Agile requirement analysis approach using artificial intelligent technologies

An approach to requirements analysis using artificial intelligence technologies, taking into account the specifics of the AGILE methodology is proposed in this paper. The approach corresponds to the Model-Driven Methodology, in which the main artifacts of software development are software models rep...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2024
Автор: Chebanyuk, O.V.
Формат: Стаття
Мова:English
Опубліковано: PROBLEMS IN PROGRAMMING 2024
Теми:
Онлайн доступ:https://pp.isofts.kiev.ua/index.php/ojs1/article/view/630
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Problems in programming
Завантажити файл: Pdf

Репозитарії

Problems in programming
id pp_isofts_kiev_ua-article-630
record_format ojs
resource_txt_mv ppisoftskievua/ce/beea46c665e6830580ae826e94db7fce.pdf
spelling pp_isofts_kiev_ua-article-6302025-02-15T11:48:23Z Agile requirement analysis approach using artificial intelligent technologies AGILE підхід аналізу вимог із використанням технологій штучного інтелекту Chebanyuk, O.V. Artificial Intelligence; AGILE; Model-Driven Development; Requirement Analysis; PlantUML; Text to Model Transformation; Requirement Visualization UDC 004.415.2.045 (076.5) штучний інтелект; AGILE; модельно-орієнтована розробка програмного заьезпечення; аналіз вимог до програмного заьезпечення; PlantUML; перетворення «текст в модель»; візуалізація вимог УДК 004.415.2.045 (076.5) An approach to requirements analysis using artificial intelligence technologies, taking into account the specifics of the AGILE methodology is proposed in this paper. The approach corresponds to the Model-Driven Methodology, in which the main artifacts of software development are software models represented by UML diagrams. The proposed approach corresponds to the key ideas of the AGILE manifesto, and is oriented towards the fact that AGILE has a priority to satisfy a customer when he changes requirements. Artificial intelligence technologies serve to prepare initial information for the “Text to Model Transformation” of the requirements specification into those types of UML diagrams (Use Case and Sequence), which are used for requirements analysis. The choice of the UML diagram visualization environment is substantiated.Problems in programming 2024; 2-3: 140-146 У роботі пропонується підхід до аналізу вимог за допомогою технологій штучного інтелекту, враховуючи особливості методології AGILE. Підхід відповідає модельно-оріентованій методології розробки програмного забезпечення, у якому основними артефактами розробки програмного забезпечення є моделі програмного забезпечення, що представляються UML діаграмами. Запропонований підхід відповідає ключовим ідеям AGILE manifesto і орієнтований на те, що вимоги замовника можуть часто змінюватися. Технології штучного інтелекту служать для підготовки початкової інформації для "перетворення з тексту у модель" специфікації вимог у ті види діаграм UML (Use Case та Sequence), які використовуються для аналізу вимог. Обґрунтовано вибір середовища візуалізації UML діаграм.Problems in programming 2024; 2-3: 140-146 PROBLEMS IN PROGRAMMING ПРОБЛЕМЫ ПРОГРАММИРОВАНИЯ ПРОБЛЕМИ ПРОГРАМУВАННЯ 2024-12-17 Article Article application/pdf https://pp.isofts.kiev.ua/index.php/ojs1/article/view/630 10.15407/pp2024.02-03.140 PROBLEMS IN PROGRAMMING; No 2-3 (2024); 140-146 ПРОБЛЕМЫ ПРОГРАММИРОВАНИЯ; No 2-3 (2024); 140-146 ПРОБЛЕМИ ПРОГРАМУВАННЯ; No 2-3 (2024); 140-146 1727-4907 10.15407/pp2024.02-03 en https://pp.isofts.kiev.ua/index.php/ojs1/article/view/630/682 Copyright (c) 2024 PROBLEMS IN PROGRAMMING
institution Problems in programming
baseUrl_str https://pp.isofts.kiev.ua/index.php/ojs1/oai
datestamp_date 2025-02-15T11:48:23Z
collection OJS
language English
topic Artificial Intelligence
AGILE
Model-Driven Development
Requirement Analysis
PlantUML
Text to Model Transformation
Requirement Visualization
UDC 004.415.2.045 (076.5)
spellingShingle Artificial Intelligence
AGILE
Model-Driven Development
Requirement Analysis
PlantUML
Text to Model Transformation
Requirement Visualization
UDC 004.415.2.045 (076.5)
Chebanyuk, O.V.
Agile requirement analysis approach using artificial intelligent technologies
topic_facet Artificial Intelligence
AGILE
Model-Driven Development
Requirement Analysis
PlantUML
Text to Model Transformation
Requirement Visualization
UDC 004.415.2.045 (076.5)
штучний інтелект
AGILE
модельно-орієнтована розробка програмного заьезпечення
аналіз вимог до програмного заьезпечення
PlantUML
перетворення «текст в модель»
візуалізація вимог
УДК 004.415.2.045 (076.5)
format Article
author Chebanyuk, O.V.
author_facet Chebanyuk, O.V.
author_sort Chebanyuk, O.V.
title Agile requirement analysis approach using artificial intelligent technologies
title_short Agile requirement analysis approach using artificial intelligent technologies
title_full Agile requirement analysis approach using artificial intelligent technologies
title_fullStr Agile requirement analysis approach using artificial intelligent technologies
title_full_unstemmed Agile requirement analysis approach using artificial intelligent technologies
title_sort agile requirement analysis approach using artificial intelligent technologies
title_alt AGILE підхід аналізу вимог із використанням технологій штучного інтелекту
description An approach to requirements analysis using artificial intelligence technologies, taking into account the specifics of the AGILE methodology is proposed in this paper. The approach corresponds to the Model-Driven Methodology, in which the main artifacts of software development are software models represented by UML diagrams. The proposed approach corresponds to the key ideas of the AGILE manifesto, and is oriented towards the fact that AGILE has a priority to satisfy a customer when he changes requirements. Artificial intelligence technologies serve to prepare initial information for the “Text to Model Transformation” of the requirements specification into those types of UML diagrams (Use Case and Sequence), which are used for requirements analysis. The choice of the UML diagram visualization environment is substantiated.Problems in programming 2024; 2-3: 140-146
publisher PROBLEMS IN PROGRAMMING
publishDate 2024
url https://pp.isofts.kiev.ua/index.php/ojs1/article/view/630
work_keys_str_mv AT chebanyukov agilerequirementanalysisapproachusingartificialintelligenttechnologies
AT chebanyukov agilepídhídanalízuvimogízvikoristannâmtehnologíjštučnogoíntelektu
first_indexed 2025-07-17T09:52:31Z
last_indexed 2025-07-17T09:52:31Z
_version_ 1850410095249195008
fulltext 140 Методи та засоби програмної інженерії UDC 004.415.2.045 (076.5) http://doi.org/10.15407/pp2024.02-03.140 O.V. Chebanyuk AGILE APPROACH TO REQUIREMENT ANALYSIS USING ARTIFICIAL INTELLIGENT TECHNOLOGIES An approach to requirements analysis using artificial intelligence technologies, taking into account the specifics of the AGILE methodology is proposed in this paper. The approach corresponds to the Model-Driven Methodology, in which the main artifacts of software development are software models represented by UML diagrams. The proposed approach corresponds to the key ideas of the AGILE manifesto, and is oriented towards the fact that AGILE has a priority to satisfy a customer when he changes requirements. Artificial intelligence technologies serve to prepare initial information for the “Text to Model Transformation” of the requirements specification into those types of UML diagrams (Use Case and Sequence), which are used for requirements analysis. The choice of the UML diagram visualization environment is substantiated. Keywords: Artificial Intelligence, AGILE, Model-Driven Development, Requirement Analysis, PlantUML, Text to Model Transformation, Requirement Visualization. О.В. Чебанюк AGILE ПІДХІД АНАЛІЗУ ВИМОГ ІЗ ВИКОРИСТАННЯМ ТЕХНОЛОГІЙ ШТУЧНОГО ІНТЕЛЕКТУ У роботі пропонується підхід до аналізу вимог за допомогою технологій штучного інтелекту, враховуючи особливості методології AGILE. Підхід відповідає модельно-оріентованій методології розробки програмного забезпечення, у якому основними артефактами розробки програмного забезпечення є моделі програмного за- безпечення, що представляються UML діаграмами. Запропонований підхід відповідає ключовим ідеям AGILE manifesto і орієнтований на те, що вимоги замов- ника можуть часто змінюватися. Технології штучного інтелекту служать для підготовки початкової інфор- мації для “перетворення з тексту у модель” специфікації вимог у ті види діаграм UML (Use Case та Sequence), які використовуються для аналізу вимог. Обґрунтовано вибір середовища візуалізації UML діаграм. Ключові слова: штучний інтелект, AGILE, модельно-орієнтована розробка програмного заьезпечення, аналіз вимог до програмного заьезпечення, PlantUML, перетворення «текст в модель», візуалізація вимог. Introduction One of the requirements of AGILE is a quick response to changes in customer re- quirements, which can happen quite often. This implies changing all software develop- ment artefacts that are associated with a spe- cific requirement. The information contained in these artefacts must quickly be synchro- nized with the changes made by the customer. To successfully implement this approach, the process of synchronizing changes needs to be automated, which can significantly speed up development and improve the quality of the source code. For today, perspective and modern ap- proaches use of methods that combine the ar- tificial intelligence technologies and funda- mental knowledge of model-driven engineer- ing [1]. This paper proposes such an ap- proach. Review papers Foundations of requirement analysis by means of chat bots and agents were de- scribed in the paper [2]. Researchers have ex- plored the development of Bots or agents that can engage in natural language conversations © O.В. Чебанюк, 2024 ISSN 1727-4907. Проблеми програмування. 2024. №2-3 141 Методи та засоби програмної інженерії with stakeholders (Figure 1). These automat- ed agents assist in the process of eliciting re- quirements from users and stakeholders. By imitating human interviewers, these bots can ask questions, provide clarifications, and guide stakeholders through the requirements gathering process. One specific example mentioned in the paper is LadderBot. LadderBot mimics a human interviewer by conversing in natural language. It formulates questions and pro- vides assistance during the requirements elici- tation process. The main steps of requirement analysis using LadderBot are the next - Natural Language Interaction: LadderBot interacts with users through a chat interface, mimick- ing human conversation. - AI-Driven Analysis: LadderBot uses Artificial Intelligence (AI) al- gorithms to process user input. - LadderBot identifies patterns, keywords, and context to under- stand user needs. - The AI extracts the information re- lated to requirements. - Dynamic Adaptation: Based on user responses, LadderBot dynam- ically adapts its conversation. - It formulates follow-up questions to explore different aspects of re- quirements. Task and research questions Task: to propose an approach for AGILE requirement analysis using artificial intelligence tools. In order to perform this task it is necessary to solve the next research questions (RQs): RQ1: Ground a choice of a visualiza- tion environment to perform “text to model transformation” operation. RQ2: Propose the important steps of AGILE requirement analysis approach. RQ3: Conduct an experiment with several AI tools to compare the obtained re- sults of requests. Fig. 1. Description of the process using chat bot for requirement analysis 142 Методи та засоби програмної інженерії RQ4: Analyse the experimental result and ground a choice of an AI tool to perform the AGILE requirement analysis approach. Analysis of the research questions al- lows us to formulate the scientific novelty of the conducted research. The paper proposes a requirement analysis approach that allows to avoid a hu- man factor and save time performing the next activities: - to prepare a full and non- contradictory requirement specifi- cation from any product vision document using artificial intelli- gence technologies. - It also allows to design software models for requirement analysis that correspond to the requirement specification using artificial intel- ligence technologies. Model-Driven Engineering foundations of the proposed approach Analysis of “text to model transfor- mation” modelling environments. Aim of this analysis is to select model- ling environment with the simplest represen- tation of textual description of UML diagram. Simple representation requires minimum ef- forts to teach AI tools to prepare a correct and full text representation of UML diagram. Figure 2 represents a classic model to model transformation scheme with propositions (blue text labels) of elements’ names that par- ticipate in the proposed approach. The text to model transformation is done by modelling environment. The next modelling environments were considered: - Visual studio plug-in for class dia- gram generating; - DrawIO; - Luquidchart; - PlantUML; - ASTAH UML. Because of limited value of paper, the detailed analysis of modelling environments is not represented. As a result of modelling environment analysis, PlantUML was chosen [8]. The cri- teria that ChatGTP and Gemini were learned to generate correct and full text description of PlantUML Sequence and Use Case diagrams. Fig. 2. Classic “Model to Model transformation” scheme with description of key elements necessary for transformation. Figure is taken from [7] 143 Методи та засоби програмної інженерії AGILE Requirement Analysis approach In order to realize the proposed ap- proach the next actors are involved: Custom- er, Requirement Engineer, AI, and Domain Analyst. UML Sequence Diagram is repre- sented on figure 3. The description of the main ideas of the proposed approach is pre- sented by roles of every actor. Customer: The customer’s role is to prepare the Product Vision Document and to provide feedbacks during the Scrum meeting if requirement clarification is needed. Requirements Engineer: receives the Product Vision Document from the Customer, then verifies UML diagram, obtained after the next iteration of a domain analysis and ex- plains the UML diagrams to the customer dur- ing the Scrum meeting. AI: The AI is involved in designing Epics, User Stories, and UML diagrams (Use Case and Sequence Diagrams) based on the instructions from the Domain Analyst. It also helps in formulating and evaluating key ques- tions to the client, finding answers to these questions, and creating the Requirement Specification. During the Requirement Clari- fication loop, the AI refines the requirement specification and UML diagrams as per the Domain Analyst’s instructions. Domain Analyst: The Domain Ana- lyst instructs the AI to design User Stories and UML diagrams, formulates key questions to the Customer. The Domain Analyst also evaluates and corrects the questions formulat- ed by the AI. During the Scrum meeting, the Domain Analyst considers Customers’ and Requirements’ Engineer notes about require- ment specification and UML diagrams. It gives input information for the next stage of the Requirement Clarification. The next activ- ity of the Domain Analyst is to instruct the AI to refine the User Stories and UML diagrams, and corrects the Requirement Specification if needed. Experimental research of the proposed approach Consider requirement specification of software system, describing rental processes of sport equipment. Fig. 3. UML sequence diagram of the proposed AGILE requirement analysis approach 144 Методи та засоби програмної інженерії The system presents various sports equipment on the company's website, each with a specific name, price, and unit of meas- urement. Customers can rent equipment, and their standard questionnaire data, phone, and email address are collected for communica- tion. The system automatically records the customer, equipment, quantity, rental date, and return date for each rental. The rental sys- tem manages the availability and condition of the equipment. After each return, the equip- ment undergoes a thorough cleaning and in- spection process. Any necessary repairs are carried out immediately. If the equipment is damaged beyond repair, it is replaced. The system also handles issues related to the lack of information about the availability of the necessary equipment in the warehouse in the required quantity. Customers can track their rental histo- ry online. This feature provides detailed in- formation about their past rentals, including the types of equipment rented, rental dates, re- turn dates, and costs. Based on the total cost of the order, the system provides additional discounts. These features allow customers to manage their rentals effectively and plan for future ones. Requirement analysis is provided with three different chat bots. Bing Copilot, AIchatting, and AI Chat. Because of limited value of paper, on- ly essential prompts to AI tools and analysis of their answers are represented below. Domain Analyst activities: Prompt 1 Hello I have a description of software system. Write please epics, user sto- ries and acceptance criteria for them. Rental Process and Customer Interac- tion: {text of the requirement specification.} Result: All AI networks have de- signed well and clear user stories with differ- ent level of description (see Table 1). Prompt 2 Please generate me ten the most important questions about problem do- main having User Stories and epics. Prompt 2 1. Please define to which ep- ic and a user story are related to which ques- tion. Prompt 3 Please find answers to these questions and verify the description of soft- ware system. Please mark changes of the de- scription by bold font and do not forget about the references. Thank you!!! Result: Bing Copilot has changed the text of specification correctly adding details to description of the product vision document. Bing Copilot Gemini Aichatting Prompt 1 Number of User Stories Six user stories Ten user stories Three user stories Accuracy of User stories description (from 0 to 10) 4 Very common descriptions 10 Well systematization 2 Two user stories and only couple of aspects are covered Prompt 2 and Prompt 3 Generated questions are related to Four user stories All epics + additional user stories All three user stories were précised Good precision Weak precision Prompt 4 Estimation of UML diagrams Clear UML diagrams, describing user stories (Sequence diagrams) and epics (Use Case diagrams) Stop to work (limited number of prompts with registered account) Таble 1 Analysis of answers of different AI tools 145 Методи та засоби програмної інженерії Gemini generated additional user stories then structured them correctly too. Prompt 4 May you generate a PlantUml description of use case and se- quence diagrams from the improved require- ment specification of the renting system? Result: Gemini got correct templates of the UML diagrams and then improved de- scription of user stories. Bing Copilot pro- posed correct and clear description of UML diagrams. Estimation of answers for different AI tools is represented in Table 1. Conclusion The paper presents the AGILE re- quirements engineering approach, which al- lows the use of artificial intelligence tools. The approach effectively solves the following key tasks of requirements analysis: - synchronization of customer re- quirements with the content of the requirements specification, epics, user stories, and UML use case and sequence diagrams; - using of artificial intelligence tools for the design software develop- ment artefacts that are used for re- quirement analysis. Experimental analysis, aimed to define AI tools with the best capabilities for refin- ing software development arte- facts, is represented. The most ap- propriate results were obtained by Bing Copilot and Gemini. Acknowledgement This paper is performed as a part of a research project “Ingeniería de dominio para los desarrollos de inteligencia artificial” (Do- main engineering for artificial intelligence developments) de Instituto de Investigación en Inteligencia Artificial (IIIA, Catalonia, Spain), Consejo Superior de Investigaciones Científicas (CSIC, Spain). References 1. Rietz, T., 2019. Designing a conversa- tional requirements elicitation system for end-users. In: 2019 IEEE 27th In- ternational Requirements Engineering Conference (RE), pp. 1-6. doi:10.1109/RE.2019.00061. 2. Kaur, K. & Kaur, P., 2024. The appli- cation of AI techniques in require- ments classification: a systematic mapping. Artificial Intelligence Re- view. Available at: https://link.springer.com/chapter/10.1 007/978-981-15-7907-3_20 (Ac- cessed: 09 April 2024). 3. Mognon, F. & Stadzisz, P.C., 2017. Modeling in Agile Software Devel- opment: A Systematic Literature Re- view. In: Agile Methods (WBMA 2016), pp. 50–59. Springer. Available at: https://link.springer.com/chapter/10.1 007/978-3-319-55907-0_5. 4. Bugeja, M., 2024. Artificial Intelli- gence. Science News, 22 February. Available at: https://www.sciencenews.org/topic/art ificial-intelligence. Publisher: Society for Science & the Public. 5. Stapleton, J. & Subramaniam, M., 2023. Impact of Agile Methodology Use on Project Success in Organiza- tions - A Systematic Literature Re- view. In: Agile Project Management, pp. 239-260. Springer. Available at: https://link.springer.com/chapter/10.1 007/978-3-030-63322-6_21. Publish- er: Springer Nature. 6. Ciccozzi, F., Malavolta, I. & Selic, B., 2019. Execution of UML models: a systematic review of research and practice. Software Systems Modeling, 18, pp.2313–2360. Available at: https://doi.org/10.1007/s10270-018- 0675-4 7. Figure model to model transformation is taken from https://wiki.eclipse.org/images/9/90/O MCW_chapter10_Modelplex-WP6- Training_IntroductionToM2M.pdf 8. PlantUML https://plantuml.com/ Одержано: 10.04.2024 Внутрішня рецензія отримана: 19.04.2024 Зовнішня рецензія отримана: 28.04.2024 146 Методи та засоби програмної інженерії Про автора: 1 Olena Chebanyuk, Contract researcher https://orcid.org/0000-0002-9873-6010 Місце роботи автора: 1 Instituto de Investigación en Inteligencia Artificial (IIIA) Consejo Superior de Investigaciones Científicas (CSIC). E-mail: elena.chebanyuk@iiia.csic.es Сайт: https://www.iiia.csic.es/es/people/person/?per son_id=207