A GPU-based singular value decomposition algorithm

In this research paper we present an implementation of a singular value decomposition algorithm designed specifically for the graphics processing unit. It consists of two parts: orthogonal matrix decomposition and matrix diagonalization. Presented an implementation of bidiagonalization algorithm whe...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2023
Автор: Sukharskyi, S.S.
Формат: Стаття
Мова:Ukrainian
Опубліковано: PROBLEMS IN PROGRAMMING 2023
Теми:
Онлайн доступ:https://pp.isofts.kiev.ua/index.php/ojs1/article/view/556
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Problems in programming
Завантажити файл: Pdf

Репозитарії

Problems in programming
Опис
Резюме:In this research paper we present an implementation of a singular value decomposition algorithm designed specifically for the graphics processing unit. It consists of two parts: orthogonal matrix decomposition and matrix diagonalization. Presented an implementation of bidiagonalization algorithm where we calculate the main bidiagonal matrix and two orthogonal multipliers using a series of House- holder transformations, as well as diagonalization algorithm with the help of Givens rotation matrices. Bothe these parts are implemented in jCUDA environment. Experiments have been conducted, the results of which have been thoroughly investigated on the matter of time consumption and calculations error. We’ve also compared our implementation with alternatives both on central and graphic processors.Prombles in programming 2023; 1: 30-37