Simulations of human hemodynamic responses to blood temperature and volume changes
An advanced version (AV) of special software based on modified quantitative models of mechanisms that provide the overall control of human circulation is proposed. AV essentially expands the range of tasks concerning the modeling of cardiovascular physiology, in particular, the range of mechanisms c...
Збережено в:
| Дата: | 2023 |
|---|---|
| Автори: | , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
PROBLEMS IN PROGRAMMING
2023
|
| Теми: | |
| Онлайн доступ: | https://pp.isofts.kiev.ua/index.php/ojs1/article/view/555 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Problems in programming |
| Завантажити файл: | |
Репозитарії
Problems in programming| id |
pp_isofts_kiev_ua-article-555 |
|---|---|
| record_format |
ojs |
| resource_txt_mv |
ppisoftskievua/55/eeb4b1c83fc5b38aeba0b6df13919655.pdf |
| spelling |
pp_isofts_kiev_ua-article-5552023-10-23T11:18:38Z Simulations of human hemodynamic responses to blood temperature and volume changes Моделювання гемодинамічних реакцій людини на зміни температури та об’єму крові Grygoryan, R.D. Degoda, A.G. Lyudovyk, T.V. Yurchak, O.I. physiology; cardiovascular system; hemorrhage; acute and long-term control; model; simulator UDC 517.958:57 +519.711.3 + 612.51.001 фізіологія; серцево-судинна система; крововилив; гострий та віддалений контроль; модель УДК 517.958:57 +519.711.3 + 612.51.001 An advanced version (AV) of special software based on modified quantitative models of mechanisms that provide the overall control of human circulation is proposed. AV essentially expands the range of tasks concerning the modeling of cardiovascular physiology, in particular, the range of mechanisms controlling cardiac function, vascular hemodynamics, and total blood volume under unstable internal/ external physiochemical environments. The models are verified on data representing hemodynamic responses to certain physical tests. In the publication, two test scenarios, namely blood temperature and volume dynamic alterations, have been simulated and analyzed in detail. The user-friendly interface provides all stages of preparation and analysis of computer simulation. The PC-based simulator can also be used for educational purposes.Prombles in programming 2023; 1: 19-29 Запропоновано вдосконалену версію (ВВ) спеціального програмного забезпечення на основі модифікованих кількісних моделей механізмів контролю кровообігу людини. ВВ суттєво розширює коло завдань щодо моделювання фізіології серцево-судинної системи (ССС), зокрема механізмів, що контролюють роботу серця, судинну гемодинаміку та загальний об’єм крові в умовах нестабільного внутрішнього/зовнішнього фізико-хімічного середовища. Моделі перевірялися на даних, що представляють гемо- динамічні реакції на певні фізичні тести. У публікації було змодельовано та детально проаналізовано два тестових сценарія – динамічні зміни температури крові та її об’єму. ВВ надає фізіологам нову технологію дослідження, що істотно розширює та поглиблює фундаментальні знання про кровообіг людини. Результати моделювання містять більш повний спектр фізіологічної інформації, ніж традиційно надається в емпіричних дослідженнях. Це головна перевага нашої ВВ. Це також хороший сучасний інструмент на базі ПК для одночасної візуалізації динамічних характеристик ССС в залежності від обраних зі списку вхідних навантажень. Останній аспект сприятиме студентам-медикам краще розуміти неявну інтегративну фізіологію людини та спеціальні патології. ВВ також є гарною комп’ютерною програмою для використання в освітніх цілях для ілюстрації основних фізіологічних і деяких патологічних закономірностей. Ми плануємо розширити моделі та програмне забезпечення, щоби набагато реалістичніше симулювати сценарії як нормальної, так і патологічної фізіології людини. Програмне забезпечення, створене в рамках технології .NET, є автономним файлом .EXE для виконання на ПК.Prombles in programming 2023; 1: 19-29 PROBLEMS IN PROGRAMMING ПРОБЛЕМЫ ПРОГРАММИРОВАНИЯ ПРОБЛЕМИ ПРОГРАМУВАННЯ 2023-04-27 Article Article application/pdf https://pp.isofts.kiev.ua/index.php/ojs1/article/view/555 10.15407/pp2023.01.019 PROBLEMS IN PROGRAMMING; No 1 (2023); 19-29 ПРОБЛЕМЫ ПРОГРАММИРОВАНИЯ; No 1 (2023); 19-29 ПРОБЛЕМИ ПРОГРАМУВАННЯ; No 1 (2023); 19-29 1727-4907 10.15407/pp2023.01 en https://pp.isofts.kiev.ua/index.php/ojs1/article/view/555/607 Copyright (c) 2023 PROBLEMS IN PROGRAMMING |
| institution |
Problems in programming |
| baseUrl_str |
https://pp.isofts.kiev.ua/index.php/ojs1/oai |
| datestamp_date |
2023-10-23T11:18:38Z |
| collection |
OJS |
| language |
English |
| topic |
physiology cardiovascular system hemorrhage acute and long-term control model simulator UDC 517.958:57 +519.711.3 + 612.51.001 |
| spellingShingle |
physiology cardiovascular system hemorrhage acute and long-term control model simulator UDC 517.958:57 +519.711.3 + 612.51.001 Grygoryan, R.D. Degoda, A.G. Lyudovyk, T.V. Yurchak, O.I. Simulations of human hemodynamic responses to blood temperature and volume changes |
| topic_facet |
physiology cardiovascular system hemorrhage acute and long-term control model simulator UDC 517.958:57 +519.711.3 + 612.51.001 фізіологія серцево-судинна система крововилив гострий та віддалений контроль модель УДК 517.958:57 +519.711.3 + 612.51.001 |
| format |
Article |
| author |
Grygoryan, R.D. Degoda, A.G. Lyudovyk, T.V. Yurchak, O.I. |
| author_facet |
Grygoryan, R.D. Degoda, A.G. Lyudovyk, T.V. Yurchak, O.I. |
| author_sort |
Grygoryan, R.D. |
| title |
Simulations of human hemodynamic responses to blood temperature and volume changes |
| title_short |
Simulations of human hemodynamic responses to blood temperature and volume changes |
| title_full |
Simulations of human hemodynamic responses to blood temperature and volume changes |
| title_fullStr |
Simulations of human hemodynamic responses to blood temperature and volume changes |
| title_full_unstemmed |
Simulations of human hemodynamic responses to blood temperature and volume changes |
| title_sort |
simulations of human hemodynamic responses to blood temperature and volume changes |
| title_alt |
Моделювання гемодинамічних реакцій людини на зміни температури та об’єму крові |
| description |
An advanced version (AV) of special software based on modified quantitative models of mechanisms that provide the overall control of human circulation is proposed. AV essentially expands the range of tasks concerning the modeling of cardiovascular physiology, in particular, the range of mechanisms controlling cardiac function, vascular hemodynamics, and total blood volume under unstable internal/ external physiochemical environments. The models are verified on data representing hemodynamic responses to certain physical tests. In the publication, two test scenarios, namely blood temperature and volume dynamic alterations, have been simulated and analyzed in detail. The user-friendly interface provides all stages of preparation and analysis of computer simulation. The PC-based simulator can also be used for educational purposes.Prombles in programming 2023; 1: 19-29 |
| publisher |
PROBLEMS IN PROGRAMMING |
| publishDate |
2023 |
| url |
https://pp.isofts.kiev.ua/index.php/ojs1/article/view/555 |
| work_keys_str_mv |
AT grygoryanrd simulationsofhumanhemodynamicresponsestobloodtemperatureandvolumechanges AT degodaag simulationsofhumanhemodynamicresponsestobloodtemperatureandvolumechanges AT lyudovyktv simulationsofhumanhemodynamicresponsestobloodtemperatureandvolumechanges AT yurchakoi simulationsofhumanhemodynamicresponsestobloodtemperatureandvolumechanges AT grygoryanrd modelûvannâgemodinamíčnihreakcíjlûdininazmínitemperaturitaobêmukroví AT degodaag modelûvannâgemodinamíčnihreakcíjlûdininazmínitemperaturitaobêmukroví AT lyudovyktv modelûvannâgemodinamíčnihreakcíjlûdininazmínitemperaturitaobêmukroví AT yurchakoi modelûvannâgemodinamíčnihreakcíjlûdininazmínitemperaturitaobêmukroví |
| first_indexed |
2025-07-17T09:36:16Z |
| last_indexed |
2025-07-17T09:36:16Z |
| _version_ |
1850412884188725248 |
| fulltext |
19
Методи та засоби комп′ютерного моделювання
УДК 517.958:57 +519.711.3 + 612.51.001 http://doi.org/10.15407/pp2023.01.019
R.D. Grygoryan, A.G. Degoda, T.V. Lyudovyk, O.I.Yurchak
SIMULATIONS OF HUMAN HEMODYNAMIC
RESPONSES TO BLOOD TEMPERATURE AND VOLUME
CHANGES
An advanced version (AV) of special software based on modified quantitative models of mechanisms
that provide the overall control of human circulation is proposed. AV essentially expands the range of
tasks concerning the modeling of cardiovascular physiology, in particular, the range of mechanisms
controlling cardiac function, vascular hemodynamics, and total blood volume under unstable internal/
external physiochemical environments. The models are verified on data representing hemodynamic
responses to certain physical tests. In the publication, two test scenarios, namely blood temperature and
volume dynamic alterations, have been simulated and analyzed in detail. The user-friendly interface
provides all stages of preparation and analysis of computer simulation. The PC-based simulator can
also be used for educational purposes.
Key words: physiology, cardiovascular system, hemorrhage, acute and long-term control, model,
simulator
Introduction
Recently, we have proposed specialized
software (SS) providing physiologists with ad-
ditional research opportunities in the area of
human cardiovascular system (CVS) [1,2]. De-
spite SS being previously tested and tuned for a
mean healthy person, additional tests revealed
certain quantitative inaccuracies. This forced
us to critically analyze certain mathematical
formalisms. As a result, a new version of SS,
namely SS1, is developed.
This publication aims to illustrate both
the correct models and their tests under certain
simulation scenarios.
A short description of the basic
model
SS is based on a complex quantitative
mathematical model which presents the hu-
man CVS as an open system interacting with
a certain number of associated physiologi-
cal systems (APS). Within the framework of
traditional physiology some of these APS are
known as circulation controllers. They could
influence the total blood volume dynamics and
current values of CVS’s parameters.
The core model and models of certain
APS are described in [1] while models of mod-
ified APS are described in this paper. Structure
of the complex model, necessary and sufficient
for simulation of mechanisms controlling or
modulating human hemodynamics under ex-
ternal/internal influences, was presented in [1].
Modified models of CVS controllers
Our models of cardiovascular control
are based on concepts reflected in [3-6]. Sev-
eral models are the advanced versions of the
models proposed earlier [7-8].
Activities of efferent sympathetic
( )(tES ) and parasympathetic )(tEV nerves are
under descending simulator ( )(tEbS ) or inhibi-
tor ( )(tEbI ) influences of brain supra-bulbar
neuronal structures. Simultaneously, ascending
information originated in body different struc-
tures (mechanoreceptors of CVS, muscles, pe-
ripheral chemoreceptors) modulate )(tES and
)(tEV . At last, a wide range of endogenous
chemicals, penetrated into the brain through
circulation, also modulate )(tES and )(tEV . In
this version of the model, dynamics of effer-
ent sympathetic ( )(tESh ) and parasympathetic
( )(tEVh ) heart nerves, as well as sympathetic
vascular nerves ( )(tESv ) are described as:
© R.D. Grygoryan, A.G. Degoda, T.V. Lyudovyk, O.I.Yurchak, 2023
ISSN 1727-4907. Проблеми програмування. 2023. №1
20
Методи та засоби комп′ютерного моделювання
where µλχ ,, represent approximation
constants, BNΣ is summary baroreceptor infor-
mation, XNΣ is summary chemoreception.
So, the complex model of the cardio-
vascular control must include at least those
mechanisms that modulate vascular tonus and
parameters of HPF.
Within the physiological interval
maxmin )( FtFF ≤≤ , )(tF should be calculated
as:
>+∆
≤≤
∆−∆+∆+
−>∆
=
∑
∑∑
∑
=
+
=
−
=
+
=
−
max
1
max
maxmin
11
min
1
min
)(,
)(
),()()(
)(,
)(
FFtFF
FtFF
tFtFTFF
FFtFF
tF
a
m
i
i
n
j
i
m
i
i
o
a
a
n
j
i
Here aF is the heart rate under normal blood
temperature ( oT ), biochemical characteris-
tics of blood and biophysical characteristics
of cells of sinus node, )( oTF∆ is elevation of
aF with temperature increasing, )(tFi
+∆ are ac-
celerating effects of m mechanisms (including
concentration of adrenalin), and )(tFj
−∆ are re-
tarding effects of n mechanisms.
As the resistance depends on vascular
volume, it is necessary to describe summary (
1m ) nervous-humoral alterations of volumetric
characteristics.
∑
∑
=
=
∆−=
∆+=
1
1
1
1
)(0)(
;)(0)(
m
i
i
m
i
i
tDUtU
tDDtD
,
where 0,0 UD represent the initial val-
ues of )(tD and )(tU .
Each mechanism forming its part of
F∆ has its power and developmental inertia
that have been taken into account by proper
constants.
Inotropic states of ventricles are un-
der influences of local coronary flows )(tqc ,
adrenalin )(tAd , oT , )(tESh , and )(tEVh . A
special version of the model includes effects of
exogenous cardio-active agents )(tCa :
The model describing hemodynamic effects
of angiotensin II
In our current model, central and local
renin-angiotensin-aldosterone mechanisms,
acting through angiotensin II, represent nega-
tive feedbacks activated under lowered local
blood flows in kidneys or other organs.
Real CVS is not an isolated system as
it is assumed in most models of hemodynam-
ics. CVS interacts with multiple organs and
anatomical-functional systems. In particular,
total blood volume ( )(tVS ), that is the main
modifier of both central venous pressure and
mean arterial pressure (MAP), can be consid-
ered to be constant only for very small values
of the observation time τ . Modifiers of
)(tVS
are acting via changing the liquid intakes from
the digestive system ( )(tqw ), by means of the
diuresis ( )(tqd ), expirations in lungs and skin.
So, these effectors obviously do not belong to
CVS.
(*)
where qcf(t) are trans-capillary flows,
qes(t) is the evaporation with sweat, )(tqee are
expiratory fumes, Cbl(t) are blood salt concen-
trations, )(tCbl are concentrations of blood lip-
ids. The remained notations in (*) represent ap-
proximation constants.
The initial value of total blood volume
)(tVS is assumed to be )0(V . The model and
simulation algorithms provide dynamic bide-
side alterations of )()0()( tVVtVS ∆±= .
Vascular resistances )(trij , calculated
as in [1,2], are changed via changes of ),(tVi
in turn associated with regional ),(tUi ),(1 tU i
),(tDi and )(1 tD i . Usually, the local inflow
mainly depends on input pressure. So, the
model of central renin-angiotensin system de-
21
Методи та засоби комп′ютерного моделювання
scribes the dynamics of blood renin concentra-
tion Rnk(t) in association with the critical value
of pressure in kidney arterioles Pkc(t) as:
,
where kη is sensitivity coefficient, RK
is time constant characterizing the velocity of
renin utilization.
Assuming Rnh(t) is )(tRn associated with
heart local renin-angiotensin system, dynamics
of Rnh(t) is described depending on regional
flow in coronary arteries ( )(tqc ) as:
,
Models of renin dynamics in brain
Rnb(t), liver Rnl(t), and lungs RnL(t) are con-
structed analogically. The total concentration
of renin RnT(t) in blood is calculated as:
The dynamics of blood concentrations
of angiotensin II ( )(tAn ) is modeled as:
Fig. 1. Simulation algorithm.
22
Методи та засоби комп′ютерного моделювання
,
where Ran is a time constant character-
izing the velocity of angiotensin II utilization.
Simulation algorithm
A single simulation algorithm (SA) de-
pends on: 1) actual configuration of physiolog-
ical models (ACPM); and 2) actual group of
input loads (AGIL). This can be illustrated by
means of Fig.1 which represents the general
view on SA.
According to this algorithm, two in-
dependent procedures have to be performed
before the simulator is ready to execute cal-
culations. As a result of the first procedure
the user gets the actualized ACPM. The sec-
ond procedure generates AIGL. Additionally,
the user has to set the simulation duration.
Changing at least one value in characteristics
of ACPM and/or AGIL, the user can start the
next simulation.
Potentially, our simulator consists of
12 independently functioning physiologi-
cal models and 10 models each representing
one dynamic input load. So, the number of
possible combinations of actualized ACPM
and AGIL is too large. In fact, no empirical
physiologist has ever observed hemodynam-
ic effects of entire scenarios provided by our
simulator. The user will be able to run and
analyze the entire spectrum of simulations,
he/she is provided by an effective user inter-
face.
Input loads
Our models and the entire SS imitate
dynamic physiological responses of a healthy
person to dynamic input loads. Namely, a re-
sponse depends on the absolute level and shape
of the applied load. Theoretically, it is possible
to create a simulator providing the construction
of any arbitrary load profile. In this article, we
consider only two input loads – alterations of
blood temperature ( )(tT o ) and total blood vol-
ume ( )(tVS )
Fig. 2. User interface in case of regulators standard configuration (intact organism).
23
Методи та засоби комп′ютерного моделювання
Controlled linear alterations of total
blood volume ( )(tVS ), namely ( V∆± ), are
provided according to formulae:
where Vab(t) is the abdominal vein vol-
ume, VbT ∆ is the start time for the altering of
total blood volume with the velocity val.
Blood temperature ( )(tT o ) altera-
tions ( oT∆± ) alter almost linearly the heart
rate )(tF and regional vascular diameters.
These effects have been modeled by us.
In order to offer a user the access to these
mechanisms, additional formulas describ-
ing activation (deactivation) of these mech-
anisms are needed. In our current SS, the
incorporated formulas provide setting of
numerical values of normal blood tempera-
ture ( o
NT ) and stable velocity of temperature
elevation ( Tv+ ) until o
NT reaches its maxi-
mal level ( oTmax ):
By analogy, under temperature lower-
ing with stable velocity of ( Tv− ), and maxi-
mal ( oTmax ) or minimal ( oTmin ) levels:
Preparing computer experiments
As it was already mentioned in [1,2],
each simulation is an independent computer
experiment with a configuration of previ-
ously collected models. Opportunities for
the forming of the actual model, experiment
scenario, as well as for analyzing results in
graph forms are presented in Fig. 2. This
window is one of the main windows of the
UI. The list of configurations is shown in the
special pop-up window (see the middle-right
part of Fig. 2). Operations needed to prepare
every computer simulation and to provide its
executing and results analysis, are listed in
the window located on the left side of the
UI. Information concerning details of every
chosen string is indicated in the right side of
the UI window.
Model configuring is a multi-step op-
eration aimed to create the desired combina-
tion of activated regulator mechanisms, tests
to be applied, and simulation duration. Addi-
tional opportunities for models activation or
deactivation are provided through the win-
dows shown in the right sector of the main
window. Some of these windows are pop-up
windows.
Simulation (when activated) will last
until the exposure time (observation duration)
is over. All simulation results are saved in the
operative memory thus this parameter of PC is
critical for determining the maximal simula-
tion duration.
Our simulator supports the creation of
multiple biological model versions each of
which is capable of providing hemodynamics
under a single or several chosen input loads.
In fact, these manipulations imitate empirical
methods of certain control mechanisms deacti-
vation (activation).
Main simulation results and discussion
The simulator described in the paper is
autonomous software designed for IBM com-
patible computers. The simulator was designed
as an alternative method and specialized re-
search tool for theorization of human physiol-
ogy. Its physiological basis includes almost all
local or organism-scale physiological mecha-
nisms capable to modulate the cardiovascular
physiology under external/internal challenges.
In fact, for the first time, our simulator does
provide fundamental investigations aimed to
understand human integrative physiology by
means of conceptual and methodological reno-
vations. A part of these renovations has been
published [3-8]. The key conceptual renovation
concerns the creation of opportunities expand-
ing the sector of theoretical computer-based
research. Basic models include both acute and
long-term responses of the human cardiovas-
cular system to a wide range of input physical
alterations. Each such alteration causes spe-
cific physical (hemodynamic) alterations that
24
Методи та засоби комп′ютерного моделювання
Fig. 3. Hemodynamic responses to hemorrhage of 1000 ml in human horizontal position.
25
Методи та засоби комп′ютерного моделювання
Fig. 4. Hemodynamic responses to blood infusion of 1000 ml in human horizontal position.
26
Методи та засоби комп′ютерного моделювання
Fig. 5. Hemodynamic responses to blood temperature elevation in 3oC in human horizontal position.
27
Методи та засоби комп′ютерного моделювання
Fig. 6.Hemodynamic responses to blood temperature decrease in 3oC in human horizontal position.
28
Методи та засоби комп′ютерного моделювання
in turn change the current mode of receptors
associated with the nervous or humoral regu-
lators. Their automatic response to these chal-
lenges normally provide certain changes in
the heart pump function, in rigidities and un-
stressed volumes of vascular compartments, as
well as in the total blood volume. In the frame
of this publication, taking into account its
limited volume, only alterations of two input
variables are considered. The first one is total
blood volume decrease (hemorrhage) or eleva-
tion by 1000 ml (main results are presented in
Fig. 3 and Fig. 4 respectively). Results for the
second variable, namely, the blood temperature
change (decrease or elevation by 3oC) are pre-
sented in Fig. 5 and Fig. 6 respectively.
Illustrations in Fig. 3 - Fig. 6 reflect
only a part of the data provided by the simula-
tor. We have here chosen and presented mainly
those physiological characteristics that either
are reflected in appropriate empirical research
or cannot be invasively measured in humans
because of ethics. Unfortunately, we have no
space for demonstrating analogous empirical
graphs but we have used them during the mod-
els tuning [1, 6-8]. This statement concerns
exclusively the case of alterations used for the
total blood volume. The case of blood tempera-
ture dose elevation or decrease is not provided
by proper empiric data because these data are
still absent. Therefore, the role and the merit
of simulations are exclusive. It is necessary
to note that our models do not include central
mechanisms of thermoregulation. All we have
formalized concerns biophysics of cardiac
pacemaker cells, that alter their frequency al-
most linearly with blood temperature changes.
Another temperature target is smooth cells of
arterioles. Their resistance is inversely related
to local temperature. In case of further devel-
opment, the central nervous control of activi-
ties in both effectors have to be added.
Conclusion
For the first time, special software (SS)
capable of simulating alterations of human he-
modynamics via automatic or arbitrary activa-
tions of main endogenous physiological mech-
anisms, is developed. SS is based on quantita-
tive mathematical models representing CVS as
an open system interacting with multiple asso-
ciated organs and systems. Models have been
tested and validated on the knowledge basis
concerning physiological norm. Additionally,
main hypotheses of arterial hypertension etiol-
ogy can be modeled.
SS provides physiologists with a novel
research technology essentially widening and
deepening the fundamental knowledge con-
cerning human circulation. Four simulation
scenarios for the intact human model have
been simulated. Two scenarios concern blood
temperature dose both-side alterations, and two
others concern total blood volume dose both-
side alterations. Simulation results include the
more comprehensive range of physiological
information than conventionally provided in
empirical studies. This is the main advantage
of our SS. SS is also a good modern PC-based
tool for simultaneously visualizing CVS’s dy-
namic characteristics under the chosen list of
input violations. The latter aspect will promote
medical students to better understand non-ob-
vious integrative human physiology and spe-
cial pathologies. SS is also a good computer
program to be used in educational purposes
for illustrating main physiological and certain
pathological regularities to medical students.
We plan to expand the models and the software
in order to simulate much more realistic sce-
narios of both normal and pathological human
physiology.
References
1. Grygoryan R.D., Yurchak O.I., Degoda A.G.,
Lyudovyk T.V. Specialized software for simu-
lating the multiple control and modulations
of human hemodynamics. Problems in pro-
gramming 2021; 2: 42-53. DOI: https://doi.
org/10.15407/pp2021.02.042.
2. Grygoryan R.D. Modeling of mechanisms pro-
viding the overall control of human circulation.
Advances in Human Physiology Research,4,5-
21; https://doi.org/10.30564/ahpr.v4i1.4763.
3. Grygoryan RD. The optimal circulation: cells
contribution to arterial pressure. N.Y.: Nova
Science, 2017: 287p. ISBN 978-1-53612-295-
4.
4. Grygoryan RD. The Optimal Coexistence of
Cells: How Could Human Cells Create The In-
tegrative Physiology. Journal of Human Physi-
ology.2019, 1 (01):8-28. DOI 10.30564/jhp.
29
Методи та засоби комп′ютерного моделювання
v1i1.1386.
5. Grygoryan R.D., Sagach V.F. The concept of
physiological super-systems: New stage of in-
tegrative physiology. Int. J. Physiol. and Patho-
physiology, 2018: 9,2,169-180.
6. Grygoryan R.D. Problem-oriented computer
simulators for solving of theoretical and ap-
plied tasks of human physiology. Problems of
programming. 2017, №3, Р. 102-111.
7. Grygoryan R.D., Degoda A.G., Kharsun V.S.,
Dzhurinsky Y.A. A simulator of mechanisms of
acute control of human hemodynamics. Prob-
lems of programming, 2019;1:90-98.(Rus.)
doi.org/10.15407/pp2019.01.090.
8. Grygoryan R.D., Degoda A.G., Dzhurinsky
Y.A. A simulator of mechanisms of long-term
control of human hemodynamics. Problems
of programming, 2019;4:111-120.(Rus). doi.
org/10.15407/pp2019.04.111.
Received: 11.11.2022
About authors:
Grygoryan Rafik
Department chief, PhD, D-r in biology
Publications number in Ukraine journals -150
Publications number in English journals -48.
Hirsch index – 10
http://orcid.org/0000-0001-8762-733X.
Degoda Anna,
Senior scientist, PhD.
Publications number in Ukraine journals – 15.
Publications number in English journals -1.
Hirsch index – 3.
http://orcid.org/0000-0001-6364-5568.
Lyudovyk Tetyana,
Senior scientist, PhD.
Publications number in Ukraine journals – 30.
Publications number in English journals -17.
Hirsch index – 5.
https://orcid.org/0000-0003-0209-2001.
Yurchak Oksana,
Leading software engineer.
Publications number in Ukraine journals – 14.
Publications number in English journals - 0.
Hirsch index –0.
https://orcid.org/0000-0003-3941-1555.
Affiliation:
Institute of software systems of
Ukraine National Academy of Sciences
03187, Кyїv,
Acad. Glushkov avenue, 40,
Phone.: 526 5169.
Е-mail: rgrygoryan@gmail.com,
anna@silverlinecrm.com,
tetyana.lyudovyk@gmail.com,
daravatan@gmail.com,
|