) and,
accordingly, its velocities
x
P
i
Vx
=
1
,
z
P
i
Vz
=
1
are obtained in an analytical closed form.
A qualitative analysis and numerical computer solutions are carried out.
Under the sound, in the modern sense of this term, we mean arbitrary vibrations of a liquid or air in the
frequency range of 15 Hz - 15 kHz. Note that oscillations with a frequency lower than 15 Hz are called infrasonic, and
higher than 15 kHz are called ultrasonic.
In accordance with [7, 8], based on the Euler and continuity equations for the sound pressure in a plane
waveguide (Fig. 1), the sound pressure has the form
),(),,( zxPetzxP ti−= , (1)
where the complex amplitude P(x,z) satisfies the Helmholtz equation
02
2
2
2
2
=+
+
Pk
z
P
x
P
(2)
where k – wave number,
c
k
= , c – constant sound speed.
Fig. 1. Planar waveguide.
The general solution of the Helmholtz equation satisfies the boundary conditions on a rigid surface (i.e. here
the vertical component of the velocity 0=zV by 0=z and hz = ). As a result, we obtain the Neumann boundary
conditions:
0
0
=
=
=
=
hzx
P
zx
P
(3)
In accordance with the methodology of works [1, 4] by the Fourier method, the solution of the boundary value
problem (2), (3) with the help of the auxiliary Sturm-Liouville problem for an orthogonal system of functions was
obtained in the form of a special series of the form:
xk
m
ti xe
h
mzetzxP −
=
− =
0
cos),,(
, (4)
where
x
z
h
0
are obtained in an analytical closed form.
A qualitative analysis and numerical computer solutions are carried out.
Under the sound, in the modern sense of this term, we mean arbitrary vibrations of a liquid or air in the
frequency range of 15 Hz - 15 kHz. Note that oscillations with a frequency lower than 15 Hz are called infrasonic, and
higher than 15 kHz are called ultrasonic.
In accordance with [7, 8], based on the Euler and continuity equations for the sound pressure in a plane
waveguide (Fig. 1), the sound pressure has the form
Прикладне програмне забезпечення
Suggested Solution
Aspects of the important task solution of creating complex intelligent decision-making support technologies for
the identification of techno-ecological event (TEE) and the optimal selection of the sequence of available measures to
reduce the life cycle of this TEE in the water area in order to minimize material losses are considered
("CONTROL_TEE" system) of intellectualized robots intended.
Statement of the research problem
The informational, mathematical, algorithmic, software, technical, organizational support is considered. The
structure of the information storage of the situation center has been developed. In order to create a database wave
classification and mathematical and computer modeling were carried out. The deterministic process of sound
propagation in a flat waveguide in the homogeneous mode is considered.
Proposed components of mathematical and software for intelligent monitoring and control
systems for TEE
For the classifying waves, mathematical models of the propagation of both running and standing waves in the
sea area were obtained and solved.
Special boundary value problems and the Cauchy problem for the two-dimensional wave equation and,
accordingly, for the Helmholtz equation are solved. As a result, calculation formulas for the sound pressure P(x,z,t) and,
accordingly, its velocities
x
P
i
Vx
=
1
,
z
P
i
Vz
=
1
are obtained in an analytical closed form.
A qualitative analysis and numerical computer solutions are carried out.
Under the sound, in the modern sense of this term, we mean arbitrary vibrations of a liquid or air in the
frequency range of 15 Hz - 15 kHz. Note that oscillations with a frequency lower than 15 Hz are called infrasonic, and
higher than 15 kHz are called ultrasonic.
In accordance with [7, 8], based on the Euler and continuity equations for the sound pressure in a plane
waveguide (Fig. 1), the sound pressure has the form
),(),,( zxPetzxP ti−= , (1)
where the complex amplitude P(x,z) satisfies the Helmholtz equation
02
2
2
2
2
=+
+
Pk
z
P
x
P
(2)
where k – wave number,
c
k
= , c – constant sound speed.
Fig. 1. Planar waveguide.
The general solution of the Helmholtz equation satisfies the boundary conditions on a rigid surface (i.e. here
the vertical component of the velocity 0=zV by 0=z and hz = ). As a result, we obtain the Neumann boundary
conditions:
0
0
=
=
=
=
hzx
P
zx
P
(3)
In accordance with the methodology of works [1, 4] by the Fourier method, the solution of the boundary value
problem (2), (3) with the help of the auxiliary Sturm-Liouville problem for an orthogonal system of functions was
obtained in the form of a special series of the form:
xk
m
ti xe
h
mzetzxP −
=
− =
0
cos),,(
, (4)
where
x
z
h
0
(1)
where the complex amplitude P(x,z) satisfies the Helmholtz equation
Прикладне програмне забезпечення
Suggested Solution
Aspects of the important task solution of creating complex intelligent decision-making support technologies for
the identification of techno-ecological event (TEE) and the optimal selection of the sequence of available measures to
reduce the life cycle of this TEE in the water area in order to minimize material losses are considered
("CONTROL_TEE" system) of intellectualized robots intended.
Statement of the research problem
The informational, mathematical, algorithmic, software, technical, organizational support is considered. The
structure of the information storage of the situation center has been developed. In order to create a database wave
classification and mathematical and computer modeling were carried out. The deterministic process of sound
propagation in a flat waveguide in the homogeneous mode is considered.
Proposed components of mathematical and software for intelligent monitoring and control
systems for TEE
For the classifying waves, mathematical models of the propagation of both running and standing waves in the
sea area were obtained and solved.
Special boundary value problems and the Cauchy problem for the two-dimensional wave equation and,
accordingly, for the Helmholtz equation are solved. As a result, calculation formulas for the sound pressure P(x,z,t) and,
accordingly, its velocities
x
P
i
Vx
=
1
,
z
P
i
Vz
=
1
are obtained in an analytical closed form.
A qualitative analysis and numerical computer solutions are carried out.
Under the sound, in the modern sense of this term, we mean arbitrary vibrations of a liquid or air in the
frequency range of 15 Hz - 15 kHz. Note that oscillations with a frequency lower than 15 Hz are called infrasonic, and
higher than 15 kHz are called ultrasonic.
In accordance with [7, 8], based on the Euler and continuity equations for the sound pressure in a plane
waveguide (Fig. 1), the sound pressure has the form
),(),,( zxPetzxP ti−= , (1)
where the complex amplitude P(x,z) satisfies the Helmholtz equation
02
2
2
2
2
=+
+
Pk
z
P
x
P
(2)
where k – wave number,
c
k
= , c – constant sound speed.
Fig. 1. Planar waveguide.
The general solution of the Helmholtz equation satisfies the boundary conditions on a rigid surface (i.e. here
the vertical component of the velocity 0=zV by 0=z and hz = ). As a result, we obtain the Neumann boundary
conditions:
0
0
=
=
=
=
hzx
P
zx
P
(3)
In accordance with the methodology of works [1, 4] by the Fourier method, the solution of the boundary value
problem (2), (3) with the help of the auxiliary Sturm-Liouville problem for an orthogonal system of functions was
obtained in the form of a special series of the form:
xk
m
ti xe
h
mzetzxP −
=
− =
0
cos),,(
, (4)
where
x
z
h
0
(2)
where k – wave number,
Прикладне програмне забезпечення
Suggested Solution
Aspects of the important task solution of creating complex intelligent decision-making support technologies for
the identification of techno-ecological event (TEE) and the optimal selection of the sequence of available measures to
reduce the life cycle of this TEE in the water area in order to minimize material losses are considered
("CONTROL_TEE" system) of intellectualized robots intended.
Statement of the research problem
The informational, mathematical, algorithmic, software, technical, organizational support is considered. The
structure of the information storage of the situation center has been developed. In order to create a database wave
classification and mathematical and computer modeling were carried out. The deterministic process of sound
propagation in a flat waveguide in the homogeneous mode is considered.
Proposed components of mathematical and software for intelligent monitoring and control
systems for TEE
For the classifying waves, mathematical models of the propagation of both running and standing waves in the
sea area were obtained and solved.
Special boundary value problems and the Cauchy problem for the two-dimensional wave equation and,
accordingly, for the Helmholtz equation are solved. As a result, calculation formulas for the sound pressure P(x,z,t) and,
accordingly, its velocities
x
P
i
Vx
=
1
,
z
P
i
Vz
=
1
are obtained in an analytical closed form.
A qualitative analysis and numerical computer solutions are carried out.
Under the sound, in the modern sense of this term, we mean arbitrary vibrations of a liquid or air in the
frequency range of 15 Hz - 15 kHz. Note that oscillations with a frequency lower than 15 Hz are called infrasonic, and
higher than 15 kHz are called ultrasonic.
In accordance with [7, 8], based on the Euler and continuity equations for the sound pressure in a plane
waveguide (Fig. 1), the sound pressure has the form
),(),,( zxPetzxP ti−= , (1)
where the complex amplitude P(x,z) satisfies the Helmholtz equation
02
2
2
2
2
=+
+
Pk
z
P
x
P
(2)
where k – wave number,
c
k
= , c – constant sound speed.
Fig. 1. Planar waveguide.
The general solution of the Helmholtz equation satisfies the boundary conditions on a rigid surface (i.e. here
the vertical component of the velocity 0=zV by 0=z and hz = ). As a result, we obtain the Neumann boundary
conditions:
0
0
=
=
=
=
hzx
P
zx
P
(3)
In accordance with the methodology of works [1, 4] by the Fourier method, the solution of the boundary value
problem (2), (3) with the help of the auxiliary Sturm-Liouville problem for an orthogonal system of functions was
obtained in the form of a special series of the form:
xk
m
ti xe
h
mzetzxP −
=
− =
0
cos),,(
, (4)
where
x
z
h
0
c – constant sound speed.
Прикладне програмне забезпечення
Suggested Solution
Aspects of the important task solution of creating complex intelligent decision-making support technologies for
the identification of techno-ecological event (TEE) and the optimal selection of the sequence of available measures to
reduce the life cycle of this TEE in the water area in order to minimize material losses are considered
("CONTROL_TEE" system) of intellectualized robots intended.
Statement of the research problem
The informational, mathematical, algorithmic, software, technical, organizational support is considered. The
structure of the information storage of the situation center has been developed. In order to create a database wave
classification and mathematical and computer modeling were carried out. The deterministic process of sound
propagation in a flat waveguide in the homogeneous mode is considered.
Proposed components of mathematical and software for intelligent monitoring and control
systems for TEE
For the classifying waves, mathematical models of the propagation of both running and standing waves in the
sea area were obtained and solved.
Special boundary value problems and the Cauchy problem for the two-dimensional wave equation and,
accordingly, for the Helmholtz equation are solved. As a result, calculation formulas for the sound pressure P(x,z,t) and,
accordingly, its velocities
x
P
i
Vx
=
1
,
z
P
i
Vz
=
1
are obtained in an analytical closed form.
A qualitative analysis and numerical computer solutions are carried out.
Under the sound, in the modern sense of this term, we mean arbitrary vibrations of a liquid or air in the
frequency range of 15 Hz - 15 kHz. Note that oscillations with a frequency lower than 15 Hz are called infrasonic, and
higher than 15 kHz are called ultrasonic.
In accordance with [7, 8], based on the Euler and continuity equations for the sound pressure in a plane
waveguide (Fig. 1), the sound pressure has the form
),(),,( zxPetzxP ti−= , (1)
where the complex amplitude P(x,z) satisfies the Helmholtz equation
02
2
2
2
2
=+
+
Pk
z
P
x
P
(2)
where k – wave number,
c
k
= , c – constant sound speed.
Fig. 1. Planar waveguide.
The general solution of the Helmholtz equation satisfies the boundary conditions on a rigid surface (i.e. here
the vertical component of the velocity 0=zV by 0=z and hz = ). As a result, we obtain the Neumann boundary
conditions:
0
0
=
=
=
=
hzx
P
zx
P
(3)
In accordance with the methodology of works [1, 4] by the Fourier method, the solution of the boundary value
problem (2), (3) with the help of the auxiliary Sturm-Liouville problem for an orthogonal system of functions was
obtained in the form of a special series of the form:
xk
m
ti xe
h
mzetzxP −
=
− =
0
cos),,(
, (4)
where
x
z
h
0
Fig. 1. Planar waveguide.
The general solution of the Helmholtz equation satisfies the boundary conditions on a rigid surface
(i.e. here the vertical component of the velocity
Прикладне програмне забезпечення
Suggested Solution
Aspects of the important task solution of creating complex intelligent decision-making support technologies for
the identification of techno-ecological event (TEE) and the optimal selection of the sequence of available measures to
reduce the life cycle of this TEE in the water area in order to minimize material losses are considered
("CONTROL_TEE" system) of intellectualized robots intended.
Statement of the research problem
The informational, mathematical, algorithmic, software, technical, organizational support is considered. The
structure of the information storage of the situation center has been developed. In order to create a database wave
classification and mathematical and computer modeling were carried out. The deterministic process of sound
propagation in a flat waveguide in the homogeneous mode is considered.
Proposed components of mathematical and software for intelligent monitoring and control
systems for TEE
For the classifying waves, mathematical models of the propagation of both running and standing waves in the
sea area were obtained and solved.
Special boundary value problems and the Cauchy problem for the two-dimensional wave equation and,
accordingly, for the Helmholtz equation are solved. As a result, calculation formulas for the sound pressure P(x,z,t) and,
accordingly, its velocities
x
P
i
Vx
=
1
,
z
P
i
Vz
=
1
are obtained in an analytical closed form.
A qualitative analysis and numerical computer solutions are carried out.
Under the sound, in the modern sense of this term, we mean arbitrary vibrations of a liquid or air in the
frequency range of 15 Hz - 15 kHz. Note that oscillations with a frequency lower than 15 Hz are called infrasonic, and
higher than 15 kHz are called ultrasonic.
In accordance with [7, 8], based on the Euler and continuity equations for the sound pressure in a plane
waveguide (Fig. 1), the sound pressure has the form
),(),,( zxPetzxP ti−= , (1)
where the complex amplitude P(x,z) satisfies the Helmholtz equation
02
2
2
2
2
=+
+
Pk
z
P
x
P
(2)
where k – wave number,
c
k
= , c – constant sound speed.
Fig. 1. Planar waveguide.
The general solution of the Helmholtz equation satisfies the boundary conditions on a rigid surface (i.e. here
the vertical component of the velocity 0=zV by 0=z and hz = ). As a result, we obtain the Neumann boundary
conditions:
0
0
=
=
=
=
hzx
P
zx
P
(3)
In accordance with the methodology of works [1, 4] by the Fourier method, the solution of the boundary value
problem (2), (3) with the help of the auxiliary Sturm-Liouville problem for an orthogonal system of functions was
obtained in the form of a special series of the form:
xk
m
ti xe
h
mzetzxP −
=
− =
0
cos),,(
, (4)
where
x
z
h
0
by
Прикладне програмне забезпечення
Suggested Solution
Aspects of the important task solution of creating complex intelligent decision-making support technologies for
the identification of techno-ecological event (TEE) and the optimal selection of the sequence of available measures to
reduce the life cycle of this TEE in the water area in order to minimize material losses are considered
("CONTROL_TEE" system) of intellectualized robots intended.
Statement of the research problem
The informational, mathematical, algorithmic, software, technical, organizational support is considered. The
structure of the information storage of the situation center has been developed. In order to create a database wave
classification and mathematical and computer modeling were carried out. The deterministic process of sound
propagation in a flat waveguide in the homogeneous mode is considered.
Proposed components of mathematical and software for intelligent monitoring and control
systems for TEE
For the classifying waves, mathematical models of the propagation of both running and standing waves in the
sea area were obtained and solved.
Special boundary value problems and the Cauchy problem for the two-dimensional wave equation and,
accordingly, for the Helmholtz equation are solved. As a result, calculation formulas for the sound pressure P(x,z,t) and,
accordingly, its velocities
x
P
i
Vx
=
1
,
z
P
i
Vz
=
1
are obtained in an analytical closed form.
A qualitative analysis and numerical computer solutions are carried out.
Under the sound, in the modern sense of this term, we mean arbitrary vibrations of a liquid or air in the
frequency range of 15 Hz - 15 kHz. Note that oscillations with a frequency lower than 15 Hz are called infrasonic, and
higher than 15 kHz are called ultrasonic.
In accordance with [7, 8], based on the Euler and continuity equations for the sound pressure in a plane
waveguide (Fig. 1), the sound pressure has the form
),(),,( zxPetzxP ti−= , (1)
where the complex amplitude P(x,z) satisfies the Helmholtz equation
02
2
2
2
2
=+
+
Pk
z
P
x
P
(2)
where k – wave number,
c
k
= , c – constant sound speed.
Fig. 1. Planar waveguide.
The general solution of the Helmholtz equation satisfies the boundary conditions on a rigid surface (i.e. here
the vertical component of the velocity 0=zV by 0=z and hz = ). As a result, we obtain the Neumann boundary
conditions:
0
0
=
=
=
=
hzx
P
zx
P
(3)
In accordance with the methodology of works [1, 4] by the Fourier method, the solution of the boundary value
problem (2), (3) with the help of the auxiliary Sturm-Liouville problem for an orthogonal system of functions was
obtained in the form of a special series of the form:
xk
m
ti xe
h
mzetzxP −
=
− =
0
cos),,(
, (4)
where
x
z
h
0
. As a result, we obtain the Neumann
boundary conditions:
Прикладне програмне забезпечення
Suggested Solution
Aspects of the important task solution of creating complex intelligent decision-making support technologies for
the identification of techno-ecological event (TEE) and the optimal selection of the sequence of available measures to
reduce the life cycle of this TEE in the water area in order to minimize material losses are considered
("CONTROL_TEE" system) of intellectualized robots intended.
Statement of the research problem
The informational, mathematical, algorithmic, software, technical, organizational support is considered. The
structure of the information storage of the situation center has been developed. In order to create a database wave
classification and mathematical and computer modeling were carried out. The deterministic process of sound
propagation in a flat waveguide in the homogeneous mode is considered.
Proposed components of mathematical and software for intelligent monitoring and control
systems for TEE
For the classifying waves, mathematical models of the propagation of both running and standing waves in the
sea area were obtained and solved.
Special boundary value problems and the Cauchy problem for the two-dimensional wave equation and,
accordingly, for the Helmholtz equation are solved. As a result, calculation formulas for the sound pressure P(x,z,t) and,
accordingly, its velocities
x
P
i
Vx
=
1
,
z
P
i
Vz
=
1
are obtained in an analytical closed form.
A qualitative analysis and numerical computer solutions are carried out.
Under the sound, in the modern sense of this term, we mean arbitrary vibrations of a liquid or air in the
frequency range of 15 Hz - 15 kHz. Note that oscillations with a frequency lower than 15 Hz are called infrasonic, and
higher than 15 kHz are called ultrasonic.
In accordance with [7, 8], based on the Euler and continuity equations for the sound pressure in a plane
waveguide (Fig. 1), the sound pressure has the form
),(),,( zxPetzxP ti−= , (1)
where the complex amplitude P(x,z) satisfies the Helmholtz equation
02
2
2
2
2
=+
+
Pk
z
P
x
P
(2)
where k – wave number,
c
k
= , c – constant sound speed.
Fig. 1. Planar waveguide.
The general solution of the Helmholtz equation satisfies the boundary conditions on a rigid surface (i.e. here
the vertical component of the velocity 0=zV by 0=z and hz = ). As a result, we obtain the Neumann boundary
conditions:
0
0
=
=
=
=
hzx
P
zx
P
(3)
In accordance with the methodology of works [1, 4] by the Fourier method, the solution of the boundary value
problem (2), (3) with the help of the auxiliary Sturm-Liouville problem for an orthogonal system of functions was
obtained in the form of a special series of the form:
xk
m
ti xe
h
mzetzxP −
=
− =
0
cos),,(
, (4)
where
x
z
h
0
(3)
In accordance with the methodology of works [1, 4] by the Fourier method, the solution of the boundary value
problem (2), (3) with the help of the auxiliary Sturm-Liouville problem for an orthogonal system of functions was
obtained in the form of a special series of the form:
z
h
439
Прикладне програмне забезпечення
Прикладне програмне забезпечення
Suggested Solution
Aspects of the important task solution of creating complex intelligent decision-making support technologies for
the identification of techno-ecological event (TEE) and the optimal selection of the sequence of available measures to
reduce the life cycle of this TEE in the water area in order to minimize material losses are considered
("CONTROL_TEE" system) of intellectualized robots intended.
Statement of the research problem
The informational, mathematical, algorithmic, software, technical, organizational support is considered. The
structure of the information storage of the situation center has been developed. In order to create a database wave
classification and mathematical and computer modeling were carried out. The deterministic process of sound
propagation in a flat waveguide in the homogeneous mode is considered.
Proposed components of mathematical and software for intelligent monitoring and control
systems for TEE
For the classifying waves, mathematical models of the propagation of both running and standing waves in the
sea area were obtained and solved.
Special boundary value problems and the Cauchy problem for the two-dimensional wave equation and,
accordingly, for the Helmholtz equation are solved. As a result, calculation formulas for the sound pressure P(x,z,t) and,
accordingly, its velocities
x
P
i
Vx
=
1
,
z
P
i
Vz
=
1
are obtained in an analytical closed form.
A qualitative analysis and numerical computer solutions are carried out.
Under the sound, in the modern sense of this term, we mean arbitrary vibrations of a liquid or air in the
frequency range of 15 Hz - 15 kHz. Note that oscillations with a frequency lower than 15 Hz are called infrasonic, and
higher than 15 kHz are called ultrasonic.
In accordance with [7, 8], based on the Euler and continuity equations for the sound pressure in a plane
waveguide (Fig. 1), the sound pressure has the form
),(),,( zxPetzxP ti−= , (1)
where the complex amplitude P(x,z) satisfies the Helmholtz equation
02
2
2
2
2
=+
+
Pk
z
P
x
P
(2)
where k – wave number,
c
k
= , c – constant sound speed.
Fig. 1. Planar waveguide.
The general solution of the Helmholtz equation satisfies the boundary conditions on a rigid surface (i.e. here
the vertical component of the velocity 0=zV by 0=z and hz = ). As a result, we obtain the Neumann boundary
conditions:
0
0
=
=
=
=
hzx
P
zx
P
(3)
In accordance with the methodology of works [1, 4] by the Fourier method, the solution of the boundary value
problem (2), (3) with the help of the auxiliary Sturm-Liouville problem for an orthogonal system of functions was
obtained in the form of a special series of the form:
xk
m
ti xe
h
mzetzxP −
=
− =
0
cos),,(
, (4)
where
x
z
h
0
, (4)
where
Прикладне програмне забезпечення
[Введите текст]
2
22
22
h
mkkx
−= . (5)
Atlow frequencies, only the first summand ( 0=m ) describes the traveling wave, because
now
c
kkx
= 2 .
In our case, in the range of "ordinary frequencies", when Nm , kkx , we get purely imaginary values
[9, 10]:
122
22
−=
hk
m
c
ikx
. (6)
Thus, the terms of the series, starting from the second, represent waves whose amplitudes decrease quite
rapidly as the distance to the point source increases.
Finally, when the condition
h
k
h
c
==122
22
is satisfied, then xk is a real value and the first normal
wave appears.
Thus, waves with numbers satisfying the condition are propagating
=
c
hN
, where parentheses – the
whole part of number.
Fig. 2. Wave numbers of normal waves.
Taking into account expressions (4) and (6) for the “frozen” time, we obtain an expression for acoustic
pressure in the form:
xik
N
m
m
xe
h
mzzxP −
=
=
0
cos),(
,
where
m
xk – wave number of m -th mode.
The initial condition of the boundary value problem (wave profile) has the following form fig. 3.
Fig. 3. Wave Profile.
(5)
Atlow frequencies, only the first summand (m = 0) describes the traveling wave, because now
Прикладне програмне забезпечення
[Введите текст]
2
22
22
h
mkkx
−= . (5)
Atlow frequencies, only the first summand ( 0=m ) describes the traveling wave, because
now
c
kkx
= 2 .
In our case, in the range of "ordinary frequencies", when Nm , kkx , we get purely imaginary values
[9, 10]:
122
22
−=
hk
m
c
ikx
. (6)
Thus, the terms of the series, starting from the second, represent waves whose amplitudes decrease quite
rapidly as the distance to the point source increases.
Finally, when the condition
h
k
h
c
==122
22
is satisfied, then xk is a real value and the first normal
wave appears.
Thus, waves with numbers satisfying the condition are propagating
=
c
hN
, where parentheses – the
whole part of number.
Fig. 2. Wave numbers of normal waves.
Taking into account expressions (4) and (6) for the “frozen” time, we obtain an expression for acoustic
pressure in the form:
xik
N
m
m
xe
h
mzzxP −
=
=
0
cos),(
,
where
m
xk – wave number of m -th mode.
The initial condition of the boundary value problem (wave profile) has the following form fig. 3.
Fig. 3. Wave Profile.
.
In our case, in the range of “ordinary frequencies”, when
Прикладне програмне забезпечення
[Введите текст]
2
22
22
h
mkkx
−= . (5)
Atlow frequencies, only the first summand ( 0=m ) describes the traveling wave, because
now
c
kkx
= 2 .
In our case, in the range of "ordinary frequencies", when Nm , kkx , we get purely imaginary values
[9, 10]:
122
22
−=
hk
m
c
ikx
. (6)
Thus, the terms of the series, starting from the second, represent waves whose amplitudes decrease quite
rapidly as the distance to the point source increases.
Finally, when the condition
h
k
h
c
==122
22
is satisfied, then xk is a real value and the first normal
wave appears.
Thus, waves with numbers satisfying the condition are propagating
=
c
hN
, where parentheses – the
whole part of number.
Fig. 2. Wave numbers of normal waves.
Taking into account expressions (4) and (6) for the “frozen” time, we obtain an expression for acoustic
pressure in the form:
xik
N
m
m
xe
h
mzzxP −
=
=
0
cos),(
,
where
m
xk – wave number of m -th mode.
The initial condition of the boundary value problem (wave profile) has the following form fig. 3.
Fig. 3. Wave Profile.
, we get purely imaginary values [9, 10]:
Прикладне програмне забезпечення
[Введите текст]
2
22
22
h
mkkx
−= . (5)
Atlow frequencies, only the first summand ( 0=m ) describes the traveling wave, because
now
c
kkx
= 2 .
In our case, in the range of "ordinary frequencies", when Nm , kkx , we get purely imaginary values
[9, 10]:
122
22
−=
hk
m
c
ikx
. (6)
Thus, the terms of the series, starting from the second, represent waves whose amplitudes decrease quite
rapidly as the distance to the point source increases.
Finally, when the condition
h
k
h
c
==122
22
is satisfied, then xk is a real value and the first normal
wave appears.
Thus, waves with numbers satisfying the condition are propagating
=
c
hN
, where parentheses – the
whole part of number.
Fig. 2. Wave numbers of normal waves.
Taking into account expressions (4) and (6) for the “frozen” time, we obtain an expression for acoustic
pressure in the form:
xik
N
m
m
xe
h
mzzxP −
=
=
0
cos),(
,
where
m
xk – wave number of m -th mode.
The initial condition of the boundary value problem (wave profile) has the following form fig. 3.
Fig. 3. Wave Profile.
(6)
Thus, the terms of the series, starting from the second, represent waves whose amplitudes decrease quite
rapidly as the distance to the point source increases.
Finally, when the condition
Прикладне програмне забезпечення
[Введите текст]
2
22
22
h
mkkx
−= . (5)
Atlow frequencies, only the first summand ( 0=m ) describes the traveling wave, because
now
c
kkx
= 2 .
In our case, in the range of "ordinary frequencies", when Nm , kkx , we get purely imaginary values
[9, 10]:
122
22
−=
hk
m
c
ikx
. (6)
Thus, the terms of the series, starting from the second, represent waves whose amplitudes decrease quite
rapidly as the distance to the point source increases.
Finally, when the condition
h
k
h
c
==122
22
is satisfied, then xk is a real value and the first normal
wave appears.
Thus, waves with numbers satisfying the condition are propagating
=
c
hN
, where parentheses – the
whole part of number.
Fig. 2. Wave numbers of normal waves.
Taking into account expressions (4) and (6) for the “frozen” time, we obtain an expression for acoustic
pressure in the form:
xik
N
m
m
xe
h
mzzxP −
=
=
0
cos),(
,
where
m
xk – wave number of m -th mode.
The initial condition of the boundary value problem (wave profile) has the following form fig. 3.
Fig. 3. Wave Profile.
is satisfied, then
Прикладне програмне забезпечення
[Введите текст]
2
22
22
h
mkkx
−= . (5)
Atlow frequencies, only the first summand ( 0=m ) describes the traveling wave, because
now
c
kkx
= 2 .
In our case, in the range of "ordinary frequencies", when Nm , kkx , we get purely imaginary values
[9, 10]:
122
22
−=
hk
m
c
ikx
. (6)
Thus, the terms of the series, starting from the second, represent waves whose amplitudes decrease quite
rapidly as the distance to the point source increases.
Finally, when the condition
h
k
h
c
==122
22
is satisfied, then xk is a real value and the first normal
wave appears.
Thus, waves with numbers satisfying the condition are propagating
=
c
hN
, where parentheses – the
whole part of number.
Fig. 2. Wave numbers of normal waves.
Taking into account expressions (4) and (6) for the “frozen” time, we obtain an expression for acoustic
pressure in the form:
xik
N
m
m
xe
h
mzzxP −
=
=
0
cos),(
,
where
m
xk – wave number of m -th mode.
The initial condition of the boundary value problem (wave profile) has the following form fig. 3.
Fig. 3. Wave Profile.
is a real value and the first normal wave
appears.
Thus, waves with numbers satisfying the condition are propagating
Прикладне програмне забезпечення
[Введите текст]
2
22
22
h
mkkx
−= . (5)
Atlow frequencies, only the first summand ( 0=m ) describes the traveling wave, because
now
c
kkx
= 2 .
In our case, in the range of "ordinary frequencies", when Nm , kkx , we get purely imaginary values
[9, 10]:
122
22
−=
hk
m
c
ikx
. (6)
Thus, the terms of the series, starting from the second, represent waves whose amplitudes decrease quite
rapidly as the distance to the point source increases.
Finally, when the condition
h
k
h
c
==122
22
is satisfied, then xk is a real value and the first normal
wave appears.
Thus, waves with numbers satisfying the condition are propagating
=
c
hN
, where parentheses – the
whole part of number.
Fig. 2. Wave numbers of normal waves.
Taking into account expressions (4) and (6) for the “frozen” time, we obtain an expression for acoustic
pressure in the form:
xik
N
m
m
xe
h
mzzxP −
=
=
0
cos),(
,
where
m
xk – wave number of m -th mode.
The initial condition of the boundary value problem (wave profile) has the following form fig. 3.
Fig. 3. Wave Profile.
, where parentheses [ ] – the
whole part of number.
Прикладне програмне забезпечення
[Введите текст]
2
22
22
h
mkkx
−= . (5)
Atlow frequencies, only the first summand ( 0=m ) describes the traveling wave, because
now
c
kkx
= 2 .
In our case, in the range of "ordinary frequencies", when Nm , kkx , we get purely imaginary values
[9, 10]:
122
22
−=
hk
m
c
ikx
. (6)
Thus, the terms of the series, starting from the second, represent waves whose amplitudes decrease quite
rapidly as the distance to the point source increases.
Finally, when the condition
h
k
h
c
==122
22
is satisfied, then xk is a real value and the first normal
wave appears.
Thus, waves with numbers satisfying the condition are propagating
=
c
hN
, where parentheses – the
whole part of number.
Fig. 2. Wave numbers of normal waves.
Taking into account expressions (4) and (6) for the “frozen” time, we obtain an expression for acoustic
pressure in the form:
xik
N
m
m
xe
h
mzzxP −
=
=
0
cos),(
,
where
m
xk – wave number of m -th mode.
The initial condition of the boundary value problem (wave profile) has the following form fig. 3.
Fig. 3. Wave Profile.
Fig. 2. Wave numbers of normal waves.
Taking into account expressions (4) and (6) for the “frozen” time, we obtain an expression for acoustic pressure
in the form:
Прикладне програмне забезпечення
[Введите текст]
2
22
22
h
mkkx
−= . (5)
Atlow frequencies, only the first summand ( 0=m ) describes the traveling wave, because
now
c
kkx
= 2 .
In our case, in the range of "ordinary frequencies", when Nm , kkx , we get purely imaginary values
[9, 10]:
122
22
−=
hk
m
c
ikx
. (6)
Thus, the terms of the series, starting from the second, represent waves whose amplitudes decrease quite
rapidly as the distance to the point source increases.
Finally, when the condition
h
k
h
c
==122
22
is satisfied, then xk is a real value and the first normal
wave appears.
Thus, waves with numbers satisfying the condition are propagating
=
c
hN
, where parentheses – the
whole part of number.
Fig. 2. Wave numbers of normal waves.
Taking into account expressions (4) and (6) for the “frozen” time, we obtain an expression for acoustic
pressure in the form:
xik
N
m
m
xe
h
mzzxP −
=
=
0
cos),(
,
where
m
xk – wave number of m -th mode.
The initial condition of the boundary value problem (wave profile) has the following form fig. 3.
Fig. 3. Wave Profile.
where
Прикладне програмне забезпечення
[Введите текст]
2
22
22
h
mkkx
−= . (5)
Atlow frequencies, only the first summand ( 0=m ) describes the traveling wave, because
now
c
kkx
= 2 .
In our case, in the range of "ordinary frequencies", when Nm , kkx , we get purely imaginary values
[9, 10]:
122
22
−=
hk
m
c
ikx
. (6)
Thus, the terms of the series, starting from the second, represent waves whose amplitudes decrease quite
rapidly as the distance to the point source increases.
Finally, when the condition
h
k
h
c
==122
22
is satisfied, then xk is a real value and the first normal
wave appears.
Thus, waves with numbers satisfying the condition are propagating
=
c
hN
, where parentheses – the
whole part of number.
Fig. 2. Wave numbers of normal waves.
Taking into account expressions (4) and (6) for the “frozen” time, we obtain an expression for acoustic
pressure in the form:
xik
N
m
m
xe
h
mzzxP −
=
=
0
cos),(
,
where
m
xk – wave number of m -th mode.
The initial condition of the boundary value problem (wave profile) has the following form fig. 3.
Fig. 3. Wave Profile.
– wave number of m-th mode.
The initial condition of the boundary value problem (wave profile) has the following form fig. 3.
Прикладне програмне забезпечення
[Введите текст]
2
22
22
h
mkkx
−= . (5)
Atlow frequencies, only the first summand ( 0=m ) describes the traveling wave, because
now
c
kkx
= 2 .
In our case, in the range of "ordinary frequencies", when Nm , kkx , we get purely imaginary values
[9, 10]:
122
22
−=
hk
m
c
ikx
. (6)
Thus, the terms of the series, starting from the second, represent waves whose amplitudes decrease quite
rapidly as the distance to the point source increases.
Finally, when the condition
h
k
h
c
==122
22
is satisfied, then xk is a real value and the first normal
wave appears.
Thus, waves with numbers satisfying the condition are propagating
=
c
hN
, where parentheses – the
whole part of number.
Fig. 2. Wave numbers of normal waves.
Taking into account expressions (4) and (6) for the “frozen” time, we obtain an expression for acoustic
pressure in the form:
xik
N
m
m
xe
h
mzzxP −
=
=
0
cos),(
,
where
m
xk – wave number of m -th mode.
The initial condition of the boundary value problem (wave profile) has the following form fig. 3.
Fig. 3. Wave Profile. Fig. 3. Wave Profile.
440
Прикладне програмне забезпечення
For the model case, the following pressure distribution in a planar waterway is obtained (modulus and real part).
Прикладне програмне забезпечення
For the model case, the following pressure distribution in a planar waterway is obtained (modulus and real
part).
Fig. 4. Modulus and real part of the pressure field.
We use horizontal sections of the obtained fields to study hydroacoustic signals.
In particular, the frequency
h
c
21 = is called the transverse resonance frequency of the waveguide.
Now the width of the waveguide is 12
1 (wavelength
1
1
c
= ).
Fig. 4. Modulus and real part of the pressure field.
We use horizontal sections of the obtained fields to study hydroacoustic signals.
In particular, the frequency
Прикладне програмне забезпечення
For the model case, the following pressure distribution in a planar waterway is obtained (modulus and real
part).
Fig. 4. Modulus and real part of the pressure field.
We use horizontal sections of the obtained fields to study hydroacoustic signals.
In particular, the frequency
h
c
21 = is called the transverse resonance frequency of the waveguide.
Now the width of the waveguide is 12
1 (wavelength
1
1
c
= ).
is called the transverse resonance frequency of the waveguide.
Now the width of the waveguide is
Прикладне програмне забезпечення
For the model case, the following pressure distribution in a planar waterway is obtained (modulus and real
part).
Fig. 4. Modulus and real part of the pressure field.
We use horizontal sections of the obtained fields to study hydroacoustic signals.
In particular, the frequency
h
c
21 = is called the transverse resonance frequency of the waveguide.
Now the width of the waveguide is 12
1 (wavelength
1
1
c
= ).
(wavelength
Прикладне програмне забезпечення
For the model case, the following pressure distribution in a planar waterway is obtained (modulus and real
part).
Fig. 4. Modulus and real part of the pressure field.
We use horizontal sections of the obtained fields to study hydroacoustic signals.
In particular, the frequency
h
c
21 = is called the transverse resonance frequency of the waveguide.
Now the width of the waveguide is 12
1 (wavelength
1
1
c
= ).
).
Прикладне програмне забезпечення
For the model case, the following pressure distribution in a planar waterway is obtained (modulus and real
part).
Fig. 4. Modulus and real part of the pressure field.
We use horizontal sections of the obtained fields to study hydroacoustic signals.
In particular, the frequency
h
c
21 = is called the transverse resonance frequency of the waveguide.
Now the width of the waveguide is 12
1 (wavelength
1
1
c
= ).
Прикладне програмне забезпечення
[Введите текст]
Fig. 5. Horizontal sections of the field at different depths.
In the case of low frequencies, which is very important for practice, below the frequency of the transverse
resonance, in our case, in the presence of non-zero boundary conditions, the attenuation of the amplitudes, with an
increase in "x", passes so quickly that we can take [9]:
+= 00 cos x
c
AP , (7)
where 0A , 0 determined by the properties of the radiation source. Then 0zV ,
+−= 0
0 sin1
x
cic
A
Vx . (8)
Remark. Under zero boundary conditions, the nature of oscillations in the waveguide may differ significantly
from that considered above. In this case, the number and location of the field maxima will depend in another way on the
superposition of the propagating waves. To do this, we solve a boundary-value problem for the Helmholtz equation with
initial conditions under which the pressure profile is represented as a parabola.
Boundary conditions on the walls of the waveguide .0
0
=
=
=
= hz
P
z
P
441
Прикладне програмне забезпечення
Прикладне програмне забезпечення
[Введите текст]
Fig. 5. Horizontal sections of the field at different depths.
In the case of low frequencies, which is very important for practice, below the frequency of the transverse
resonance, in our case, in the presence of non-zero boundary conditions, the attenuation of the amplitudes, with an
increase in "x", passes so quickly that we can take [9]:
+= 00 cos x
c
AP , (7)
where 0A , 0 determined by the properties of the radiation source. Then 0zV ,
+−= 0
0 sin1
x
cic
A
Vx . (8)
Remark. Under zero boundary conditions, the nature of oscillations in the waveguide may differ significantly
from that considered above. In this case, the number and location of the field maxima will depend in another way on the
superposition of the propagating waves. To do this, we solve a boundary-value problem for the Helmholtz equation with
initial conditions under which the pressure profile is represented as a parabola.
Boundary conditions on the walls of the waveguide .0
0
=
=
=
= hz
P
z
P
Fig. 5. Horizontal sections of the field at different depths.
In the case of low frequencies, which is very important for practice, below the frequency of the transverse
resonance, in our case, in the presence of non-zero boundary conditions, the attenuation of the amplitudes, with an
increase in “x”, passes so quickly that we can take [9]:
Прикладне програмне забезпечення
[Введите текст]
Fig. 5. Horizontal sections of the field at different depths.
In the case of low frequencies, which is very important for practice, below the frequency of the transverse
resonance, in our case, in the presence of non-zero boundary conditions, the attenuation of the amplitudes, with an
increase in "x", passes so quickly that we can take [9]:
+= 00 cos x
c
AP , (7)
where 0A , 0 determined by the properties of the radiation source. Then 0zV ,
+−= 0
0 sin1
x
cic
A
Vx . (8)
Remark. Under zero boundary conditions, the nature of oscillations in the waveguide may differ significantly
from that considered above. In this case, the number and location of the field maxima will depend in another way on the
superposition of the propagating waves. To do this, we solve a boundary-value problem for the Helmholtz equation with
initial conditions under which the pressure profile is represented as a parabola.
Boundary conditions on the walls of the waveguide .0
0
=
=
=
= hz
P
z
P
(7)
where
Прикладне програмне забезпечення
[Введите текст]
Fig. 5. Horizontal sections of the field at different depths.
In the case of low frequencies, which is very important for practice, below the frequency of the transverse
resonance, in our case, in the presence of non-zero boundary conditions, the attenuation of the amplitudes, with an
increase in "x", passes so quickly that we can take [9]:
+= 00 cos x
c
AP , (7)
where 0A , 0 determined by the properties of the radiation source. Then 0zV ,
+−= 0
0 sin1
x
cic
A
Vx . (8)
Remark. Under zero boundary conditions, the nature of oscillations in the waveguide may differ significantly
from that considered above. In this case, the number and location of the field maxima will depend in another way on the
superposition of the propagating waves. To do this, we solve a boundary-value problem for the Helmholtz equation with
initial conditions under which the pressure profile is represented as a parabola.
Boundary conditions on the walls of the waveguide .0
0
=
=
=
= hz
P
z
P
determined by the properties of the radiation source. Then
Прикладне програмне забезпечення
[Введите текст]
Fig. 5. Horizontal sections of the field at different depths.
In the case of low frequencies, which is very important for practice, below the frequency of the transverse
resonance, in our case, in the presence of non-zero boundary conditions, the attenuation of the amplitudes, with an
increase in "x", passes so quickly that we can take [9]:
+= 00 cos x
c
AP , (7)
where 0A , 0 determined by the properties of the radiation source. Then 0zV ,
+−= 0
0 sin1
x
cic
A
Vx . (8)
Remark. Under zero boundary conditions, the nature of oscillations in the waveguide may differ significantly
from that considered above. In this case, the number and location of the field maxima will depend in another way on the
superposition of the propagating waves. To do this, we solve a boundary-value problem for the Helmholtz equation with
initial conditions under which the pressure profile is represented as a parabola.
Boundary conditions on the walls of the waveguide .0
0
=
=
=
= hz
P
z
P
,
Прикладне програмне забезпечення
[Введите текст]
Fig. 5. Horizontal sections of the field at different depths.
In the case of low frequencies, which is very important for practice, below the frequency of the transverse
resonance, in our case, in the presence of non-zero boundary conditions, the attenuation of the amplitudes, with an
increase in "x", passes so quickly that we can take [9]:
+= 00 cos x
c
AP , (7)
where 0A , 0 determined by the properties of the radiation source. Then 0zV ,
+−= 0
0 sin1
x
cic
A
Vx . (8)
Remark. Under zero boundary conditions, the nature of oscillations in the waveguide may differ significantly
from that considered above. In this case, the number and location of the field maxima will depend in another way on the
superposition of the propagating waves. To do this, we solve a boundary-value problem for the Helmholtz equation with
initial conditions under which the pressure profile is represented as a parabola.
Boundary conditions on the walls of the waveguide .0
0
=
=
=
= hz
P
z
P
(8)
Remark. Under zero boundary conditions, the nature of oscillations in the waveguide may differ significantly
from that considered above. In this case, the number and location of the field maxima will depend in another way on
the superposition of the propagating waves. To do this, we solve a boundary-value problem for the Helmholtz equation
with initial conditions under which the pressure profile is represented as a parabola.
Boundary conditions on the walls of the waveguide
Прикладне програмне забезпечення
[Введите текст]
Fig. 5. Horizontal sections of the field at different depths.
In the case of low frequencies, which is very important for practice, below the frequency of the transverse
resonance, in our case, in the presence of non-zero boundary conditions, the attenuation of the amplitudes, with an
increase in "x", passes so quickly that we can take [9]:
+= 00 cos x
c
AP , (7)
where 0A , 0 determined by the properties of the radiation source. Then 0zV ,
+−= 0
0 sin1
x
cic
A
Vx . (8)
Remark. Under zero boundary conditions, the nature of oscillations in the waveguide may differ significantly
from that considered above. In this case, the number and location of the field maxima will depend in another way on the
superposition of the propagating waves. To do this, we solve a boundary-value problem for the Helmholtz equation with
initial conditions under which the pressure profile is represented as a parabola.
Boundary conditions on the walls of the waveguide .0
0
=
=
=
= hz
P
z
P Прикладне програмне забезпечення
Fig. 6. Modulus and real part of parabolic wave profile.
The analytical expression for calculating the acoustic pressure field is obtained in the form
( )
( )
( )
( )
x
kc
hkcN
k
e
k
h
kc
z
h
k
titctzxP 12
)(12
0
3
2
23
22
)12(
1
)(
121
12sin
)sin()cos(8),,( +
−+
−
=
+
+
−
+
−=
, (9)
where – water density.
A detailed examination of the behavior of the profile of the real part of the pressure shows that in some areas
the initial parabolic wave becomes almost flat or changes its sign several times depending on the depth (Fig. 9).
Fig. 7. Modulus and real part of the parabolic wave pressure field.
Fig. 6. Modulus and real part of parabolic wave profile.
The analytical expression for calculating the acoustic pressure field is obtained in the form
Прикладне програмне забезпечення
Fig. 6. Modulus and real part of parabolic wave profile.
The analytical expression for calculating the acoustic pressure field is obtained in the form
( )
( )
( )
( )
x
kc
hkcN
k
e
k
h
kc
z
h
k
titctzxP 12
)(12
0
3
2
23
22
)12(
1
)(
121
12sin
)sin()cos(8),,( +
−+
−
=
+
+
−
+
−=
, (9)
where – water density.
A detailed examination of the behavior of the profile of the real part of the pressure shows that in some areas
the initial parabolic wave becomes almost flat or changes its sign several times depending on the depth (Fig. 9).
Fig. 7. Modulus and real part of the parabolic wave pressure field.
(9)
where
Прикладне програмне забезпечення
Fig. 6. Modulus and real part of parabolic wave profile.
The analytical expression for calculating the acoustic pressure field is obtained in the form
( )
( )
( )
( )
x
kc
hkcN
k
e
k
h
kc
z
h
k
titctzxP 12
)(12
0
3
2
23
22
)12(
1
)(
121
12sin
)sin()cos(8),,( +
−+
−
=
+
+
−
+
−=
, (9)
where – water density.
A detailed examination of the behavior of the profile of the real part of the pressure shows that in some areas
the initial parabolic wave becomes almost flat or changes its sign several times depending on the depth (Fig. 9).
Fig. 7. Modulus and real part of the parabolic wave pressure field.
– water density.
442
Прикладне програмне забезпечення
A detailed examination of the behavior of the profile of the real part of the pressure shows that in some areas
the initial parabolic wave becomes almost flat or changes its sign several times depending on the depth (Fig. 9).
Прикладне програмне забезпечення
Fig. 6. Modulus and real part of parabolic wave profile.
The analytical expression for calculating the acoustic pressure field is obtained in the form
( )
( )
( )
( )
x
kc
hkcN
k
e
k
h
kc
z
h
k
titctzxP 12
)(12
0
3
2
23
22
)12(
1
)(
121
12sin
)sin()cos(8),,( +
−+
−
=
+
+
−
+
−=
, (9)
where – water density.
A detailed examination of the behavior of the profile of the real part of the pressure shows that in some areas
the initial parabolic wave becomes almost flat or changes its sign several times depending on the depth (Fig. 9).
Fig. 7. Modulus and real part of the parabolic wave pressure field. Fig. 7. Modulus and real part of the parabolic wave pressure field.
Прикладне програмне забезпечення
[Введите текст]
Fig. 8. Wave profiles at different times.
Fig. 9. Feature of parabolic wave propagation.
Conclusions
The paper shows that analytical solutions of the Helmholtz equation for a plane waveguide can be obtained not
only as a sum of normal waves, but also as special series that take into account the characteristics of the radiation
source. To develop a database of the situational center information storage waves were classified and the corresponding
mathematical and computer modeling was carried out.
Література
1. Pisarenko J., Melkumyan E. The Structure of the Information Storage «CONTROL_TEA» for UAV Applications // 2019 IEEE 5th
InternationalConferenceActualProblemsofUnmannedAerialVehiclesDevelopments, APUAVD-2019 Proceedings, 2019, P. 274–277.
2. Pysarenko V., Gulchak O., Pisarenko J. Technology for Improve the Safety of Ships from Methane Emissions Using UAVs // 2020 IEEE 6th
International Conference on Methods and Systems of Navigation and Motion Control, MSNMC-2020 Proceedings, 2020, P. 93–96.
3. Melkumian K., Pisarenko J., Koval A. Organization of Regional Situational Centers of the Intelligent System «CONTROL_TEA» using UAVs
//2021 IEEE 6th International Conference on Actual Problems of Unmanned Aerial Vehicles Development, APUAVD-2021 Proceedings, 2021,
P. 37-40.
4. М. В. Ногін. Аналітичний розв’язок крайової задачі для рівнянь Нав’є – Стокса між двома співвісними циліндрами // Тези 17-ої
Міжнародної наукової конференції імені академікаМихайла Кравчука (19 – 20 травня 2016 р., Київ, НТУУ «КПИ»). Том 1.
Диференціальні та інтегральні рівняння, їх застосування. К.: НУТУ «КПІ». Том 1. 2016. С. 218 – 219.
5. В. Г. Писаренко, С. В. Корнеєв, Ю. В. Писаренко. Методи і засоби дослідження техно-екологічнихподій // Тези 17-ої Міжнародної
наукової конференції імені академікаМихайла Кравчука (19 – 20 травня 2016 р., Київ, НТУУ «КПИ»). Том 1. Диференціальні та
інтегральні рівняння, їх застосування. К.: НУТУ «КПІ». Том 1. 2016. С.226-229.
6. V.G. Pisarenko, S.V. Korneev, J.V. Pisarenko, I.A. Varava. FUZZY UNDERWATER IMAGE RECOGNITION //Kompiuterna matematyka. –
2018. № 1.- P. 90-96. http://nbuv.gov.ua/UJRN/Koma_2018_1_13
7. В.Г. Гринченко, И.В. Вовк, В.Т. Маципура. Основы акустики / К. : Наукова думка, 2007. — 640с.
8. Куперман Ц.А., Енсен Ф.Б. В сб. «Подводная акустика и обработкасигналов». М.: «Мир», 1985, с. 116-124.
9. Завадский В.Ю. Моделирование волновых процессов. – М.: Наука, 1991. – 248 с.
10. Скучик Е. Основы акустики М.: Мир, 1976. — 520 с.
References
1. Pisarenko J., Melkumyan E. The Structure of the Information Storage «CONTROL_TEA» for UAV Applications // 2019 IEEE 5th International
Conference Actual Problems of Unmanned Aerial Vehicles Developments, APUAVD-2019 Proceedings. − 2019. − P. 274 - 277.
Fig. 8. Wave profiles at different times.
443
Прикладне програмне забезпечення
Прикладне програмне забезпечення
[Введите текст]
Fig. 8. Wave profiles at different times.
Fig. 9. Feature of parabolic wave propagation.
Conclusions
The paper shows that analytical solutions of the Helmholtz equation for a plane waveguide can be obtained not
only as a sum of normal waves, but also as special series that take into account the characteristics of the radiation
source. To develop a database of the situational center information storage waves were classified and the corresponding
mathematical and computer modeling was carried out.
Література
1. Pisarenko J., Melkumyan E. The Structure of the Information Storage «CONTROL_TEA» for UAV Applications // 2019 IEEE 5th
InternationalConferenceActualProblemsofUnmannedAerialVehiclesDevelopments, APUAVD-2019 Proceedings, 2019, P. 274–277.
2. Pysarenko V., Gulchak O., Pisarenko J. Technology for Improve the Safety of Ships from Methane Emissions Using UAVs // 2020 IEEE 6th
International Conference on Methods and Systems of Navigation and Motion Control, MSNMC-2020 Proceedings, 2020, P. 93–96.
3. Melkumian K., Pisarenko J., Koval A. Organization of Regional Situational Centers of the Intelligent System «CONTROL_TEA» using UAVs
//2021 IEEE 6th International Conference on Actual Problems of Unmanned Aerial Vehicles Development, APUAVD-2021 Proceedings, 2021,
P. 37-40.
4. М. В. Ногін. Аналітичний розв’язок крайової задачі для рівнянь Нав’є – Стокса між двома співвісними циліндрами // Тези 17-ої
Міжнародної наукової конференції імені академікаМихайла Кравчука (19 – 20 травня 2016 р., Київ, НТУУ «КПИ»). Том 1.
Диференціальні та інтегральні рівняння, їх застосування. К.: НУТУ «КПІ». Том 1. 2016. С. 218 – 219.
5. В. Г. Писаренко, С. В. Корнеєв, Ю. В. Писаренко. Методи і засоби дослідження техно-екологічнихподій // Тези 17-ої Міжнародної
наукової конференції імені академікаМихайла Кравчука (19 – 20 травня 2016 р., Київ, НТУУ «КПИ»). Том 1. Диференціальні та
інтегральні рівняння, їх застосування. К.: НУТУ «КПІ». Том 1. 2016. С.226-229.
6. V.G. Pisarenko, S.V. Korneev, J.V. Pisarenko, I.A. Varava. FUZZY UNDERWATER IMAGE RECOGNITION //Kompiuterna matematyka. –
2018. № 1.- P. 90-96. http://nbuv.gov.ua/UJRN/Koma_2018_1_13
7. В.Г. Гринченко, И.В. Вовк, В.Т. Маципура. Основы акустики / К. : Наукова думка, 2007. — 640с.
8. Куперман Ц.А., Енсен Ф.Б. В сб. «Подводная акустика и обработкасигналов». М.: «Мир», 1985, с. 116-124.
9. Завадский В.Ю. Моделирование волновых процессов. – М.: Наука, 1991. – 248 с.
10. Скучик Е. Основы акустики М.: Мир, 1976. — 520 с.
References
1. Pisarenko J., Melkumyan E. The Structure of the Information Storage «CONTROL_TEA» for UAV Applications // 2019 IEEE 5th International
Conference Actual Problems of Unmanned Aerial Vehicles Developments, APUAVD-2019 Proceedings. − 2019. − P. 274 - 277.
Fig. 9. Feature of parabolic wave propagation.
Conclusions
The paper shows that analytical solutions of the Helmholtz equation for a plane waveguide can be obtained
not only as a sum of normal waves, but also as special series that take into account the characteristics of the radiation
source. To develop a database of the situational center information storage waves were classified and the corresponding
mathematical and computer modeling was carried out.
Література
1. Pisarenko J., Melkumyan E. The Structure of the Information Storage «CONTROL_TEA» for UAV Applications // 2019 IEEE 5th In
ternationalConferenceActualProblemsofUnmannedAerialVehiclesDevelopments, APUAVD-2019 Proceedings, 2019, P. 274–277.
2. Pysarenko V., Gulchak O., Pisarenko J. Technology for Improve the Safety of Ships from Methane Emissions Using UAVs // 2020
IEEE 6th International Conference on Methods and Systems of Navigation and Motion Control, MSNMC-2020 Proceedings, 2020, P.
93–96.
3. Melkumian K., Pisarenko J., Koval A. Organization of Regional Situational Centers of the Intelligent System «CONTROL_TEA»
using UAVs //2021 IEEE 6th International Conference on Actual Problems of Unmanned Aerial Vehicles Development, APUAVD-2021
Proceedings, 2021, P. 37-40.
4. М. В. Ногін. Аналітичний розв’язок крайової задачі для рівнянь Нав’є – Стокса між двома співвісними циліндрами // Тези
17-ої Міжнародної наукової конференції імені академікаМихайла Кравчука (19 – 20 травня 2016 р., Київ, НТУУ «КПИ»). Том
1. Диференціальні та інтегральні рівняння, їх застосування. К.: НУТУ «КПІ». Том 1. 2016. С. 218 – 219.
5. В. Г. Писаренко, С. В. Корнеєв, Ю. В. Писаренко. Методи і засоби дослідження техно-екологічнихподій // Тези 17-ої
Міжнародної наукової конференції імені академікаМихайла Кравчука (19 – 20 травня 2016 р., Київ, НТУУ «КПИ»). Том 1.
Диференціальні та інтегральні рівняння, їх застосування. К.: НУТУ «КПІ». Том 1. 2016. С.226-229.
6. V.G. Pisarenko, S.V. Korneev, J.V. Pisarenko, I.A. Varava. FUZZY UNDERWATER IMAGE RECOGNITION //Kompiuterna
matematyka. – 2018. № 1.- P. 90-96. http://nbuv.gov.ua/UJRN/Koma_2018_1_13
7. В.Г. Гринченко, И.В. Вовк, В.Т. Маципура. Основы акустики / К. : Наукова думка, 2007. — 640с.
8. Куперман Ц.А., Енсен Ф.Б. В сб. «Подводная акустика и обработкасигналов». М.: «Мир», 1985, с. 116-124.
9. Завадский В.Ю. Моделирование волновых процессов. – М.: Наука, 1991. – 248 с.
10. Скучик Е. Основы акустики М.: Мир, 1976. — 520 с.
References
1. Pisarenko J., Melkumyan E. The Structure of the Information Storage «CONTROL_TEA» for UAV Applications // 2019 IEEE 5th International
Conference Actual Problems of Unmanned Aerial Vehicles Developments, APUAVD-2019 Proceedings. − 2019. − P. 274 - 277.
2. Pysarenko V., Gulchak O., Pisarenko J. Technology for Improve the Safety of Ships from Methane Emissions Using UAVs // 2020 IEEE 6th
International Conference on Methods and Systems of Navigation and Motion Control, MSNMC-2020 Proceedings. − 2020. − P. 93 - 96.
3. Melkumian K., Pisarenko J., Koval A. Organization of Regional Situational Centers of the Intelligent System «CONTROL_TEA» using UAVs
//2021 IEEE 6th International Conference on Actual Problems of Unmanned Aerial Vehicles Development, APUAVD-2021 Proceedings. −
2021. − P. 37 - 40.
4. M. V. Nogin. Analytical analysis of the regional problem for the alignment of the Nave - Stokes between two spiky cylinders // Abstracts of the
17th International Scientific Conference named after Academician Mikhail Kravchuk (19-20 January 2016, Kiev, NTUU “KPI”). − К.: NUTU
“KPI”. − Volume 1. − 2016. − P. 218 - 219.
5. V. G. Pisarenko, S. V. Korneev, Yu. V. Pisarenko. Methods and methods for investigating techno-ecological approaches // Abstracts of the 17th
International Scientific Conference named after Academician Mikhail Kravchuk (May 19-20, 2016, Kiev, NTUU “KPI”). − К.: NTUU “KPI”.
− Volume 1. − 2016. − P. 226 - 229.
6. V.G. Pisarenko, S.V. Korneev, J.V. Pisarenko, I.A. Varava. FUZZY UNDERWATER IMAGE RECOGNITION // Kompiuterna matematyka. -
2018. − No. 1. − P. 90 - 96. http://nbuv.gov.ua/UJRN/Koma_2018_1_13
7. V.G. Grinchenko, I.V. Vovk, V.T. Matzipura. Fundamentals of acoustics / K .: Naukova Dumka. − 2007. – 640 p.
8. Kuperman Ts.A., Ensen F.B. On Sat. “Underwater Acoustics and Signal Processing”. M.: Mir. − 1985. − P. 116 - 124.
9. Zavadsky V.Yu. Modeling of wave processes. – M.: Nauka. − 1991. – 248 p.
10. Skuchik E. Fundamentals of acoustics. − M.: Mir. − 1976. – 520 p.
Received 03.08.2022
444
Прикладне програмне забезпечення
About the authors:
Valery Georgiyovych Pysarenko1,
Address: 04004, Kyiv, Velika Vasylkivska St., 43, ap 38
Doctor of Physical and Mathematical Sciences,
Head of Department of Mathematical Problems
of Applied Informatics
Number of publications in Ukrainian publications: 212
Number of foreign publications: 20.
Hirsch index: 3.
https://orcid.org/0000-0001-7798-7673
Mykola Vasyliovych Nogin2,
Address: 03143, Kyiv, Akademik Zabolotny St., 156/2, ap. 41-B
Candidate of Physical and Mathematical Sciences,
Docent (Cathedra of Software Engineering in Energy)
Number of publications in Ukrainian publications: 120
Number of foreign publications: 12.
Hirsch index: 2.
ORCID 0000-0002-9142-2692
Oleksandr Stepanovych Kryachok1,2
Candidate of Technical Sciences,
Docent (Cathedra of Software Engineering in Energy),
Senior Researcher of Department
of Mathematical Problems
of Applied Informatics
Address: 03187, Kyiv, Akademika Glushkova Ave., 40, building 3, ap. 517
Number of publications in Ukrainian publications: 70.
Number of foreign publications: 11.
Hirsch index: 3.
ORCID 0000-0003-4829-635X
Pysarenko Yuliya Valeryivna1,
Candidate of Technical Sciences,
Senior Researcher of Laboratory of Virtual Environment Systems
for the Organization of Scientific Research
Address: 03143, Kyiv, Akademika Zabolotny St., 156/2, ap. 41-B
Number of publications in Ukrainian publications: 110.
Number of foreign publications: 10.
Hirsch index: 4.
http://orcid.org/0000-0001-8357-8614
Varava Ivan Andriyovych1,2
Docent (Cathedra of Software Engineering in Energy),
Leading Software Engineer of Department
of Mathematical Problems
of Applied Informatics
Address: 04079, Kyiv, Tiraspolska St., 60, ap. 21
Number of publications in Ukrainian publications: 26.
Number of foreign publications: 3.
Hirsch index: 2
https://orcid.org/0000-0001-9874-016X
445
Прикладне програмне забезпечення
Alexander Sergeevich Koval1,2,
Assistant (Cathedra of Technical Cybernetics,
Cathedra of Information Systems and Technologies),
Junior Researcher of Department of Mathematical
Problems of Applied Informatics
Address: 03187, Kyiv, Akademika Glushkova Ave., 40, building 1, ap. 611
Number of publications in Ukrainian publications: 20.
Number of foreign publications: 4.
Hirsch index: 2.
https://orcid.org/0000-0002-9265-2748
Прізвища та ініціали авторів і назва доповіді українською мовою:
Писаренко В.Г., Ногін М.В., Крячок О.С., Писаренко Ю.В.,
Варава І.А., Коваль О.С.
Про комплексні інтелектуальні технології управління
техно-екологічними подіями в акваторії
Прізвища та ініціали авторів і назва доповіді англійською мовою:
Pisarenko V. G., Nogin N. V., Kryachok A. S, Pisarenko J.V.,
Varava I. A., Koval A. S.
About complex intelligent technologies for techno-ecological
events control in the water area
Контакти для редактора: Писаренко Юлія Валеріївна,
старший науковий співробітник Інститут кібернетики
імені В. М. Глушкова НАН України,
e-mail: pisarenkojv@gmail.com, телефон: +38(067)596-08-57
|