Simulating of human physiological supersystems: interactions of cardiovascular, thermoregulatory and respiratory systems

Special quantitative model of the human thermoregulatory system (MTS) functioning with cardiovascular and lung systems is created. These systems form a human physiological supersystem (HPSS). MTS describes thermoregulatory responses to alterations of both external environmental physical characterist...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2023
Автори: Grygoryan, R.D., Degoda, A.G., Lyudovyk, T.V., Yurchak, O.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут програмних систем НАН України 2023
Теми:
Онлайн доступ:https://pp.isofts.kiev.ua/index.php/ojs1/article/view/584
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Problems in programming
Завантажити файл: Pdf

Репозитарії

Problems in programming
id pp_isofts_kiev_ua-article-584
record_format ojs
resource_txt_mv ppisoftskievua/60/a3c7a3cf64cf79b176bce579a78f1560.pdf
spelling pp_isofts_kiev_ua-article-5842024-04-28T11:55:00Z Simulating of human physiological supersystems: interactions of cardiovascular, thermoregulatory and respiratory systems Симулятор фізіологічних надсистем лю- дини: взаємодія систем кровообігу, терморегуляції та зовнішнього дихання Grygoryan, R.D. Degoda, A.G. Lyudovyk, T.V. Yurchak, O.I. physical health; cell energy balance; control mechanisms;quantitative models; simulator UDC 517.958:57 +519.711.3 + 612.51.001 фізичне здоров’я; енергетичний баланс клітини; механізми управління; кількісні моделі; симулятор УДК 517.958:57 +519.711.3 + 612.51.001 Special quantitative model of the human thermoregulatory system (MTS) functioning with cardiovascular and lung systems is created. These systems form a human physiological supersystem (HPSS). MTS describes thermoregulatory responses to alterations of both external environmental physical characteristics and internal biological characteristics. Algorithms provide designing of scenarios including simulation of either short-time or long-time (hours or days) observations. Input data include different combinations of environmental variables (air or water temperature, air humidity, wind or water flow speed, light intensity, infrared radiation) for a naked or wear human, as well as for given dynamics of biological characteristics (rate of heat production including its components associated with metabolism and ATP molecules leasing during mental and physical activities). Human body is presented by a core, blood, and a skin compartments. Skin and lung evaporation are under hypothalamic control based on afferent impulse patterns from internal, and skin heat and cold receptors. Dynamic output data include blood, hypothalamic, and skin temperatures, hemodynamic parameters like heart rate, cardiac output, regional blood flows, vascular resistances, blood pressures, and regional blood volumes. Serotonin and melatonin concentrations modulating biological heat production rate are associated with a day/night light intensity. Currently, the PCbased simulator is autonomous software to be used both for educational purposes and for providing of special computer research. In a near future, this simulator has to be widened by models of kidneys, and a mechanism of liverpancreas interaction.Problems in programming 2023; 3: 81-90  Створено спеціальну кількісну модель взаємодії терморегуляторної системи (МТС) людини із серцево-судинною та легеневою системами. Ці системи утворюють фізіологічну суперсистему людини (ФССС). MTС описує реакції терморегуляції на зміни фізичних характеристик зовнішнього середовища та внутрішніх біологічних характеристик. Алгоритми забезпечують сценарії моделювання короткочасних або тривалих (години чи дні) спостережень. Вхідні дані включають різні комбінації змінних навколишнього середовища (температура повітря або води, вологість повітря, швидкість вітру, інтенсивність світла) для голої або одягненої людини, а також для заданої динаміки біологічних характеристик (швидкість теплопродукції, включаючи його компоненти, пов’язані з метаболізмом і виділенням молекул АТФ під час розумової та фізичної діяльності). Організм людини представлений відділами серцевини, крові та шкіри. Випаровування шкіри та легенів контролюється гіпоталамусом на основі аферентних імпульсів від внутрішніх і шкірних теплових і холодових рецепторів. Динамічні вихідні дані включають температуру крові, гіпоталамуса та шкіри, гемодинамічні параметри, такі як частота серцевих скорочень, серцевий викид, регіональні кровотоки, судинний опір, артеріальний тиск і регіональні об’єми крові. Концентрація серотоніну та мелатоніну, яка регулює швидкість виробництва біологічного тепла, пов’язана з денною/нічною інтенсивністю світла. На сьогоднішній день симулятор на базі ПК є автономним програмним забезпеченням (мова С+) для використання як у навчальних цілях, так і для проведення спеціальних комп’ютерних досліджень. Найближчим часом цей симулятор має бути розширений моделями нирок та механізму взаємодії печінки та підшлункової залози.Prombles in programming 2023; 3: 81-90 Інститут програмних систем НАН України 2023-10-06 Article Article application/pdf https://pp.isofts.kiev.ua/index.php/ojs1/article/view/584 10.15407/pp2023.03.081 PROBLEMS IN PROGRAMMING; No 3 (2023); 81-90 ПРОБЛЕМЫ ПРОГРАММИРОВАНИЯ; No 3 (2023); 81-90 ПРОБЛЕМИ ПРОГРАМУВАННЯ; No 3 (2023); 81-90 1727-4907 10.15407/pp2023.03 en https://pp.isofts.kiev.ua/index.php/ojs1/article/view/584/634 Copyright (c) 2023 PROBLEMS IN PROGRAMMING
institution Problems in programming
baseUrl_str https://pp.isofts.kiev.ua/index.php/ojs1/oai
datestamp_date 2024-04-28T11:55:00Z
collection OJS
language English
topic physical health
cell energy balance
control mechanisms;quantitative models
simulator
UDC 517.958:57 +519.711.3 + 612.51.001
spellingShingle physical health
cell energy balance
control mechanisms;quantitative models
simulator
UDC 517.958:57 +519.711.3 + 612.51.001
Grygoryan, R.D.
Degoda, A.G.
Lyudovyk, T.V.
Yurchak, O.I.
Simulating of human physiological supersystems: interactions of cardiovascular, thermoregulatory and respiratory systems
topic_facet physical health
cell energy balance
control mechanisms;quantitative models
simulator
UDC 517.958:57 +519.711.3 + 612.51.001
фізичне здоров’я
енергетичний баланс клітини
механізми управління
кількісні моделі
симулятор
УДК 517.958:57 +519.711.3 + 612.51.001
format Article
author Grygoryan, R.D.
Degoda, A.G.
Lyudovyk, T.V.
Yurchak, O.I.
author_facet Grygoryan, R.D.
Degoda, A.G.
Lyudovyk, T.V.
Yurchak, O.I.
author_sort Grygoryan, R.D.
title Simulating of human physiological supersystems: interactions of cardiovascular, thermoregulatory and respiratory systems
title_short Simulating of human physiological supersystems: interactions of cardiovascular, thermoregulatory and respiratory systems
title_full Simulating of human physiological supersystems: interactions of cardiovascular, thermoregulatory and respiratory systems
title_fullStr Simulating of human physiological supersystems: interactions of cardiovascular, thermoregulatory and respiratory systems
title_full_unstemmed Simulating of human physiological supersystems: interactions of cardiovascular, thermoregulatory and respiratory systems
title_sort simulating of human physiological supersystems: interactions of cardiovascular, thermoregulatory and respiratory systems
title_alt Симулятор фізіологічних надсистем лю- дини: взаємодія систем кровообігу, терморегуляції та зовнішнього дихання
description Special quantitative model of the human thermoregulatory system (MTS) functioning with cardiovascular and lung systems is created. These systems form a human physiological supersystem (HPSS). MTS describes thermoregulatory responses to alterations of both external environmental physical characteristics and internal biological characteristics. Algorithms provide designing of scenarios including simulation of either short-time or long-time (hours or days) observations. Input data include different combinations of environmental variables (air or water temperature, air humidity, wind or water flow speed, light intensity, infrared radiation) for a naked or wear human, as well as for given dynamics of biological characteristics (rate of heat production including its components associated with metabolism and ATP molecules leasing during mental and physical activities). Human body is presented by a core, blood, and a skin compartments. Skin and lung evaporation are under hypothalamic control based on afferent impulse patterns from internal, and skin heat and cold receptors. Dynamic output data include blood, hypothalamic, and skin temperatures, hemodynamic parameters like heart rate, cardiac output, regional blood flows, vascular resistances, blood pressures, and regional blood volumes. Serotonin and melatonin concentrations modulating biological heat production rate are associated with a day/night light intensity. Currently, the PCbased simulator is autonomous software to be used both for educational purposes and for providing of special computer research. In a near future, this simulator has to be widened by models of kidneys, and a mechanism of liverpancreas interaction.Problems in programming 2023; 3: 81-90 
publisher Інститут програмних систем НАН України
publishDate 2023
url https://pp.isofts.kiev.ua/index.php/ojs1/article/view/584
work_keys_str_mv AT grygoryanrd simulatingofhumanphysiologicalsupersystemsinteractionsofcardiovascularthermoregulatoryandrespiratorysystems
AT degodaag simulatingofhumanphysiologicalsupersystemsinteractionsofcardiovascularthermoregulatoryandrespiratorysystems
AT lyudovyktv simulatingofhumanphysiologicalsupersystemsinteractionsofcardiovascularthermoregulatoryandrespiratorysystems
AT yurchakoi simulatingofhumanphysiologicalsupersystemsinteractionsofcardiovascularthermoregulatoryandrespiratorysystems
AT grygoryanrd simulâtorfízíologíčnihnadsistemlûdinivzaêmodíâsistemkrovoobígutermoregulâcíítazovníšnʹogodihannâ
AT degodaag simulâtorfízíologíčnihnadsistemlûdinivzaêmodíâsistemkrovoobígutermoregulâcíítazovníšnʹogodihannâ
AT lyudovyktv simulâtorfízíologíčnihnadsistemlûdinivzaêmodíâsistemkrovoobígutermoregulâcíítazovníšnʹogodihannâ
AT yurchakoi simulâtorfízíologíčnihnadsistemlûdinivzaêmodíâsistemkrovoobígutermoregulâcíítazovníšnʹogodihannâ
first_indexed 2024-09-16T04:08:49Z
last_indexed 2024-09-16T04:08:49Z
_version_ 1818568361176465408
fulltext Методи та засоби комп′ютерного моделювання 81 УДК 517.958:57 +519.711.3 + 612.51.001 http://doi.org/10.15407/pp2023.03.81 R.D. Grygoryan, A.G. Degoda, T.V. Lyudovyk, O.I.Yurchak SIMULATING OF HUMAN PHYSIOLOGICAL SUPERSYSTEMS: INTERACTIONS OF CARDIOVASCULAR, THERMOREGULATORY AND RESPIRATORY SYSTEMS A special quantitative model of the human thermoregulatory system (MT) functioning with cardiovascular and lung systems is created. These systems form a physiological super-system (PSS). For a naked or cloth human, algorithms provide designing of scenarios including simulation of either short-time or long-time (hours or days) observations. Input data include different combinations of environmental variables (air or water temperature, air humidity, wind or water flow speed, light intensity), as well as designing of dynamics for certain biological characteristics (rate of heat production including its components associated with metabolism and ATP molecules leasing during mental and physical activities). The human body consists of three compartments – core, blood, and skin. Dynamic output data include blood, hypothalamic, and skin temperatures, hemodynamic parameters (heart rate, cardiac output, regional blood flows, vascular resistances, blood pressures, and regional blood vol- umes), and lung ventilation. Using associations of dynamics of day/night light intensity with concentrations of serotonin and melatonin hormones, a model for biological heat production rate dynamics is proposed. Currently, the PC-based simulator is autonomous C+ software. Its users can be both student-medics and physiologists in- terested in providing theoretical research. Shortly, this simulator has to be widened by models of kidneys and liver-pancreas interaction mechanism. Key words: physical health, cell energy balance, control mechanisms,quantitative models, simulator. Introduction Human organs and certain anatomi- cal-functional systems (AFS) form very com- plex functional systems known as physiologi- cal super-systems (PSS). The general concept of human PSS [1-3] explained deep cellular mechanisms that determine cells interaction for dynamic providing of every AFS’s opti- mal parameters. However, traditional empiric physiology possesses not by research technol- ogies capable of establishing the main quan- titative laws ruling the functionalities of PSS. Potentially, mathematical models could help in solving of this problem. However, almost all models were created for solving specific par- tial problems therefore they not concern the problem of PSS. To fill this methodological gap in, we are consequentially creating proper mathematical models and computer simulators [4-7]. Their main novelty is in combining of multi-level physiological mechanisms for ex- plaining of organism-scale adaptive physio- logical responses to environmental alterations. In fact, this approach also creates potentials for explaining mechanisms that determine the dy- namic multi-parametric shape of human physi- cal health (HPH). Such a theoretical fundament is extreme necessary for the individualization of the medical assessment of HPH. The goal of this article is to present our latest development that made possible theoret- ical investigations of human thermoregulatory system under unpredictable challenges from a certain AFS namely, from the cardiovascular system (CVS) and lung system. Mathematical model of thermoregulatory system The model of CVS is presented in [6,7], thus there is no necessity for its de-scription in detail. Perhaps, it is sufficient to note that our CVS-model currently is the most complex model, including in it both mechanisms of cir- culation’s acute control and mechanisms that determine the long-term parameters of CVS. As to our model of the thermoregulatory sys- tem (MT), the main reason for its creation was that despite a lot of such models (for example, [8-14]), MT should be compatible with our other models. For solving our problems in the frame of human PSS, it is sufficient to have an MT containing three body compartments: a core © R.D. Grygoryan, A.G. Degoda, T.V. Lyudovyk, O.I.Yurchak, 2023 ISSN 1727-4907. Проблеми програмування. 2023. №3 Методи та засоби комп′ютерного моделювання 82 Методи та засоби комп′ютерного моделювання 83 Методи та засоби комп′ютерного моделювання 84 Методи та засоби комп′ютерного моделювання 85 Методи та засоби комп′ютерного моделювання 86 Fig.2. User interface fragment: special window for setting initial data for processing the thermoregulatory model Main simulation results and discussion As the reader can see in Fig.3, in this simulation, both air humidity (50%) and the wind speed (1 m/sec) are stable. It was as- sumed that the durations of night and day times are equal. Night time light intensity assumed to be for 100 times less than it is during the day time. Both for the sun rise time and for the sun set time is set 0,5 hour. Fig.3. Environmental parameters day/night dynamics: Input data Методи та засоби комп′ютерного моделювання 87 Fig.4. Body temperatures day/night (circadian) dynamics: Output data Fig.5. Day/night (circadian) dynamics of body parameters related to thermoregulation: Output data Fig.6. Day/night (circadian) dynamics of thermal receptors, serotonin, and melatonin: Output data Методи та засоби комп′ютерного моделювання 88 Fig.7. Day/night (circadian) dynamics of systolic and diastolic arterial pressures: Output data Fig.8. Day/night (circadian) dynamics of heart rate and lung ventilation: Output data Output data are presented by tempera- tures in the core, blood, hypothalamus, and skin (Fig.4), by 12 characteristics concerning heat, and cooling (Fig.5), by dynamics of thermal receptors (heat and cold), and blood concen- trations of serotonin and melatonin hormones (Fig.6), by dynamics of systolic and diastolic pressures (Fig.7), and at last, by dynamics of heart rate and lung ventilation (Fig.8). Fig.4 illustrates day/night alterations of temperatures in modeled body areas while the last two illustrations obviously show day/night alterations of pressures and heart rate. Certainly, our simulator yields much more output data concerning blood circula- tion parameters, baroreceptors, and chemo- receptors activities, and dynamics of main endocrine hormones modulating not only the state of CVS but also the state of those body structures that concern functionality of ther- moregulatory sys-tem. We do not present this additional data for two reasons. The first one is Методи та засоби комп′ютерного моделювання 89 already mentioned above – the paper volume. The second reason is concerned with the “raw” state of the MT model. It is not able yet to re- alistically simulate dynamics. Values of sever- al constants and variables are included in the model in conventional units only. We plan to advance it when all component models will be created and integrated into the complex simu- lator of human PSS. Conclusion In order to extend the potentials of the PC-based simulator of the human physiological super-system (PSS), a special quantitative model of the human thermoregulatory system (MT) is created and previously tested for spe- cific scenarios. Currently, MT is functioning with mod- els of cardiovascular and lung systems. MT describes thermoregulatory responses to alter- ations of both external environmental physical characteristics and internal biological character- istics. Algorithms provide designing of scenar- ios including simulation of either short-time or long-time (hours or days) observations. Input data include different combinations of environ- mental variables (air or water temperature, air humidity, wind or water flow speed, light inten- sity, infrared radiation) for a naked or wear hu- man, as well as for given dynamics of biological characteristics (rate of heat production including its components associated with metabolism and ATP molecules leasing during mental and phys- ical activities). Human body is presented by a core, blood, and a skin compartments. Skin and lung evaporation are under hypothalamic control based on afferent impulse patterns from internal, and skin heat and cold receptors. Dynamic out- put data include blood, hypothalamic, and skin temperatures, hemodynamic parameters like heart rate, cardiac output, regional blood flows, vascular resistances, blood pressures, and re- gional blood volumes. Serotonin and melatonin concentrations modulating biological heat pro- duction rate are associated with light’s day/night intensity. Currently, the PC-based simulator is autonomous soft-ware to be used both for edu- cational purposes and for providing of special computer research. In a near future, this simula- tor has to be widened by models of kidneys, and a mechanism of liver-pancreas interaction. References 1. Grygoryan RD. The optimal circulation: cells contribution to arterial pressure. N.Y.: Nova Science,2017: 287p. ISBN 978-1-53612-295-4. 2. Grygoryan R.D., Sagach V.F. The concept of physiological super-systems: New stage of integrative physiology. Int. J. Physiol. and Pathophysiology, 2018: 9,2,169-180. 3. Grygoryan RD. The Optimal Coexistence of Cells: How Could Human Cells Create The Integrative Physiology. J. of Human Physi- ol. 2019,1 (01):8-28. DOI 10.30564/jhp. v1i1.1386. 4. Grygoryan R.D. Problem-oriented computer simulators for solving of theoretical and ap- plied tasks of human physiology. Problems of programming. 2017, №3, Р. 102-111. 5. Grygoryan R.D., Yurchak O.I., Degoda A.G., Lyudovyk T.V. Specialized software for sim- ulating the multiple control and modulations of human hemodynamics. Prombles in pro- gramming. 2021; 2: 42-53. DOI: https://doi. org/10.15407/pp2021.02.042. 6. Grygoryan R.D., Degoda A.G., Lyudovyk.V., Yurchak O.I. Simulations of human hemody- namic responses to blood temperature and vol- ume changes. Prombles in programming. 2023; 1: 19-29. DOI: https://doi.org/10.15407/ pp2023.01.019 7. Grygoryan R.D. Modeling of mechanisms providing the overall control of human cir- culation. Advances in Human Physiol- ogy Rsearch,2022,4,5 – 21, https://doi. org/10.30564/ahpr.v4i1.4763. 8. Fiala D., Lomas K.J., Stohrer M. Comput- er prediction of human thermoregulatory and temperature responses to a wide range of en- vironmental conditions, Int. J. Biometeorol. 45 (2001) 143e159. http://www.ncbi.nlm.nih.gov. 9. Yermakova I.I., Montgomery L.D., Potter A.W. Mathematical model of human responses to open air and water immersion. Journal of Sport and Human Performance, 2022; 10(1), 30-45. https://doi.org/10.12922/jshp.v10i1.187. 10. Salloum M., Ghaddar N., Ghali K. A new transient bioheat model of the human body and its integration to clothing models. Inter- national Journal of Thermal Sciences. 2007, 46,4,371-384. 11. Kobayashi Y., Tanabe S., Development of JOS-2 human thermoregulation model with Методи та засоби комп′ютерного моделювання 90 detailed vascular system, Build. Environ. 66 (2013) 1e10, http:// dx.doi.org/10.1016/j. buildenv.2013.04.013. 12. Katić K.Thermophysiological models and their applications: A review Building and En- vironment (Elsevier) 2016, 106, 286-300. 13. Bhoopendra Choudhary, Udayraj, Local and overall convective heat transfer coefficients for human body with air ventilation clothing: Parametric study and correlations, Building and Environment, 229, 2023,109953, https://doi.org/10.1016/j.buildenv.2022.109953 Received: 10.08.2023 About authors: Grygoryan Rafik, Department chief, PhD, D-r in biology Publications number in Ukraine journals – 153 Publications number in English journals – 49. Hirsch index – 11 http://orcid.org/0000-0001-8762-733X. Degoda Anna, Senior scientist, PhD. Publications number in Ukraine journals – 16. Publications number in English journals – 1. Hirsch index – 3. http://orcid.org/0000-0001-6364-5568. Lyudovyk Tetyana, Senior scientist, PhD. Publications number in Ukraine journals – 31. Publications number in English journals – 17. Hirsch index – 5. https://orcid.org/0000-0003-0209-2001. Yurchak Oksana, Leading software engineer. Publications number in Ukraine journals – 15. Publications number in English journals – 0. Hirsch index –0. https://orcid.org/0000-0003-3941-1555. Place of work: Institute of software systems of Ukraine National Academy of Sciences 03187, Кyїv, Acad. Glushkov avenue, 40, Phone.: 526 5169. Е-mail: rgrygoryan@gmail.com, anna@silverlinecrm.com, tetyana.lyudovyk@gmail.com, daravatan@gmail.com,