A Convolutional Neural Network Model and Software Tool for Classifying the Presence of a Medical Mask on a Human Face

A model of a convolutional neural network, a database for training a neural network, and a software tool for classifying the presence of a medical mask on a person’s face, which allows recognizing the presence of a medical mask from the transmitted image, have been developed. The structure of the ne...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2023
Автори: Hryhorenko, Y.S., Shymkovysh, V.M., Kravets, P.I., Novatskyi, A.O., Shymkovysh, L.L., Doroshenko, A.Yu.
Формат: Стаття
Мова:English
Опубліковано: Інститут програмних систем НАН України 2023
Теми:
Онлайн доступ:https://pp.isofts.kiev.ua/index.php/ojs1/article/view/568
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Problems in programming
Завантажити файл: Pdf

Репозитарії

Problems in programming
id pp_isofts_kiev_ua-article-568
record_format ojs
resource_txt_mv ppisoftskievua/61/b136308ec40c0a59761bd17752f53561.pdf
spelling pp_isofts_kiev_ua-article-5682024-04-26T21:28:48Z A Convolutional Neural Network Model and Software Tool for Classifying the Presence of a Medical Mask on a Human Face Модель згорткової нейронної мережі та програмний засіб для класифікації наявності медичної маски на обличчі людини Hryhorenko, Y.S. Shymkovysh, V.M. Kravets, P.I. Novatskyi, A.O. Shymkovysh, L.L. Doroshenko, A.Yu. convolutional neural networks; image classification; Python; tensorflow; keras; medical masks UDC 004.93’1 медичні маски; згорткові нейронні мережі; класифікація зображень; Python; tensorflow; keras УДК 004.93’1 A model of a convolutional neural network, a database for training a neural network, and a software tool for classifying the presence of a medical mask on a person’s face, which allows recognizing the presence of a medical mask from the transmitted image, have been developed. The structure of the neural network model was optimized to improve classification results. In addition, the development of the user interface was carried out. The developed application was tested on a set of random images. The resulting model demonstrated high accuracy and robustness in solving the task of classifying the presence of a medical mask on a person’s face, which allows automating measures to protect people from the spread of diseases. The implemented application meets the requirements for speed and quality of classification. Further improvement of the classification quality of CNN can be done by collecting a larger dataset and researching other CNN architectures.Problems in programming 2023; 2: 59-66 У даній статті розглядається розробка згорткової нейронної мережі, базованої на архітектурі YOLOv4, з метою визначення наявності медичної маски на обличчі людини. Зібрано та анотовано значний набір даних, що включає різні типи масок та осіб без масок, а також застосовано аугментацію даних для покращення універсальності моделі. На основі аналізу даних проведено оптимізацію та адаптацію моделі за допомогою техніки тонкої настройки.Результати навчання та тестування отриманої моделі свідчать про її високу точність класифікації зображень. Розроблений застосунок, що використовує цю модель, має зручний графічний інтерфейс та забезпечує швидкість класифікації зображень у 20-25 кадрів за секунду.У висновках статті підкреслено, що успішність розробленої моделі у вирішенні поставленої задачі дозволяє автоматизувати заходи захисту населення від поширення інфекцій. Відзначено, що подальше покращення якості класифікації згорткової нейронної мережі можна досягнути шляхом збору більшого датасету та дослідження альтернативних архітектур нейронних мереж.Problems in programming 2023; 2: 59-66 Інститут програмних систем НАН України 2023-08-04 Article Article application/pdf https://pp.isofts.kiev.ua/index.php/ojs1/article/view/568 10.15407/pp2023.02.059 PROBLEMS IN PROGRAMMING; No 2 (2023); 59-66 ПРОБЛЕМЫ ПРОГРАММИРОВАНИЯ; No 2 (2023); 59-66 ПРОБЛЕМИ ПРОГРАМУВАННЯ; No 2 (2023); 59-66 1727-4907 10.15407/pp2023.02 en https://pp.isofts.kiev.ua/index.php/ojs1/article/view/568/619 Copyright (c) 2023 PROBLEMS IN PROGRAMMING
institution Problems in programming
baseUrl_str https://pp.isofts.kiev.ua/index.php/ojs1/oai
datestamp_date 2024-04-26T21:28:48Z
collection OJS
language English
topic convolutional neural networks
image classification
Python
tensorflow
keras
medical masks
UDC 004.93’1
spellingShingle convolutional neural networks
image classification
Python
tensorflow
keras
medical masks
UDC 004.93’1
Hryhorenko, Y.S.
Shymkovysh, V.M.
Kravets, P.I.
Novatskyi, A.O.
Shymkovysh, L.L.
Doroshenko, A.Yu.
A Convolutional Neural Network Model and Software Tool for Classifying the Presence of a Medical Mask on a Human Face
topic_facet convolutional neural networks
image classification
Python
tensorflow
keras
medical masks
UDC 004.93’1
медичні маски
згорткові нейронні мережі
класифікація зображень
Python
tensorflow
keras
УДК 004.93’1
format Article
author Hryhorenko, Y.S.
Shymkovysh, V.M.
Kravets, P.I.
Novatskyi, A.O.
Shymkovysh, L.L.
Doroshenko, A.Yu.
author_facet Hryhorenko, Y.S.
Shymkovysh, V.M.
Kravets, P.I.
Novatskyi, A.O.
Shymkovysh, L.L.
Doroshenko, A.Yu.
author_sort Hryhorenko, Y.S.
title A Convolutional Neural Network Model and Software Tool for Classifying the Presence of a Medical Mask on a Human Face
title_short A Convolutional Neural Network Model and Software Tool for Classifying the Presence of a Medical Mask on a Human Face
title_full A Convolutional Neural Network Model and Software Tool for Classifying the Presence of a Medical Mask on a Human Face
title_fullStr A Convolutional Neural Network Model and Software Tool for Classifying the Presence of a Medical Mask on a Human Face
title_full_unstemmed A Convolutional Neural Network Model and Software Tool for Classifying the Presence of a Medical Mask on a Human Face
title_sort convolutional neural network model and software tool for classifying the presence of a medical mask on a human face
title_alt Модель згорткової нейронної мережі та програмний засіб для класифікації наявності медичної маски на обличчі людини
description A model of a convolutional neural network, a database for training a neural network, and a software tool for classifying the presence of a medical mask on a person’s face, which allows recognizing the presence of a medical mask from the transmitted image, have been developed. The structure of the neural network model was optimized to improve classification results. In addition, the development of the user interface was carried out. The developed application was tested on a set of random images. The resulting model demonstrated high accuracy and robustness in solving the task of classifying the presence of a medical mask on a person’s face, which allows automating measures to protect people from the spread of diseases. The implemented application meets the requirements for speed and quality of classification. Further improvement of the classification quality of CNN can be done by collecting a larger dataset and researching other CNN architectures.Problems in programming 2023; 2: 59-66
publisher Інститут програмних систем НАН України
publishDate 2023
url https://pp.isofts.kiev.ua/index.php/ojs1/article/view/568
work_keys_str_mv AT hryhorenkoys aconvolutionalneuralnetworkmodelandsoftwaretoolforclassifyingthepresenceofamedicalmaskonahumanface
AT shymkovyshvm aconvolutionalneuralnetworkmodelandsoftwaretoolforclassifyingthepresenceofamedicalmaskonahumanface
AT kravetspi aconvolutionalneuralnetworkmodelandsoftwaretoolforclassifyingthepresenceofamedicalmaskonahumanface
AT novatskyiao aconvolutionalneuralnetworkmodelandsoftwaretoolforclassifyingthepresenceofamedicalmaskonahumanface
AT shymkovyshll aconvolutionalneuralnetworkmodelandsoftwaretoolforclassifyingthepresenceofamedicalmaskonahumanface
AT doroshenkoayu aconvolutionalneuralnetworkmodelandsoftwaretoolforclassifyingthepresenceofamedicalmaskonahumanface
AT hryhorenkoys modelʹzgortkovoínejronnoímerežítaprogramnijzasíbdlâklasifíkacíínaâvnostímedičnoímaskinaobliččílûdini
AT shymkovyshvm modelʹzgortkovoínejronnoímerežítaprogramnijzasíbdlâklasifíkacíínaâvnostímedičnoímaskinaobliččílûdini
AT kravetspi modelʹzgortkovoínejronnoímerežítaprogramnijzasíbdlâklasifíkacíínaâvnostímedičnoímaskinaobliččílûdini
AT novatskyiao modelʹzgortkovoínejronnoímerežítaprogramnijzasíbdlâklasifíkacíínaâvnostímedičnoímaskinaobliččílûdini
AT shymkovyshll modelʹzgortkovoínejronnoímerežítaprogramnijzasíbdlâklasifíkacíínaâvnostímedičnoímaskinaobliččílûdini
AT doroshenkoayu modelʹzgortkovoínejronnoímerežítaprogramnijzasíbdlâklasifíkacíínaâvnostímedičnoímaskinaobliččílûdini
AT hryhorenkoys convolutionalneuralnetworkmodelandsoftwaretoolforclassifyingthepresenceofamedicalmaskonahumanface
AT shymkovyshvm convolutionalneuralnetworkmodelandsoftwaretoolforclassifyingthepresenceofamedicalmaskonahumanface
AT kravetspi convolutionalneuralnetworkmodelandsoftwaretoolforclassifyingthepresenceofamedicalmaskonahumanface
AT novatskyiao convolutionalneuralnetworkmodelandsoftwaretoolforclassifyingthepresenceofamedicalmaskonahumanface
AT shymkovyshll convolutionalneuralnetworkmodelandsoftwaretoolforclassifyingthepresenceofamedicalmaskonahumanface
AT doroshenkoayu convolutionalneuralnetworkmodelandsoftwaretoolforclassifyingthepresenceofamedicalmaskonahumanface
first_indexed 2024-09-16T04:08:05Z
last_indexed 2024-09-16T04:08:05Z
_version_ 1818528202386046976
fulltext 59 Моделі та методи машинного навчання Introduction Masks to protect against viruses during the COVID-19 pandemic have become part of the edifice for people around the world. They protect healthy people from infected people. However, since the virus can develop asymptomatically, the obvious solution was the use of masks by all people who are in public places and on the street. Proper use of a medical mask, especially in combination with a vaccine, minimizes the spread of COVID-19, including its new strains. However, the problem arose, how to monitor whether a visitor to a public place complies with the requirement to wear a mask? The state and businesses began hiring workers to control the situation. This is not the best solution for several reasons: increased risks for the employee’s health, additional contacts with people in public places, the human factor, it is difficult to provide the required number of employees. This is where modern technologies come to the rescue. By installing a video camera and connecting it to the server, you can track the presence of a medical mask on people’s faces. This is possible thanks to neural networks. Artificial neural networks (ANNs) are mathematical models that imitate the functioning of biological neural networks and are designed to solve various problems in the field of artificial intelligence [1-3]. They are networks of interconnected artificial neurons that process and transmit information among themselves. ANNs can be used in a wide range of applications, such as computer vision, natural language processing, speech recognition, recommender systems, and many others [4-9]. Convolutional neural networks (CNNs) are a special class of artificial neural networks that use convolutional operations in their architecture [10-13]. They were developed specifically for the analysis of visual data and have shown high efficiency in solving computer vision problems. Convolutional networks have become popular due to their properties, such as locality of receptive fields, limited number of parameters, and multi-layeredness, which help them better learn the visual features and structure of images. ANNs usually contain convolutional layers, activation functions, pooling layers, and fully connected layers. Due to their architecture, convolutional neural networks are able to detect visual patterns at different UDC 004.93’1 http://doi.org/10.15407/pp2023.02.059 Ya. S. Grigorenko, V.M. Shymkovysh, P.I. Kravets, A.O. Novatskyi, L.L. Shymkovysh, А.Yu. Doroshenko A CONVOLUTIONAL NEURAL NETWORK MODEL AND SOFTWARE FOR THE CLASSIFICATION OF THE PRESENCE OF A MEDICAL MASK ON THE HUMAN FACE A model of a convolutional neural network, a database for training a neural network, and a software tool for classifying the presence of a medical mask on a person’s face, which allows recognizing the presence of a medical mask from the transmitted image, have been developed. The structure of the neural network model was optimized to improve classification results. In addition, the development of the user interface was carried out. The developed application was tested on a set of random images. The resulting model demonstrated high accuracy and robustness in solving the task of classifying the presence of a medical mask on a person’s face, which allows automating measures to protect people from the spread of diseases. The implemented application meets the requirements for speed and quality of classification. Further improvement of the classification quality of CNN can be done by collecting a larger dataset and researching other CNN architectures. Key words: convolutional neural networks, image classification, Python, tensorflow, keras, medical masks. © Ya. S. Grigorenko, V.M. Shymkovysh, P.I. Kravets, A.O. Novatskyi, L.L. Shymkovysh, А.Yu. Doroshenko. 2023 ISSN 1727-4907. Проблеми програмування. 2023. №2 60 Моделі та методи машинного навчання levels of abstraction, which allows them to classify and recognize objects in images with high accuracy. ANNs can be used in various applications, such as face recognition, image classification, image segmentation, video analysis, autonomous driving of vehicles, and many other visual tasks. One of the key factors behind the popularity of convolutional neural networks is their ability to automatically detect and learn features in data without the need for manual feature creation. This contributed to the development of deep learning and accelerated the discovery of new applications for these networks. ANNs have become the foundation of many modern artificial intelligence and machine learning technologies, and their use continues to grow in a wide range of industries and research. 1. Development of CNN CNN consists of 6 components: input layer, convolutional layers, activation functions, pooling layers, Fully connected layers, output layer. The general structure of a convolutional neural network is shown on fig. 1. Input layer: the layer at which input data (usually images) is provided for processing by the network. Convolutional layers: these layers contain a set of filters (kernels) that «collapse» the input data by performing convolutional operations to detect features or image features at different levels of detail. Activation functions: after each convolutional layer, activation functions (such as ReLU, sigmoid, or tanh) are applied, which add nonlinearity to the model and allow the network to learn more complex functions. Pooling layers: these layers perform operations of increasing abstraction and reducing the size of data by selecting the most important informational features (for example, using max-pooling or average- pooling). Fully connected layers: after a sequence of convolutional and pooling layers, data can be passed to fully connected layers that perform classification or regression based on detected features. It is worth noting that before transferring data to fully connected layers, they are usually expanded into a vector. Output layer: the last fully connected layer gives the output values, which can be represented in the form of a vector of class probabilities, if the problem is classification, or in the form of numerical values, if the problem is regression. To develop a convolutional neural network, it was decided to use the basic YOLOv4 model, as it is one of the most powerful and effective models for object detection [15, 16]. YOLOv4 is known for its high accuracy and speed, which allows it to be used in real time. These factors determine the choice of this particular model for the development of a convolutional neural network aimed at classifying the presence of a medical mask on a person’s face. The YOLOv4 architecture is based on a combination of several important Figure 1. The general structure of a convolutional neural network[14] 61 Моделі та методи машинного навчання components that contribute to its efficiency and accuracy. The main components are: CSPDarknet53 – basic architecture to ensure high accuracy and relative speed of processing; Bag of Freebies and Bag of Specials – sets of methods and techniques that take into account various aspects of the network and help improve its speed and accuracy without additional resource costs; PANet (Path Aggregation Network) is an information aggregation mechanism responsible for combining features at different levels of abstraction to improve object localization accuracy; SPP (Spatial Pyramid Pooling) is a module that allows the network to take into account contextual information at different scales, which increases the recognition capabilities of the network for objects of different sizes. To adapt the basic YOLOv4 model to the task of classifying the presence of a medical mask on a person’s face, the following studies and improvements have been made. Data collection and annotation: a dataset consisting of photographs of people with and without medical masks was collected. The data were annotated to train the models. Fine-tuning of the model: the technique of fine-tuning was applied to adapt the YOLOv4 model to the specifics of the task. The learning process included setting hyperparameters such as learning rate, batch size, number of epochs, and regularization, which were adjusted to achieve optimal accuracy and learning speed. Also, the learning process included optimization of the architecture. In particular, the number of output classes was changed taking into account the needs of the task. Also, the sizes of convolutional filters and the sizes of kernels were revised to match the sizes of the faces depicted in the photographs. Evaluation of the results: the model was tested on the test data set and the results were evaluated using metrics such as accuracy, precision, recall and F1- score. Making improvements: after fine- tuning and evaluating the model results, several possible directions for optimization and refinement of the model were identified. These improvements are aimed at increasing the accuracy and efficiency of the model in the task of classifying the presence of a medical mask on a person’s face. One of the directions is the modification of convolutional layers: the influence of the number and size of nuclei in convolutional layers on the accuracy and speed of model learning was analyzed. Based on the analysis, it was decided to change some parameters of the convolutional layers, which helped to improve the overall performance of the model and its adaptation to the task of classifying the presence of a medical mask. 2. Development of a dataset for the training of CNN Data collection and preparation is an important stage in the process of developing and training a convolutional neural network [17-19]. This section describes the data collection process for training the YOLOv4 model adapted to classify the presence of a medical mask on a human face. To ensure the representativeness of the data and the variety of scenarios, images of people with different types of masks, as well as without masks, were collected. Images have been collected from various sources such as public databases, open websites, and by taking photos in real-world settings. The total volume of the collected dataset is 5 thousand images depicting people of different ages, genders and ethnicities. After the images were collected, each one was annotated, which included identifying and labeling the face region and the corresponding class (masked or unmasked person). Annotation was performed manually using a specialized software tool that allows to create rectangular frames around the face area and assign them appropriate class labels. The marking process is shown in fig. 2. In addition to data collection and preparation, data augmentation was applied to provide a greater variety of images and strengthen the robustness of the model [20-22]. Some of the augmentation techniques that were used in this study include scaling, rotation, panning, and illumination. Scaling – images are scaled to different sizes, which allows the model to learn to recognize objects of different sizes. 62 Моделі та методи машинного навчання Rotation – images are rotated to arbitrary angles, which allows the model to better adapt to different orientations of objects. Shift – images are shifted up, down, left or right, which helps the model learn to recognize objects in different positions in the image. Horizontal display – images are displayed horizontally, which helps the model adapt to symmetry and asymmetry of objects. Change in illumination – the intensity of illumination in the image changes, which allows the model to better adapt to different lighting conditions. The collected and annotated images were divided into training, validation and test datasets according to the standard 70/15/15 percentile distribution principle. To ensure the reliability and accuracy of the model, it was important to ensure a balance of classes in the training data set. This means that the number of images with and without masks was about the same. After data collection, annotation, augmentation, and segmentation, additional data preparation was performed to train the model. In particular, the images were scaled to the same size corresponding to the input size of the YOLOv4 model, and the pixel values were normalized. This helps provide optimal conditions for model training and ensures better utilization of computing resources during the training process. As a result of data collection and preparation, the obtained dataset was used for training, validation and testing of the YOLOv4 model, adapted for the classification of the presence of a medical mask on a person’s face. 3. Description of application implementation The developed application for recognizing a medical mask on a person’s face consisted of 2 modules: a module for providing a graphical interface; image classification and processing module. The purpose of the first module is to provide a full-fledged graphical interface consisting of the main page, on which there is a component for displaying the video stream from the video camera in real time with the result of the work of the classification module. The image classification and processing module is the core of the developed application. This module consists of three main components: loading and preparing the image, directly classifying the image, and overlaying the results on the Figure 2. Labeling of the dataset 63 Моделі та методи машинного навчання original image. The classification component uses a trained ANN model based on YoloV4 to classify pre-processed images coming from a video stream. The image preparation component provides functionality that normalizes images and performs the necessary transformations. This module was implemented in the Python programming language. Tensorflow and Keras libraries were used to work with neural networks [23- 27]. For image processing – OpenCV and Pillow libraries [28,29]. The Numpy library was used to work with multidimensional arrays. The code of the CNN model in Python is given in Fig. 3. Figure 3. Code of the CNN model in Python. 64 Моделі та методи машинного навчання 4. Results of work and testing The learning outcomes of the developed ZNM model are as follows: 1. Accuracy of image classification on the training set: 97.3%; 2. Accuracy of image classification on the test set: 92.5%; 3. The average training time in the era is 27 minutes. Results of testing the average number of frames per second: the speed of image classification by trained SNM is 20-25 frames per second. The results of testing the application satisfy the technical requirements for its operation. An example of the test result can be seen in fig. 4 and fig. 5. Conclusions In this study, a convolutional neural network based on the YOLOv4 architecture was developed to classify the presence of a medical mask on a human face. The fine- tuning technique was applied to adapt the model to the specifics of the task, and the architecture and learning hyperparameters were optimized. A large dataset with different types of masks and without masks was collected and annotated to successfully train and validate the model. The use of data augmentation provided a greater variety of images and improved the robustness of the model. The resulting model demonstrated high accuracy and robustness in solving the task of classifying the presence of a medical mask on a person’s face, which allows automating measures to protect people from the spread of diseases. The implemented application meets the set requirements for speed and quality of classification. Further improvement of the classification quality of CNN can be done by collecting a larger dataset and researching other CNN architectures. References 1. Dreyfus G (2005) Neural networks: meth- odology and applications. Springer-Ver- lag, Berlin. https://doi.org/10.1007/3-540- 28847-3 2. Liu W, Wang Z, Liu X, Zeng N, Liu Y, Al- saadi FE.( 2017) A survey of deep neural network architectures and their applications. Neurocomputing. vol. 234, pp. 11-26. 3. Pouyanfar S, Sadiq S, Yan Y, Tian H, Tao Y, Reyes MP, Shyu ML, Chen SC, Iyengar S. (2018) A survey on deep learning: algo- rithms, techniques, and applications. ACM Comput Surv (CSUR).vol. 51, no. 5, pp. 1-36. 4. Z. -Q. Zhao, P. Zheng, S. -T. Xu and X. Wu. (2019) Object Detection With Deep Learn- Figure 4. The result of testing without a mask Figure 5. The result of testing with a mask 65 Моделі та методи машинного навчання ing: A Review. IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 11, pp. 3212-3232. https://doi.org/10.1109/TNNLS.2018.2876865 5. Shymkovych V., Telenyk S., Kravets P. (2021) Hardware implementation of radial- basis neural networks with Gaussian activa- tion functions on FPGA. Neural Computing and Applications. vol. 33, no.15, pp. 9467- 9479. https://doi.org/10.1007/s00521-021- 05706-3 6. Tian H, Chen SC, Shyu ML.(2020) Evolu- tionary programming based deep learning feature selection and network construction for visual data classification. Inf Syst Front, vol. 22, no. 5, pp. 1053-1066. 7. Bezliudnyi Y., Shymkovysh V., Dorosh- enko A.( 2021) Convolutional neural net- work model and software for classification of typical pests. Prombles in programming. vol.4, pp. 95-102. https://doi.org/10.15407/ pp2021.04.095 8. Kravets P., Nevolko P., Shymkovych V., Shymkovych L. (2020) Synthesis of High- Speed Neuro-Fuzzy-Controllers Based on FPGA. 2020 IEEE 2nd International Con- ference on Advanced Trends in Information Theory (ATIT). pp. 291-295. https://doi. org/10.1109/ATIT50783.2020.9349299 9. Shymkovych, Volodymyr, Anatoliy Dorosh- enko, Tural Mamedov, and Olena Yatsenko (2022) Automated Design of an Artificial Neuron for Field-Programmable Gate Ar- rays Based on an Algebra-Algorithmic Ap- proach. International Scientific Technical Journal «Problems of Control and Informat- ics» vol. 67, no. 5, pp. 61-72. https://doi.org/10.34229/2786-6505-2022- 5-6 10. Dhillon A, Verma GK. (2020) Convolutional neural network: a review of models, method- ologies and applications to object detection. Prog Artif Intell. vol.9, no. 2, pp. 85-112. 11. Khan A, Sohail A, Zahoora U, Qureshi AS. (2020) A survey of the recent architectures of deep convolutional neural networks. Artif Intell Rev. vol. 53, no. 8, pp. 5455-5501 12. Alzubaidi, L., Zhang, J., Humaidi, A.J. et al. (2021) Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, vol. 8, no. 53, pp. 1-74. https://doi.org/10.1186/s40537-021-00444- 8 13. Khan, A., Sohail, A., Zahoora, U. et al. (2020) A survey of the recent architectures of deep convolutional neural networks. Artificial In- telligence Review, vol. 53, pp. 1-62. https:// doi.org/10.1007/s10462-020-09825-6 14. Tabian I, Fu H, Sharif Khodaei Z. A. (2019) Convolutional Neural Network for Impact Detection and Characterization of Com- plex Composite Structures. Sensors, vol. 19, №22:4933. https://doi.org/10.3390/ s19224933 15. Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement. arXiv pre- print arXiv:1804.02767. 16. Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv pre- print arXiv:2004.10934. 17. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. In Advances in neural information processing systems (pp. 1097-1105). 18. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. 19. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. 20. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recogni- tion. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). 21. Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 6(1), 1-48. 22. Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In International Confer- ence on Machine Learning (pp. 6105-6114). 23. TensorFlow. (n.d.). TensorFlow: An end-to- end open source machine learning platform. Retrieved from https://www.tensorflow.org/ 24. Keras. (n.d.). Keras: The Python deep learn- ing API. Retrieved from https://keras.io/ 25. Redmon, J. (n.d.). Darknet: Open source neural networks in C. Retrieved from https:// pjreddie.com/darknet/ 26. COCO Dataset. (n.d.). Common Objects in Context. Retrieved from https://cocodataset. org/ 66 Моделі та методи машинного навчання 27. ImageNet. (n.d.). ImageNet: A large-scale hierarchical image database. Retrieved from http://www.image-net.org/ 28. OpenCV. (n.d.). OpenCV: Open source com- puter vision library. Retrieved from https:// opencv.org/ 29. Buslaev, A., Iglovikov, V. I., Khvedchenya, E., Parinov, A., Druzhinin, M., & Kalinin, A. A. (n.d.). Albumentations: Fast image aug- mentation library. Retrieved from https:// github.com/albumentations-team/albumen- tations Received: 28.04.2023 Про авторів: Григоренко Ярослав Сергійович, студент 4 курсу Національного Техніч- ного Універсистету України «КПІ імені Ігоря Сікорського». Шимкович Володимир Миколайович, кандидат технічних наук, доцент кафедри інформаційних систем та технологій Національного Технічного Універсистету України «КПІ імені Ігоря Сікорського». Кількість наукових публікацій в українських виданнях – понад 30. Кількість наукових публікацій в зарубіжних виданнях – понад 10. Індекс Хірша – 4. https://orcid.org/0000- 0003-4014-2786 Новацький Анатолій Олександрович, кандидат технічних наук, доцент кафедри інформаційних систем та технологій Національного технічного університету України «КПІ імені Ігоря Сікорського». Кількість наукових публікацій в українських виданнях – понад 30. Кравець Петро Іванович, кандидат технічних наук, доцент кафедри інформаційних систем та технологій Національного технічного університету України «КПІ імені Ігоря Сікорського». Кількість наукових публікацій в українських виданнях – понад 40. Кіль- кість наукових публікацій в зарубіжних виданнях – понад 10. Індекс Хірша – 4. https://orcid.org/0000- 0003-4632-9832 Шимкович Любов Леонідівна, асистент кафедри інформаційних систем та технологій Національного технічного університету України «КПІ імені Ігоря Сікорського». Кількість наукових публікацій в українських виданнях – 2. Кількість наукових публікацій в зарубіжних виданнях – 1. https://orcid. org/0000-0002-1291-0373 Дорошенко Анатолій Юхимович, доктор фізико-математичних наук, професор, завідувач відділу теорії комп’ютерних обчислень, професор кафедри інформаційних систем та технологій Національного технічного університету України «КПІ імені Ігоря Сікорського». Кількість наукових публікацій в україн- ських виданнях – понад 200. Кількість наукових публікацій в зарубіжних видан- нях – понад 90. Індекс Хірша – 6. http://orcid.org/0000- 0002-8435-1451 Місце роботи авторів: Національний технічний універси- тет України «Київський політехніч- ний інститут імені Ігоря Сікорського», проспект Перемоги 37 та Інститут програмних систем НАН України, 03187, м. Київ-187, проспект Академіка Глушкова, 40. E-mail: yarik13371337@gmail.com, v.shymkovych@kpi.ua, a.novatskyi@kpi.ua, peter_kravets@yahoo.com, L.shymkovych@gmail.com, doroshenkoanatoliy2@gmail.com