Software framework for satellite spatial resolution enhancement

Remote sensing provides many crucial data today. Thankfully to the ease of access, global coverage and short revisit time intervals it became possible to retrieve global Earth’s land coverage data effortlessly. This data can provide useful information of the Earth’s land cover current state to make...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2024
Автори: Stankevich, S.A., Shklyar, S.V., Lysenko, A.R.
Формат: Стаття
Мова:English
Опубліковано: PROBLEMS IN PROGRAMMING 2024
Теми:
Онлайн доступ:https://pp.isofts.kiev.ua/index.php/ojs1/article/view/633
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Problems in programming
Завантажити файл: Pdf

Репозитарії

Problems in programming
id pp_isofts_kiev_ua-article-633
record_format ojs
resource_txt_mv ppisoftskievua/a1/c3bc851f87e168926d1f99bc850421a1.pdf
spelling pp_isofts_kiev_ua-article-6332025-02-15T12:01:17Z Software framework for satellite spatial resolution enhancement Програмна основа підвищення просторової розрізненості супутникових зображень Stankevich, S.A. Shklyar, S.V. Lysenko, A.R. framework; remote sensing; spatial resolution; super-resolution; modulation transfer function; subpixel shift UDC 681.3 основа (фреймворк); дистанційне зондування; просторова розрізненість; надрозрізненість; функція передачі модуляції; субпіксельне зміщення УДК 681.3 Remote sensing provides many crucial data today. Thankfully to the ease of access, global coverage and short revisit time intervals it became possible to retrieve global Earth’s land coverage data effortlessly. This data can provide useful information of the Earth’s land cover current state to make necessary assessments, forecasts, and other tasks that can be in handy for humanity, governments or even farmers. One of the main characteristics of image data quality is its spatial resolution. Thus, spatial resolution enhancement is a relevant topic nowadays. In this article a generalized software framework for satellite spatial resolution enhancement is presented. Due to sensitivity to the satellite data distortion, the applied method considers fusion of several low-resolution images into a single super-resolved one. The proposed framework takes into account satellite data specificity, that is given in a corresponding section. The framework was described to be capable to operate with radar and optical data. For the radar data a corresponding module, that ensures applicability of the super-resolution approach, is given. The framework was implemented using, mainly, C/C++ programming language and tested on a series of real satellite images. The result was evaluated using the modulation transfer function (MTF) approach and has shown an increasement in 135.91% for threefold scale optical images spatial resolution enhancement and 30.93% for the twofold scale radar spatial resolution enhancement. Despite the given representability of the test image set, the presented approach can be beneficial for the tasks that may have a need of the satellite data with higher spatial resolution. The paper concludes with overview of the authors implementation of the given framework and highlighting its drawbacks with suggestions for improvement.Prombles in programming 2024; 2-3: 163-172  Наразі дистанційне зондування надає багато важливих даних. Завдяки вільному доступу, глобальному покриттю та коротким інтервалам повторного знімання, стає можливим легке отримання глобальних даних щодо Земної поверхні. Ці дані є носіями корисної інформації про стан Земної поверхні для необхідних оцінок, прогнозів та інших задач, що можуть стати у нагоді людству, урядам та навіть фермерам. Одна з якісних характеристик зображень є їх просторова розрізненість. Підвищення просторової розрізненості є актуальною задачею. У цій статті представлено загальну програмну основу (фреймворк) для підвищення просторової розрізненості супутникових зображень. Враховуючи чутливість супутникових даних до будь-яких спотворень, робочим методом обрано поєднання кількох зображень низької просторової розрізненості в єдине зображення з підвищеною просторовою розрізненістю. Запропонована основа враховує специфіку супутникових даних, що представлена у відповідному розділі. Наведена основа здатна обробляти як оптичні, так і радарні дані завдяки відповідному модулю, що забезпечує придатність методу надрозрізненості до радарних даних. Основу реалізовано, переважно, за допомогою мови програмування C/C++. Тестування проводилось на вибірці реальних супутникових даних, а оцінка результату проводилась завдяки підходу з використанням функції передачі модуляції (ФПМ). Для оптичних зображень покращення показало 135.91%, де було задіяно трикратне збільшення розмірів зображення, а для радару 30.93%, де було задіяне двократне збільшення розмірів зображення. Незважаючи на низьку репрезентативність результатів тестового набору, описаний підхід може бути корисним для багатьох задач, які мають нестачу в даних з високою просторовою розрізненістю. Стаття завершується оглядом авторської реалізації описаної програмної основи з зазначенням їх недоліків та пропозиціями щодо їх виправлення.Prombles in programming 2024; 2-3: 163-172 PROBLEMS IN PROGRAMMING ПРОБЛЕМЫ ПРОГРАММИРОВАНИЯ ПРОБЛЕМИ ПРОГРАМУВАННЯ 2024-12-17 Article Article application/pdf https://pp.isofts.kiev.ua/index.php/ojs1/article/view/633 10.15407/pp2024.02-03.163 PROBLEMS IN PROGRAMMING; No 2-3 (2024); 163-172 ПРОБЛЕМЫ ПРОГРАММИРОВАНИЯ; No 2-3 (2024); 163-172 ПРОБЛЕМИ ПРОГРАМУВАННЯ; No 2-3 (2024); 163-172 1727-4907 10.15407/pp2024.02-03 en https://pp.isofts.kiev.ua/index.php/ojs1/article/view/633/685 Copyright (c) 2024 PROBLEMS IN PROGRAMMING
institution Problems in programming
baseUrl_str https://pp.isofts.kiev.ua/index.php/ojs1/oai
datestamp_date 2025-02-15T12:01:17Z
collection OJS
language English
topic framework
remote sensing
spatial resolution
super-resolution
modulation transfer function
subpixel shift
UDC 681.3
spellingShingle framework
remote sensing
spatial resolution
super-resolution
modulation transfer function
subpixel shift
UDC 681.3
Stankevich, S.A.
Shklyar, S.V.
Lysenko, A.R.
Software framework for satellite spatial resolution enhancement
topic_facet framework
remote sensing
spatial resolution
super-resolution
modulation transfer function
subpixel shift
UDC 681.3
основа (фреймворк)
дистанційне зондування
просторова розрізненість
надрозрізненість
функція передачі модуляції
субпіксельне зміщення
УДК 681.3
format Article
author Stankevich, S.A.
Shklyar, S.V.
Lysenko, A.R.
author_facet Stankevich, S.A.
Shklyar, S.V.
Lysenko, A.R.
author_sort Stankevich, S.A.
title Software framework for satellite spatial resolution enhancement
title_short Software framework for satellite spatial resolution enhancement
title_full Software framework for satellite spatial resolution enhancement
title_fullStr Software framework for satellite spatial resolution enhancement
title_full_unstemmed Software framework for satellite spatial resolution enhancement
title_sort software framework for satellite spatial resolution enhancement
title_alt Програмна основа підвищення просторової розрізненості супутникових зображень
description Remote sensing provides many crucial data today. Thankfully to the ease of access, global coverage and short revisit time intervals it became possible to retrieve global Earth’s land coverage data effortlessly. This data can provide useful information of the Earth’s land cover current state to make necessary assessments, forecasts, and other tasks that can be in handy for humanity, governments or even farmers. One of the main characteristics of image data quality is its spatial resolution. Thus, spatial resolution enhancement is a relevant topic nowadays. In this article a generalized software framework for satellite spatial resolution enhancement is presented. Due to sensitivity to the satellite data distortion, the applied method considers fusion of several low-resolution images into a single super-resolved one. The proposed framework takes into account satellite data specificity, that is given in a corresponding section. The framework was described to be capable to operate with radar and optical data. For the radar data a corresponding module, that ensures applicability of the super-resolution approach, is given. The framework was implemented using, mainly, C/C++ programming language and tested on a series of real satellite images. The result was evaluated using the modulation transfer function (MTF) approach and has shown an increasement in 135.91% for threefold scale optical images spatial resolution enhancement and 30.93% for the twofold scale radar spatial resolution enhancement. Despite the given representability of the test image set, the presented approach can be beneficial for the tasks that may have a need of the satellite data with higher spatial resolution. The paper concludes with overview of the authors implementation of the given framework and highlighting its drawbacks with suggestions for improvement.Prombles in programming 2024; 2-3: 163-172 
publisher PROBLEMS IN PROGRAMMING
publishDate 2024
url https://pp.isofts.kiev.ua/index.php/ojs1/article/view/633
work_keys_str_mv AT stankevichsa softwareframeworkforsatellitespatialresolutionenhancement
AT shklyarsv softwareframeworkforsatellitespatialresolutionenhancement
AT lysenkoar softwareframeworkforsatellitespatialresolutionenhancement
AT stankevichsa programnaosnovapídviŝennâprostorovoírozríznenostísuputnikovihzobraženʹ
AT shklyarsv programnaosnovapídviŝennâprostorovoírozríznenostísuputnikovihzobraženʹ
AT lysenkoar programnaosnovapídviŝennâprostorovoírozríznenostísuputnikovihzobraženʹ
first_indexed 2025-07-17T09:36:48Z
last_indexed 2025-07-17T09:36:48Z
_version_ 1850412926589992960
fulltext 163 Прикладне програмне забезпечення УДК 681.3 http://doi.org/10.15407/pp2024.02-03.163 S.A. Stankevich, S.V. Shklyar, A.R. Lysenko SOFTWARE FRAMEWORK FOR SATELLITE SPATIAL RESOLUTION ENHANCEMENT Remote sensing provides many crucial data today. Thankfully to the ease of access, global coverage and short revisit time intervals it became possible to retrieve global Earth’s land coverage data effortlessly. This data can provide useful information of the Earth’s land cover current state to make necessary assessments, forecasts, and other tasks that can be in handy for humanity, governments or even farmers. One of the main characteristics of image data quality is its spatial resolution. Thus, spatial resolution enhancement is a relevant topic nowadays. In this article a generalized software framework for satellite spatial resolution enhancement is presented. Due to sensitivity to the satellite data distortion, the applied method considers fusion of several low-resolution images into a single super-resolved one. The proposed framework takes into account satellite data specificity, that is giv- en in a corresponding section. The framework was described to be capable to operate with radar and optical data. For the radar data a corresponding module, that ensures applicability of the super-resolution approach, is given. The framework was implemented using, mainly, C/C++ programming language and tested on a series of real satellite images. The result was evaluated using the modulation transfer function (MTF) approach and has shown an increasement in 135.91% for threefold scale optical images spatial resolution enhancement and 30.93% for the twofold scale radar spatial resolution enhancement. Despite the given representability of the test image set, the presented approach can be beneficial for the tasks that may have a need of the satellite data with higher spa- tial resolution. The paper concludes with overview of the authors implementation of the given framework and highlighting its drawbacks with suggestions for improvement. Key words: framework, remote sensing, spatial resolution, super-resolution, modulation transfer function, subpixel shift С.А. Станкевич, С.В. Шкляр, А.Р. Лисенко ПРОГРАМНА ОСНОВА ПІДВИЩЕННЯ ПРОСТОРОВОЇ РОЗРІЗНЕНОСТІ СУПУТНИКОВИХ ЗОБРАЖЕНЬ Наразі дистанційне зондування надає багато важливих даних. Завдяки вільному доступу, глобальному покриттю та коротким інтервалам повторного знімання, стає можливим легке отримання глобальних даних щодо Земної поверхні. Ці дані є носіями корисної інформації про стан Земної поверхні для необхідних оцінок, прогнозів та інших задач, що можуть стати у нагоді людству, урядам та навіть фермерам. Одна з якісних характеристик зображень є їх просторова розрізненість. Підвищення просторової розрізненості є актуальною задачею. У цій статті представлено загальну програмну основу (фреймворк) для підвищення просторової розрізненості супутникових зображень. Враховуючи чутливість супутникових даних до будь-яких спотворень, робочим методом обрано поєднання кількох зображень низької просторової розрізненості в єдине зображення з підвищеною просторовою розрізненістю. Запропонована основа враховує специфіку супутникових даних, що представлена у відповідному розділі. Наведена основа здатна обробляти як оптичні, так і радарні дані завдяки відповідному модулю, що забезпечує придатність методу надрозрізненості до радарних даних. Основу реалізовано, переважно, за допомогою мови програмування C/C++. Тестування проводилось на вибірці реальних супутникових даних, а оцінка результату проводи- лась завдяки підходу з використанням функції передачі модуляції (ФПМ). Для оптичних зображень покра- щення показало 135.91%, де було задіяно трикратне збільшення розмірів зображення, а для радару 30.93%, де було задіяне двократне збільшення розмірів зображення. Незважаючи на низьку репрезентативність результатів тестового набору, описаний підхід може бути корисним для багатьох задач, які мають нестачу в даних з високою просторовою розрізненістю. Стаття завершується оглядом авторської реалізації описаної програмної основи з зазначенням їх недоліків та пропозиціями щодо їх виправлення. Ключові слова: основа (фреймворк), дистанційне зондування, просторова розрізненість, надрозрізненість, функція передачі модуляції, субпіксельне зміщення. © С.А. Станкевич, С.В. Шкляр, А.Р. Лисенко, 2024 ISSN 1727-4907. Проблеми програмування. 2024. №2-3 164 Прикладне програмне забезпечення Introduction Nowadays, information is a necessity for scientific breakthroughs, development of new methods and technologies and many other problem solving. Information age brought us a plethora of means and methods for informa- tion collection, processing and application. At present, people are equipped and live among so many modern, interconnected via internet, gadgets and tools that improve our quality of life, relieve our routine burden or help to solve monotonous tasks, that the digital information flow became overwhelming. Storing and processing such informa- tion brought many new possibilities. As a re- sult, new technologies have arisen and some stagnated ones were significantly improved. For example, a tremendous information ca- pacity led to the emergence of the well-known Big Data (Curry et al., 2021) and brought enormous processing capabilities to the Neu- ral Networks, comparing to their advent in somewhat 1950’s (Goodfellow, Bengio and Courville, 2016), resulting in a rapid develop- ment leap. Growing demands in digital processing powers require an appropriate nature resource management. Thus, a vast amount of sus- tainable development tasks became relevant, which goal is to maintain enough diverse re- sources for humanity future, for example, wa- ter resources monitoring (Lock et al., 2023), crop state monitoring (Nguyen et al., 2020), yield forecasting (Szabó et al., 2021), forest fire prevention (Hu, Ban and Nascetti, 2021), desertification assessment (Lubskyi et al., 2023) and so on. Resolving these tasks require avail- ability of Earth’s land cover data in the terms of global coverage, i.e., satellite’s visible, short infrared and near infrared wave bands. Different satellite sensors provide data with different quality, namely, spatial resolution: one sensor can provide data with spatial res- olution of 30 meters, while other provide data with spatial resolution of 5 meters (Brown et al., 2005). The variance in spatial resolution is mainly caused by dissimilarity in different orbit heights, on which those sensors operate, as well as different manufacturing technology. One may assume that if we have sensors that provide high spatial resolution data, than there is no need in low spatial resolution ones. Alas, high spatial resolution sensor has significantly lower land coverage during its sensing period, as well as sensing periods are much longer be- cause of their low orbit disposition. It may be thought that it might be appropriate to combine low-resolution data with global coverage with high spatial resolution data. Indeed, many tasks are solved this way. But it may be difficult to find low-resolution and high-resolution data within a relatively short time shift interval. Thus, it is appropriate to develop su- per-resolution methods for low-resolution data spatial resolution enhancement. These meth- ods require an adequate software framework which will combine main principal ideas for satellite image super-resolution. Data characteristics Before we delve into the framework itself, it may be expedient to examine source data characteristics, that are directly tied to the nature of remote sensing process and to the principal of super-resolution methods. Mainly, super-resolution methods are based on the idea that data enhancement re- quires directly high-resolution data or high-res- olution can be combined from several distinct low-resolution data sources (Fathi, Hadhoud and El-Khamy, 2012). Fusing several low-res- olution images into enhanced one can bring new information to the result. On the contrary, although filtering (Assia Kourgli and Youcef Oukil, 2013) and neuron-network-based meth- ods (Lu et al., 2019) can give remarkable re- sults, they cannot present any new data in the result without involvement of additional data sources. As such, source data requirements become obvious: input data must contain at least two different images and the imaging scene must remain mostly unchanged, i.e., there should be a little to none moving objects, so data in each point could be treated as con- stant. In satellite imaging such moving objects that can affect the result’s quality are, usually, 165 Прикладне програмне забезпечення clouds. To preserve the constancy of the imag- ing scene the time shift between each satellite image pair should be short enough to not cause representation of different objects within same subscene. To be able to provide any new in- formation to each other, any image pair should have some unique subpixel (less than a pixel size) shift along any or all axes. Otherwise, fusing images with same data won’t enhance spatial resolution of the result. As for the imaging sensors, to be short, there are mainly two general types: the optical and the radar ones. The optical can give us a good RGB representation of the image, but are limited: they are affected by cloudiness (Zhou et al., 2022) and require to find corresponding images with short time delay between them. The radar, on the contrary, is uninfluenced by clouds due to its physical nature – much larger wavelength. And, usually, radar sens- ing includes consecutive land cover sensing in two or more different polarizations with- in a very small (1 second or less) time delay. Thus, there is no need for image pair search. However, because such image pairs are tak- en in different polarization, they do not repre- sent common physical property and cannot be processed in the same manner. So, radar data requires additional processing to convert data from different polarizations into some unified representation. Framework The spatial resolution framework in- corporates main ideas for super-resolved im- age restoration – fusing several low-resolution images into single super-resolved one. The aim is to increase target image spatial resolution; thus, some considerations must be carried. Firstly, image noisiness is intertwined with its spatial resolution, so noise must be sup- pressed. Secondly, because each image pair must have some subpixel shift, the framework should take them into account, for example, by evaluating them. Not to lose generality, the framework may provide means to process op- tical or radar data. And last, but not least, the framework must enhance the spatial resolution of the result. The schematic presentation of the framework is shown in figure 1. As you can see, firstly the satellite data is fetched from the corresponding data provid- er. Before it can be processed by the super-res- olution system it must be preprocessed for the needs of the specific tasks that stand before the scientist. After that, preprocessed data flows to the super-resolution system, which has the fol- lowing structure: Input/output system – it may be graphical user interface (GUI), console appli- cation or any other form of interaction between the user and the system; Fig. 1. Framework for satellite spatial resolution enhancement 166 Прикладне програмне забезпечення Convert to common property module – a module that simply converts data, that rep- resent different physical properties, into a com- mon one. For example, as for the radar, conver- sion of multi-polarized data can be converted into common physical property – land surface dielectric permittivity via one of the radar back- scattering models, for example, Oh model (Oh, Kamal Sarabandi and Ulaby, 1992). Optimal image subset selection mod- ule – a module that selects such a subset from an input image set, that leads to the result with the best quality according to the super-resolu- tion model that super-resolution system imple- ments. As for the described framework, this module’s source is converted into common physical property images. Remark: if opti- cal images within same optical bands (wave- length) are used – there are no need in con- version; thus, converted into common property images are simply the input ones. Image shift evaluation model – as the name implies, evaluates the shift between each source image pair. Later, these shifts are used as arguments for the enhancement pro- cess, noise suppression, as well as they may be the arguments for the optimal image subset selection (in terms of best geometrical align- ment for the resulted image). Remark: if the source images have shifts greater than a single pixel size, this module should implement inte- ger-pixel cropping of all input set of images to the common region of interest. Noise suppression module – evalu- ates the noise between converted into common physical property (if needed) images in respect to their pairwise subpixel shifts. Enhancement module – with regard to pairwise subpixel shifts takes noise-sup- pressed images in order to rebuild the super-re- solved image with enhanced spatial resolution. Remark: besides the noise-suppressed images the enhancement procedure may take into ac- count also the form of that suppression. Implementation The framework was implemented using Python (for conversion into a common physi- cal property) and C/C++ (for everything else) programming languages with the help of such external free open-access libraries as: NumPy, Pillow – for Python; OpenCV, Eigen, ImGUI – for C/C++. Numpy was used for general data processing, while Pillow was used as an input/ output library. OpenCV handled input/output as well as most part of the image processing. Eigen was used to solve linear equations in the super-resolution model and ImGUI was used for the GUI. The input/output system was devel- oped in the form of a GUI. A demonstration of the Super-resolution system GUI is shown in figure 2. Fig. 2. Satellite image spatial resolution en- hancement GUI The convert to common property module was implemented using Python lan- guage. It is in a state of a working prototype that converts multi-polarized radar data into the common physical land surface property – dielectric permittivity – via Oh radar back- scattering model. It is very time-consuming, because, as for now, it directly goes over all possible discrete values of two parameters, namely surface roughness and dielectric per- mittivity, that can theoretically satisfy equality in both (vertical and horizontal) backscattering polarizations. Thus, as for now, it is a stand- alone module. The image shift evaluation module uses the Young algorithm (Young, Driggers and Jacobs, 2008) to evaluate pairwise image shifts displacements. To increase its speed, we choose the 1/8 discretization, for interval of along abscissa and ordinate axes ensuring that precision lost is insignificant. The optimal image subset selection module, as for now, is presented in a form of finding such a subset from an input image set, that is most informative having least inter- cover. The noise suppression module evaluates the mean noise matrix, from the input ones, with respect to their subpixel shifts. It is used to correct the result in the enhancement process. The enhancement module is implemented according to the mathematic model described in our previous work (Stankevich et al., 2020). Keeping it short and simple, it inverses the downscale procedure in order to rebuild the enhanced image. Simplistic model for a twofold scale spatial resolution enhancement is shown below: 𝑌𝑌(𝑦𝑦, 𝑥𝑥) = 𝐺𝐺(∆𝑦𝑦, ∆𝑥𝑥) ⊗ 𝑋𝑋(𝑦𝑦, 𝑥𝑥). The shifts are given by: −0.5 ≤ ∆𝑦𝑦 ≤ 0.5, −0.5 ≤ ∆𝑥𝑥 ≤ 0.5. The general convolution matrix of a super-resolution transform 𝐺𝐺(∆𝑦𝑦, ∆𝑥𝑥): 𝐺𝐺(∆𝑦𝑦, ∆𝑥𝑥) = ( (0.5 − ∆𝑦𝑦)(0.5 − ∆𝑥𝑥) (0.5 − ∆𝑦𝑦) (0.5 − ∆𝑦𝑦)(0.5 + ∆𝑥𝑥) (0.5 − ∆𝑥𝑥) 1 (0.5 + ∆𝑥𝑥) (0.5 + ∆𝑦𝑦)(0.5 − ∆𝑥𝑥) (0.5 + ∆𝑦𝑦) (0.5 + ∆𝑦𝑦)(0.5 + ∆𝑥𝑥) ). The frequency domain transfer function is given by: 𝑇𝑇(𝜂𝜂, 𝜉𝜉) = ( (0.5 − ∆𝑦𝑦)𝑒𝑒−2𝜋𝜋𝜋𝜋𝜋𝜋 𝑚𝑚⁄ + +1 + (0.5 − ∆𝑦𝑦)𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋 𝑚𝑚⁄ ) × × ( (0.5 − ∆𝑥𝑥)𝑒𝑒−2𝜋𝜋𝜋𝜋𝜋𝜋 𝑛𝑛⁄ + +1 + (0.5 − ∆𝑥𝑥)𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋 𝑛𝑛⁄ ). And the super-resolution model itself is: 4�̂�𝑌𝑘𝑘 = 𝑇𝑇𝑘𝑘(𝜂𝜂, 𝜉𝜉)�̂�𝑋(𝜂𝜂, 𝜉𝜉) + 𝑇𝑇𝑘𝑘(𝜂𝜂 ± 𝑚𝑚, 𝜉𝜉) × × �̂�𝑋(𝜂𝜂 ± 𝑚𝑚, 𝜉𝜉) + 𝑇𝑇𝑘𝑘(𝜂𝜂, 𝜉𝜉 ± 𝑛𝑛)�̂�𝑋(𝜂𝜂, 𝜉𝜉 ± 𝑛𝑛) + +𝑇𝑇𝑘𝑘(𝜂𝜂 ± 𝑚𝑚, 𝜉𝜉 ± 𝑛𝑛) × �̂�𝑋(𝜂𝜂 ± 𝑚𝑚, 𝜉𝜉 ± 𝑛𝑛) + +4�̂�𝐸(𝜂𝜂, 𝜉𝜉), where (∙)̂ – is a Fourier transform operator and 𝐸𝐸 – is a mean noise matrix. Later, described model was enhanced to the threefold scale spatial resolution enhancement (Stankevich et al., 2023). In order to increase image processing speed all pairwise shifts are being evaluated on a part of the region of interest with 500 × 500 pixel size (if source image is bigger than that), as well as image processing was carried out in frequency domain through image’s Fourier transform. That was needed to significantly improve speed of images convolution. The enhancement process was organized in a window-processing manner to preserve memory and allow to enhance sets with large images (5000 × 5000 pixel size and bigger). Results The testing was conducted using graphics workstation equipped with a 16-core 4.2 GHz central processing unit (CPU) on a Sentinel-1 and Jilin-1 images. Sentinel-1 represents the radar imagery while Jilin-1 represents the optics. The source data is shown in figure 3. 167 Прикладне програмне забезпечення The optimal image subset selection module, as for now, is presented in a form of finding such a subset from an input image set, that is most informative having least inter- cover. The noise suppression module evaluates the mean noise matrix, from the input ones, with respect to their subpixel shifts. It is used to correct the result in the enhancement process. The enhancement module is implemented according to the mathematic model described in our previous work (Stankevich et al., 2020). Keeping it short and simple, it inverses the downscale procedure in order to rebuild the enhanced image. Simplistic model for a twofold scale spatial resolution enhancement is shown below: 𝑌𝑌(𝑦𝑦, 𝑥𝑥) = 𝐺𝐺(∆𝑦𝑦, ∆𝑥𝑥) ⊗ 𝑋𝑋(𝑦𝑦, 𝑥𝑥). The shifts are given by: −0.5 ≤ ∆𝑦𝑦 ≤ 0.5, −0.5 ≤ ∆𝑥𝑥 ≤ 0.5. The general convolution matrix of a super-resolution transform 𝐺𝐺(∆𝑦𝑦, ∆𝑥𝑥): 𝐺𝐺(∆𝑦𝑦, ∆𝑥𝑥) = ( (0.5 − ∆𝑦𝑦)(0.5 − ∆𝑥𝑥) (0.5 − ∆𝑦𝑦) (0.5 − ∆𝑦𝑦)(0.5 + ∆𝑥𝑥) (0.5 − ∆𝑥𝑥) 1 (0.5 + ∆𝑥𝑥) (0.5 + ∆𝑦𝑦)(0.5 − ∆𝑥𝑥) (0.5 + ∆𝑦𝑦) (0.5 + ∆𝑦𝑦)(0.5 + ∆𝑥𝑥) ). The frequency domain transfer function is given by: 𝑇𝑇(𝜂𝜂, 𝜉𝜉) = ( (0.5 − ∆𝑦𝑦)𝑒𝑒−2𝜋𝜋𝜋𝜋𝜋𝜋 𝑚𝑚⁄ + +1 + (0.5 − ∆𝑦𝑦)𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋 𝑚𝑚⁄ ) × × ( (0.5 − ∆𝑥𝑥)𝑒𝑒−2𝜋𝜋𝜋𝜋𝜋𝜋 𝑛𝑛⁄ + +1 + (0.5 − ∆𝑥𝑥)𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋 𝑛𝑛⁄ ). And the super-resolution model itself is: 4�̂�𝑌𝑘𝑘 = 𝑇𝑇𝑘𝑘(𝜂𝜂, 𝜉𝜉)�̂�𝑋(𝜂𝜂, 𝜉𝜉) + 𝑇𝑇𝑘𝑘(𝜂𝜂 ± 𝑚𝑚, 𝜉𝜉) × × �̂�𝑋(𝜂𝜂 ± 𝑚𝑚, 𝜉𝜉) + 𝑇𝑇𝑘𝑘(𝜂𝜂, 𝜉𝜉 ± 𝑛𝑛)�̂�𝑋(𝜂𝜂, 𝜉𝜉 ± 𝑛𝑛) + +𝑇𝑇𝑘𝑘(𝜂𝜂 ± 𝑚𝑚, 𝜉𝜉 ± 𝑛𝑛) × �̂�𝑋(𝜂𝜂 ± 𝑚𝑚, 𝜉𝜉 ± 𝑛𝑛) + +4�̂�𝐸(𝜂𝜂, 𝜉𝜉), where (∙)̂ – is a Fourier transform operator and 𝐸𝐸 – is a mean noise matrix. Later, described model was enhanced to the threefold scale spatial resolution enhancement (Stankevich et al., 2023). In order to increase image processing speed all pairwise shifts are being evaluated on a part of the region of interest with 500 × 500 pixel size (if source image is bigger than that), as well as image processing was carried out in frequency domain through image’s Fourier transform. That was needed to significantly improve speed of images convolution. The enhancement process was organized in a window-processing manner to preserve memory and allow to enhance sets with large images (5000 × 5000 pixel size and bigger). Results The testing was conducted using graphics workstation equipped with a 16-core 4.2 GHz central processing unit (CPU) on a Sentinel-1 and Jilin-1 images. Sentinel-1 represents the radar imagery while Jilin-1 represents the optics. The source data is shown in figure 3. 168 Прикладне програмне забезпечення Fig. 3. Jilin-1 source images (3005×3007 pixels) a b c d e f Fig. 4. Sentinel-1 (vertical polarization – b, horizontal polarization – c) and Sentinel-2 (a) (optical representation) images of a land parcel near Zhytomyr city, Ukraine (600×1000 pixels) a b c The radar source images are shown in figure 4. Optical images do not need any conversion into a common physical property, because they already represent one. However, radar images need such processing; thus, they were con- verted into dielectric permittivity as shown in figure 5. 169 Прикладне програмне забезпечення Fig. 5. Sentinel-1 radar data conversion into a common physical property – land surface dielectric permittivity (a – vertical polarization, b – horizontal polarization) a b a b c d Optimal image subset selection is not de- scribed here, because source data consist only of 6 images for optics and just 2 images for radar. The enhancement result is given by figure 6 for optical and 7 for radar. Note: optical images were threefold scale enhanced, while radar images were twofold scale enhanced, due to the lack of sufficient images quantity for the threefold enhancement. Fig. 6. Jilin-1 source (a) and enhanced (b) image with their corresponding zoomed fragments (c – source, d – enhanced) 170 Прикладне програмне забезпечення As for the radar, maximal memory con- sumption was 596.1 MB and processing time was 5 seconds. In order to evaluate how much spatial resolution was enhanced a specially developed module was used. The main principal in this module is to use modulation transfer function (MTF) and its threshold value to find a spatial resolution value that corresponds to the point, where two objects become indistinguishable. The example of spatial resolution evaluation is shown in figure 8. During optical enhancement procedure maximal memory consumption that was re- corded is 6104.8 MB and processing time was 7 minutes and 4 seconds. Fig. 7. Sentinel-1 source (vertical polarization – a) and enhanced (b) image with their corresponding zoomed fragments (c – source, d – enhanced) a b c d Fig. 8. Spatial resolution evaluation 171 Прикладне програмне забезпечення Here you can see the gaussian approx- imated edge spread function (ESF) of the Ji- lin-1 (a) source image. Spatial resolution en- hancement percentage is given in table 1. So, for optical images with threefold scale enhancement the spatial resolution en- hancement was 135.91%, while the twofold scale enlargement for the radar images was 30.93%. It is worth to note, that processing time will grow linearly with source data size, so adequate technique to process large datasets can be handful. Table 1 Source images spatial resolution Figure number Spatial resolution, lines per mm Enhanced, % 6 (b) 5.627 - 3 (a-f, mean) 4.425 135.91% 7 (b) 4.596 - 5 (a-b, mean) 3.009 30.93% Conclusion In this paper a general software frame- work for satellite spatial resolution enhance- ment was presented. Its testing was carried out using dedicated implemented software for image spatial resolution enhancement. The result has shown 30.93% enhancement of the testing radar image using twofold scale image enhancement, while optical gained 135.91% spatial resolution enhancement. The future works will be aimed to elim- inate existing drawbacks. As it is, the optimal image subset selection module is realized in a form of optimizing the source image subset geometrical informativity cover and might have to be considered to be developed in a form signal-to-noise (SNR) ratio maximization. The image shift evaluation module evaluates the shift between image pair and presents it as a single value. But, due to the geometric distor- tions between image pairs, it may be beneficial to compute shift for every pixel or for some pixel-window for additional precision. How- ever, it may lead to significant computation burden and processing time increasement. The enhancement procedure has a very high memo- ry usage, thus, it may be adequate to reorganize mathematical model in a way that will allow small pixel-window enhancement, instead of keeping whole image in memory. While the test dataset representability is some of a concern, nonetheless the result can be useful for many tasks that can benefit from high resolution data having in disposal data with a lack in spatial resolution. References 1. Curry, E., Metzger, A., Zillner, S., Pazzaglia, J.-C. and García RoblesA. (2021). The ele- ments of big data value : foundations of the research and innovation ecosystem. Cham: Springer. 2. Goodfellow, I., Bengio, Y. and Courville, A. (2016). Deep Learning. Cambridge, Massa- chusetts: The Mit Press. 3. Lock, M., Saintilan, N., Iris van Duren and Skidmore, A.K. (2023). Monitoring Coastal Water Body Health with Sentinel-2 MSI Im- agery. Remote Sensing, 15(7), pp.1734–1734. doi:https://doi.org/10.3390/rs15071734. 4. Nguyen, M., Baez-Villanueva, O., Bui, D., Nguyen, P. and Ribbe, L. (2020). Harmoniza- tion of Landsat and Sentinel 2 for Crop Moni- toring in Drought Prone Areas: Case Studies of Ninh Thuan (Vietnam) and Bekaa (Lebanon). Remote Sensing, 12(2), p.281. doi:https://doi. org/10.3390/rs12020281. 5. Szabó, A., Odunayo David Adeniyi, János Tamás and Nagy, A. (2021). Assessment of a Yield Prediction Method Based on Time Se- ries Landsat 8 Data. Acta horticulturae et re- giotecturae, 24(s1), pp.12–15. doi:https://doi. org/10.2478/ahr-2021-0003. 6. Hu, X., Ban, Y. and Nascetti, A. (2021). Senti- nel-2 MSI data for active fire detection in major fire-prone biomes: A multi-criteria approach. International Journal of Applied Earth Ob- servation and Geoinformation, 101, p.102347. doi:https://doi.org/10.1016/j.jag.2021.102347. 7. Mykola Lubskyi, Tetiana Orlenko, Iryna Pie- stova, Artem Andreiev and Lysenko, A. (2023). Evaluation of indicators for desertification risk assessment of Oleshky sands desertification based on Landsat data time series. Ukraïnsʹkij žurnal distancìjnogo zonduvannâ Zemlì, 172 Прикладне програмне забезпечення УДК 004.896 http://doi.org/10.15407/pp2024.02-03.173 Т. М. Романенко РОЗРОБЛЕННЯ АЛГОРИТМІВ АВТОМАТИЧНОЇ РОЗМІТКИ ГІПОКСИЧНИХ ПРОБ ЗА ОДНОКАНАЛЬНОЮ ЕЛЕКТРОКАРДІОГРАМОЮ: МОДЕЛЬНИЙ ЕКСПЕРИМЕНТ Наслідки пандемії Covid-19 вимагають нових підходів до реабілітації людини, зокрема, нових моніто- рингових технологій, що мали б можливості оцінки функціонального стану та рівня тренованості сер- цево-судинної та дихальної систем. Гіпоксичні проби дають змогу оцінити толерантність людини до гіпоксії та, як наслідок, визначити рівень тренованості на даний час. Такими пробами є проба Штанге, у якій пропонують затримувати дихання на вдиху, і проба Генчі, у якій затримка дихання виконується на видиху. Інформативною є тривалість можливої затримки дихання. Існують методи прямого вимірю- вання респіраторного сигналу та його опосередкованого контролю. Вони потребують залучення спеці- альних пристроїв, особливих умов застосування, часто знерухомлення пацієнтів, тому використову- ються переважно в умовах стаціонару. Вплив дихання призводить до змін у електрокардіограмі люди- ни, що дає можливість отримати реконструкцію респіраторного сигналу. Реєстрація електрокардіогра- ми є наразі рутинною процедурою і може бути виконана як в умовах стаціонару, амбулаторії, так і вдома у пацієнта завдяки наявності великого спектру сучасних мобільних електрокардіографів, одно- і багатоканальних. Існують певні алгоритми для отримання кардіореспіраторної інформації, які викорис- товують різні елементи сигналу електрокардіограми. Але усі вони не застосовуються у реальному часі. Ця доповідь присвячена модельному експерименту щодо пошуку оптимального алгоритму автоматиза- ції гіпоксичних проб за рахунок обробки одноканальної електрокардіограми у реальному часі. Завдяки розробленій нами програмі керування диханням під час виконання гіпоксичної проби («Гармонія») отримуємо момент початку затримки дихання. Оскільки період затримки дихання у гіпоксичній пробі має на електрокардіограмі характерні ознаки, які суттєво відрізняються від інших фаз дихання, таких як вдих, видих, спокійне дихання, момент закінчення затримки знаходимо автоматично. Це дозволяє автоматизувати проведення гіпоксичних проб. Ключові слова: гіпоксичні проби, електрокардіограма, реконструкція респіраторного сигналу. T. Romanenko DEVELOPING ALGORITHMS FOR AUTOMATIC HYPOXING TEST FHASING FROM THE SINGLE-CHANNEL ELECTROCARDIOGRAMS: A MODEL EXSPERIMENT As an outcome of the COVID-19 pandemic, there is a need to seek new approaches to patients’ rehabilitation, in particular, the novel monitoring technologies enabling the assessment of the functionality and fitness of the cardiovascular and respiratory systems. Hypoxic tests allow for estimating a person’s tolerability to hypoxic conditions and, eventually, for making conclusions about their fitness. Among these tests are the Stange test for which the breath is held after inhaling, and the Genchi test involving holding the breath after exhaling. The important information is the duration of the breath hold. There are methods of direct respiratory signal meas- urement and indirect ones to control it. They require the use of specialized equipment and specific conditions, often including the need for patient immobilization, therefore, are usually performed in hospitals. Breathing af- fects the electrocardiogram, which can be used to reconstruct the respiratory signal. Electrocardiogram regis- tration is now a routine procedure performed in hospitals, outpatient clinics, and, due to various options for modern portable single- and multichannel electrocardiographs, even at home by the patients themselves. There are several types of algorithms for obtaining the cardiorespiratory information that rely on different elements of the electrocardiogram signal but they are not suitable for real-time application. This report describes the model experiment developing the optimal algorithm of hypoxic test automatization with the electrocardiogram processing in real-time conditions. We have developed the software called “Harmony” for breathing control during hypoxic test which suggests the starting moment for breath hold. Since the period of breath hold during hypoxic test has specific characteristics on the electrocardiogram that are substantially different from other breathing phases, such as inhaling, exhaling, and calm breathing, the moment of finishing the breath hold can be determined automatically. This allows us to automate hypoxic tests. Key words: hypoxic tests, electrocardiogram, reconstruct the respiratory signal. 10(1), pp.17–28. doi:https://doi.org/10.36023/ ujrs.2023.10.1.229. [in Ukrainian] 8. Brown, C.W., Connor, L.N., Lillibridge, J.L., Nalli, N.R. and Legeckis, R.V. (2007). An Introduction to Satellite Sensors, Observa- tions and Techniques. Remote sensing and digital image processing (Print), pp.21–50. doi:https://doi.org/10.1007/978-1-4020-3100- 7_2. 9. Fathi, Hadhoud, M.M. and El-Khamy, S.E. (2012). Image Super-Resolution and Applica- tions. CRC Press. 10. Assia Kourgli and Youcef Oukil (2013). Very High Resolution Satellite Images Filtering. doi:https://doi.org/10.1109/bwcca.2013.81. 11. Lu, T., Wang, J., Zhang, Y., Wang, Z. and Jiang, J. (2019). Satellite Image Super-Resolution via Multi-Scale Residual Deep Neural Network. Remote Sensing, 11(13), p.1588. doi:https:// doi.org/10.3390/rs11131588. 12. Zhou, J., Luo, X., Rong, W. and Xu, H. (2022). Cloud Removal for Optical Remote Sensing Imagery Using Distortion Coding Network Combined with Compound Loss Functions. Remote sensing, 14(14), pp.3452–3452. doi:https://doi.org/10.3390/rs14143452. 13. Oh, Y.D., Kamal Sarabandi and Ulaby, F.T. (1992). An empirical model and an inver- sion technique for radar scattering from bare soil surfaces. IEEE Transactions on Geosci- ence and Remote Sensing, 30(2), pp.370–381. doi:https://doi.org/10.1109/36.134086. 14. S. Susan Young, Driggers, R.G. and Eddie Lynn Jacobs (2008). Signal Processing and Performance Analysis for Imaging Systems. Artech House. 15. Stankevich, S., Popov, M., Shklyar, S., Sukhanov, K., Andreiev, A., Lysenko, A., Kun, X., Shixiang, C., Yupan, S., Xing, Z. and Boya, S. (2020). Subpixel-shifted sat- ellite images superresolution: software im- plementation. WSEAS TRANSACTIONS on COMPUTERS, 19, pp.31–37. doi:https://doi. org/10.37394/23205.2020.19.5. 16. Stankevich, S.А., Popov, M., Shklyar, S., Ly- senko, A., Artem Andreiev, Xing, K., Cao, S. and Tao, R. (2023). Satellite Imagery Super- resolution Based on Optimal Frame Accu- mulation. Springer proceedings in physics, pp.395–412. doi:https://doi.org/10.1007/978- 981-99-4098-1_35. Одержано: 09.04.2024 Внутрішня рецензія отримана: 19.04.2024 Зовнішня рецензія отримана: 24.04.2024 About authors: Sergey Stankevich, head of the department, doctor of science, https://orcid.org/0000-0002-0889-5764 Sergiy Shklyar, senior researcher, doctor of science, https://orcid.org/0000-0001-8726-7936 Artur Lysenko, junior researcher, doctor of philosophy, https://orcid.org/0000-0003-2923-8648 Place of work: State Institution “Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the NAS of Ukraine”, Email: casre@casre.kiev.ua