“G_Sim” software providing simulations of human physiological responses to +/- Gz accelerations
Specialized software “G_Sim”, providing simulations of human physiological responses to dynamic Gz ac celerations, is created and tested. “G_Sim” is based on a previously developed and published quantitative mathematical model (QMM) that describes human hemodynamics under given Gz profiles without o...
Gespeichert in:
| Datum: | 2025 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
PROBLEMS IN PROGRAMMING
2025
|
| Schlagworte: | |
| Online Zugang: | https://pp.isofts.kiev.ua/index.php/ojs1/article/view/761 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Problems in programming |
| Завантажити файл: | |
Institution
Problems in programming| id |
pp_isofts_kiev_ua-article-761 |
|---|---|
| record_format |
ojs |
| resource_txt_mv |
ppisoftskievua/70/98497533e36aef593c1c4483f3ee0470.pdf |
| spelling |
pp_isofts_kiev_ua-article-7612025-09-02T15:46:41Z “G_Sim” software providing simulations of human physiological responses to +/- Gz accelerations Програмне забезпечення «G_Sim» для симуляції фізіологічних реакцій людини на прискорення Gz Grygoryan, R.D. Degoda, A.G. Progonnyi, M.V. fighter pilot; training; risk; catastrophe; information technology UDC 517.958:57 +519.711.3 + 612.51.001 пілот-винищувач; навчання; ризик; катастрофа; інформаційні технології Specialized software “G_Sim”, providing simulations of human physiological responses to dynamic Gz ac celerations, is created and tested. “G_Sim” is based on a previously developed and published quantitative mathematical model (QMM) that describes human hemodynamics under given Gz profiles without or with special protective tools and algorithms. “G_Sim” is a modern information technology realized as an auto nomic executive module in the Delphi Pascal environment. By default, the biological parameters of QMM are tuned for the mean man, who is 175 cm in height and has a 70 kg mass. “G_Sim” has an intuitive user in terface (UI) that provides the user with procedures necessary to actualize characteristics of QMM, realize a computer experiment (simulation), visualize its results in graph forms for analysis, and save the chosen data for further analysis. The actualization concerns biological data associated with human sex, anthropometrics, age, and non-biological characteristics including acceleration profiles, characteristics of the anti-G suit, breathing techniques, and muscle stressing mode. UI's special windows provide additional tunings of the basic QMM. “G_Sim” upgrades the traditional training techniques on centrifuges and test flights. The novel beneficial effect of “G_Sim” provides the future fighter pilot with realistic-like visual knowledge concerning the dynamics of physiological and protective events. Therefore, simulations will clearly show ways to opti mize the combination of artificial protections to prevent negative effects (loss of vision or consciousness). Such knowledge will shorten training and minimize the anthropogenic risk of serious injuries or catastro phes during the training. Test simulations presented in the paper mainly illustrate the potential of “G_Sim” as an assistant informational technology. Prombles in programming 2025; 1: 13-23 Створено та протестовано спеціалізоване програмне забезпечення «G_Sim», що забезпечує моделюван ня фізіологічних реакцій людини на динамічні прискорення Gz. «G_Sim» базується на раніше розроб лені та опубліковані кількісні математичні моделі (КMM), яки описують гемодинаміку людини за зада ними профілями Gz без або з використанням спеціальних захисних інструментів і алгоритмів. «G_Sim» —сучасна інформаційна технологія, реалізована у вигляді автономного виконавчого модуля в середо вищі Delphi Pascal. За замовчуванням біологічні параметри QMM налаштовані на середнього чоловіка, який має зріст 175 см і вагу 70 кг. «G_Sim» має інтуїтивно зрозумілий інтерфейс користувача (ІК), який надає користувачеві процедури, необхідні для актуалізації характеристик КMM, реалізації комп’ютерного експерименту (симуляції), візуалізації його результатів у вигляді графіків для аналізу та збереження вибраних даних для подальшого аналізу. Актуалізація стосується біологічних даних, пов’язаних зі статтю людини, антропометричними показниками, віком і небіологічними характеристи ками, включаючи профілі прискорення, характеристики анти-G костюма, техніки дихання та режим навантаження на м’язи. Спеціальні вікна ІК забезпечують додаткові налаштування основного КMM. «G_Sim» вдосконалює традиційні методи навчання на центрифугах і тестових польотах. Новий ко рисний ефект «G_Sim» є в тому, що симуляції надають майбутньому пілоту винищувача реалістичні візуальні уяви щодо динаміки фізіологічних і захисних подій. Таким чином, симуляції чітко покажуть шляхи оптимізації комбінації штучних засобів захисту для запобігання негативним ефектам (втрата зо ру чи свідомості). Такі знання скоротять навчання та мінімізують антропогенний ризик серйозних травм або катастроф під час навчання. Тестове моделювання, представлене в статті, в основному ілюструє потенціал «G_Sim» в якості допоміжної, інформаційної технології.Prombles in programming 2025; 1: 13-23 PROBLEMS IN PROGRAMMING ПРОБЛЕМЫ ПРОГРАММИРОВАНИЯ ПРОБЛЕМИ ПРОГРАМУВАННЯ 2025-08-27 Article Article application/pdf https://pp.isofts.kiev.ua/index.php/ojs1/article/view/761 10.15407/pp2025.01.013 PROBLEMS IN PROGRAMMING; No 1 (2025); 13-23 ПРОБЛЕМЫ ПРОГРАММИРОВАНИЯ; No 1 (2025); 13-23 ПРОБЛЕМИ ПРОГРАМУВАННЯ; No 1 (2025); 13-23 1727-4907 10.15407/pp2025.01 en https://pp.isofts.kiev.ua/index.php/ojs1/article/view/761/813 Copyright (c) 2025 PROBLEMS IN PROGRAMMING |
| institution |
Problems in programming |
| baseUrl_str |
https://pp.isofts.kiev.ua/index.php/ojs1/oai |
| datestamp_date |
2025-09-02T15:46:41Z |
| collection |
OJS |
| language |
English |
| topic |
fighter pilot training risk catastrophe information technology UDC 517.958:57 +519.711.3 + 612.51.001 |
| spellingShingle |
fighter pilot training risk catastrophe information technology UDC 517.958:57 +519.711.3 + 612.51.001 Grygoryan, R.D. Degoda, A.G. Progonnyi, M.V. “G_Sim” software providing simulations of human physiological responses to +/- Gz accelerations |
| topic_facet |
fighter pilot training risk catastrophe information technology UDC 517.958:57 +519.711.3 + 612.51.001 пілот-винищувач навчання ризик катастрофа інформаційні технології |
| format |
Article |
| author |
Grygoryan, R.D. Degoda, A.G. Progonnyi, M.V. |
| author_facet |
Grygoryan, R.D. Degoda, A.G. Progonnyi, M.V. |
| author_sort |
Grygoryan, R.D. |
| title |
“G_Sim” software providing simulations of human physiological responses to +/- Gz accelerations |
| title_short |
“G_Sim” software providing simulations of human physiological responses to +/- Gz accelerations |
| title_full |
“G_Sim” software providing simulations of human physiological responses to +/- Gz accelerations |
| title_fullStr |
“G_Sim” software providing simulations of human physiological responses to +/- Gz accelerations |
| title_full_unstemmed |
“G_Sim” software providing simulations of human physiological responses to +/- Gz accelerations |
| title_sort |
“g_sim” software providing simulations of human physiological responses to +/- gz accelerations |
| title_alt |
Програмне забезпечення «G_Sim» для симуляції фізіологічних реакцій людини на прискорення Gz |
| description |
Specialized software “G_Sim”, providing simulations of human physiological responses to dynamic Gz ac celerations, is created and tested. “G_Sim” is based on a previously developed and published quantitative mathematical model (QMM) that describes human hemodynamics under given Gz profiles without or with special protective tools and algorithms. “G_Sim” is a modern information technology realized as an auto nomic executive module in the Delphi Pascal environment. By default, the biological parameters of QMM are tuned for the mean man, who is 175 cm in height and has a 70 kg mass. “G_Sim” has an intuitive user in terface (UI) that provides the user with procedures necessary to actualize characteristics of QMM, realize a computer experiment (simulation), visualize its results in graph forms for analysis, and save the chosen data for further analysis. The actualization concerns biological data associated with human sex, anthropometrics, age, and non-biological characteristics including acceleration profiles, characteristics of the anti-G suit, breathing techniques, and muscle stressing mode. UI's special windows provide additional tunings of the basic QMM. “G_Sim” upgrades the traditional training techniques on centrifuges and test flights. The novel beneficial effect of “G_Sim” provides the future fighter pilot with realistic-like visual knowledge concerning the dynamics of physiological and protective events. Therefore, simulations will clearly show ways to opti mize the combination of artificial protections to prevent negative effects (loss of vision or consciousness). Such knowledge will shorten training and minimize the anthropogenic risk of serious injuries or catastro phes during the training. Test simulations presented in the paper mainly illustrate the potential of “G_Sim” as an assistant informational technology. Prombles in programming 2025; 1: 13-23 |
| publisher |
PROBLEMS IN PROGRAMMING |
| publishDate |
2025 |
| url |
https://pp.isofts.kiev.ua/index.php/ojs1/article/view/761 |
| work_keys_str_mv |
AT grygoryanrd gsimsoftwareprovidingsimulationsofhumanphysiologicalresponsestogzaccelerations AT degodaag gsimsoftwareprovidingsimulationsofhumanphysiologicalresponsestogzaccelerations AT progonnyimv gsimsoftwareprovidingsimulationsofhumanphysiologicalresponsestogzaccelerations AT grygoryanrd programnezabezpečennâgsimdlâsimulâcíífízíologíčnihreakcíjlûdininapriskorennâgz AT degodaag programnezabezpečennâgsimdlâsimulâcíífízíologíčnihreakcíjlûdininapriskorennâgz AT progonnyimv programnezabezpečennâgsimdlâsimulâcíífízíologíčnihreakcíjlûdininapriskorennâgz |
| first_indexed |
2025-07-17T10:09:00Z |
| last_indexed |
2025-09-17T09:20:46Z |
| _version_ |
1850411985075699712 |
| fulltext |
Комп’ютерне моделювання
13
© R.D. Grygoryan, A.G. Degoda, M.V. Progonnyi, 2025
ISSN 1727-4907. Проблеми програмування. 2025. №1
УДК 517.958:57 +519.711.3 + 612.51.001 https://doi.org/10.15407/pp2025.01.013
R.D. Grygoryan, A.G. Degoda, M.V. Progonnyi
“G_Sim” SOFTWARE PROVIDING SIMULATIONS OF HUMAN
PHYSIOLOGICAL RESPONSES TO Gz ACCELERATIONS
Specialized software “G_Sim”, providing simulations of human physiological responses to dynamic Gz ac-
celerations, is created and tested. “G_Sim” is based on a previously developed and published quantitative
mathematical model (QMM) that describes human hemodynamics under given Gz profiles without or with
special protective tools and algorithms. “G_Sim” is a modern information technology realized as an auto-
nomic executive module in the Delphi Pascal environment. By default, the biological parameters of QMM
are tuned for the mean man, who is 175 cm in height and has a 70 kg mass. “G_Sim” has an intuitive user in-
terface (UI) that provides the user with procedures necessary to actualize characteristics of QMM, realize a
computer experiment (simulation), visualize its results in graph forms for analysis, and save the chosen data
for further analysis. The actualization concerns biological data associated with human sex, anthropometrics,
age, and non-biological characteristics including acceleration profiles, characteristics of the anti-G suit,
breathing techniques, and muscle stressing mode. UI's special windows provide additional tunings of the
basic QMM. “G_Sim” upgrades the traditional training techniques on centrifuges and test flights. The novel
beneficial effect of “G_Sim” provides the future fighter pilot with realistic-like visual knowledge concerning
the dynamics of physiological and protective events. Therefore, simulations will clearly show ways to opti-
mize the combination of artificial protections to prevent negative effects (loss of vision or consciousness).
Such knowledge will shorten training and minimize the anthropogenic risk of serious injuries or catastro-
phes during the training. Test simulations presented in the paper mainly illustrate the potential of “G_Sim”
as an assistant informational technology.
Keywords: fighter pilot, training, risk, catastrophe, information technology.
Р.Д. Григорян, А.Г. Дегода, М.В. Прогонний
ПРОГРАМНЕ ЗАБЕЗПЕЧЕННЯ «G_Sim» ДЛЯ СИМУЛЯЦІЇ
ФІЗІОЛОГІЧНИХ РЕАКЦІЙ ЛЮДИНИ НА Gz ПРИСКОРЕННЯ
Створено та протестовано спеціалізоване програмне забезпечення «G_Sim», що забезпечує моделюван-
ня фізіологічних реакцій людини на динамічні прискорення Gz. «G_Sim» базується на раніше розроб-
лені та опубліковані кількісні математичні моделі (КMM), яки описують гемодинаміку людини за зада-
ними профілями Gz без або з використанням спеціальних захисних інструментів і алгоритмів. «G_Sim»
— сучасна інформаційна технологія, реалізована у вигляді автономного виконавчого модуля в середо-
вищі Delphi Pascal. За замовчуванням біологічні параметри QMM налаштовані на середнього чоловіка,
який має зріст 175 см і вагу 70 кг. «G_Sim» має інтуїтивно зрозумілий інтерфейс користувача (ІК), який
надає користувачеві процедури, необхідні для актуалізації характеристик КMM, реалізації
комп’ютерного експерименту (симуляції), візуалізації його результатів у вигляді графіків для аналізу та
збереження вибраних даних для подальшого аналізу. Актуалізація стосується біологічних даних,
пов’язаних зі статтю людини, антропометричними показниками, віком і небіологічними характеристи-
ками, включаючи профілі прискорення, характеристики анти-G костюма, техніки дихання та режим
навантаження на м’язи. Спеціальні вікна ІК забезпечують додаткові налаштування основного КMM.
«G_Sim» вдосконалює традиційні методи навчання на центрифугах і тестових польотах. Новий ко-
рисний ефект «G_Sim» є в тому, що симуляції надають майбутньому пілоту винищувача реалістичні
візуальні уяви щодо динаміки фізіологічних і захисних подій. Таким чином, симуляції чітко покажуть
шляхи оптимізації комбінації штучних засобів захисту для запобігання негативним ефектам (втрата зо-
ру чи свідомості). Такі знання скоротять навчання та мінімізують антропогенний ризик серйозних
травм або катастроф під час навчання. Тестове моделювання, представлене в статті, в основному
ілюструє потенціал «G_Sim» в якості допоміжної, інформаційної технології.
Ключові слова: пілот-винищувач, навчання, ризик, катастрофа, інформаційні технології.
Комп’ютерне моделювання
14
Introduction
Modern high maneuverable fighter air-
craft is a source of rapid altering and often
highly sustained extreme accelerations [1-3].
Both physiological [4-9] and biotechnical
[10-12] problems that arose in parallel with
an increase in military aircraft's maneuvera-
bility have been properly investigated [4-18].
Human physiology evolutionarily
adapted to the one g Earth environment, can-
not provide adequate functioning of the brain
and eyes of a sitting person. These organs,
very sensitive to oxygen and glucose supply,
suffer in parallel with the decreasing of their
input blood pressure. Under accelerations,
the hydrostatic pressure increases propor-
tionally to the acceleration value. This addi-
tional factor creates opposite effects in ves-
sels located upper or lower the heart: in up-
per arteries blood inflows become difficult
while the flow toward body lower regions
becomes easier. In veins, alterations are op-
posite directions. The altered pressure gradi-
ents redistribute blood volumes worsening
the circulation at the cardiovascular scale.
Accelerations also alter the ventilation-
perfusion ratio in lungs [13,14].
Most critical are extreme value positive
(+Gz) accelerations acting in the direction of
head-legs, or negative (-Gz) accelerations
acting in the opposite direction [4-6]. In ter-
minal zones (brain, eyes), the lowered circu-
lation causes oxygen lack and worsens the
pilot’s vision and consciousness [9,12]. Un-
der -Gz, the elevated local blood pressure in
the eyes and brain causes rupture of micro-
scopic vessels and hemorrhages. Both the
value of Gz and the gradient of acceleration
change play an essential role in these events.
Under relatively slow (0.1-0.4 g/sec) lin-
early increasing +Gz accelerations, a mean
healthy person not using artificial protections
is operable for approximately +4Gz accelera-
tions [11]. Further elevation of the G-load
causes the G-lock phenomenon usually dis-
appearing after a break [2,6,8]. Modern
fighter aircrafts can provide acceleration
gradients exceeding 2 g/sec. This requires
special protection algorithms and devices.
Currently, typical protection algorithms in-
clude the use of special pneumatic or water-
augmented anti-G suits, muscle stress, as
well as breathing with a positive pressure air
[1,11,17]. The adaptive protection algorithms
combining multiple methods depending on
the dynamics of accelerations are the most
effective. So, technologies helping to opti-
mize the use of protective methods and tools
are encouraged.
Traditionally, empiric research on cen-
trifuges is the main way for inventing more
effective protections [1,5,6-8]. Mathematical
models realized as special software [18-20]
showed additional ways for maximizing the
individual resistance of a pilot to the nega-
tive effects of accelerations. The experience
in the last area was taken into account during
the development of an advanced version of
basic models [21-23] necessary to create our
current version of “G_Sim” software which
is autonomic executive software oriented to
PC.
The goal of this article is to inform po-
tential users of our simulator about its pur-
pose and possibilities.
The user interface of “G_Sim”
Every interaction with “G_Sim” is pro-
vided by the user interface (UI). Its general
view presented in Fig.1. indicates that
“G_Sim” is oriented to problems associated
with dynamic accelerations that appear either
when employing a professional centrifuge or
during the piloting of military fighter air-
craft.
The mathematical model of cardiovascu-
lar physiology of a healthy and physically
well-trained human sitting in a standard avia-
tion chair is the basis of our simulator
[22,23]. Fig.1. also shows that standard pro-
tection tools are also modeling subjects.
In the upper left sector of Fig.1., one can
see eight special icons that provide the user
with all the procedures necessary to prepare
and execute a single computer experiment
(simulation).
The icon containing a picture of a sited
human and the abbreviation “SETS” is the
main one clicking which the user opens a
window shown in Fig.2.
Комп’ютерне моделювання
15
Fig. 1. General view of the user interface of “G_Sim”.
Fig. 2. The main window form to prepare a single simulation. This image shows the expanded con-
tent of the operations that can be accessed by clicking on the menu bar “Protections”.
Комп’ютерне моделювання
16
Fig. 3. The window form provides settings of parameters that determine the acceleration profile.
Using the bottom-located form the user can construct an arbitrary acceleration profile imitating
complex combat maneuvers.
By clicking on the menu bar “Models” or “Interface Options”, the user can actualize the physiologi-
cal model.
A B
Fig. 4. Special window forms provide settings of parameters that determine actual parameters of
QMM: A) basic or personal model including the health level; B) activities of physiological mecha-
nisms controlling the circulation.
Комп’ютерне моделювання
17
The icon “GO” located in the central ar-
ea of Fig. 1. starts the program’s calculation
according to the actualized set of parameters.
According to the algorithm, the calculation is
over if special events (e.g., G-LOC) happen
or the time limit is used. Then, “G-Sim”
builds graphs presenting the dynamics of
model characteristics. They include both
physiological and technical data. The physio-
logical data concern blood pressures, flows,
and volumes in certain body parts. The tech-
nical data concerns specific parameters of
protection. Theoretically, the data set could
provide advanced experts with additional ca-
pabilities for investigating new algorithms for
protection optimization.
In this article, we illustrated only a part
of the information. The main window to il-
lustrate the most important information con-
tains three sections. Each combines a special
sub-set of variables (see Figures 5-9).
Fig.5. represents the basic data concern-
ing a relaxed healthy human sitting in an arm-
chair but without using any protection. The
bottom section presents the acceleration dy-
namics. The middle section presents the dy-
namics of the pressure PExt provided by a
compressor and six specific pressures (in this
simulation, pressures in three sections of the
pneumatic anti-G suit are not presented but
are calculated and can be illustrated using
specific activators). PExtThr, PMuscle, and
PBrLiq represent pressures in the thorax,
body muscles, and liquor respectively. Hemo-
dynamic variables are collected in the upper
section. In this case, end-systolic (APs) and
end-diastolic (APd) are not shown. MAP is
the mean pressure in the aortic arch, CO is the
cardiac output, SV is the stroke volume, HR
is the heart rate, MCAP, PES, and CVP repre-
sent mean pressures in the carotid sinus, eye
arteries, and central vein respectively. Verti-
cal dotted lines indicate time moments for
acceleration start and maximal levels. In this
simulation, neither G-LOC nor vision loss
happened: the simulation scenario was real-
ized totally.
Fig. 5. The basic simulation illustrates the physiological responses of a relaxed healthy human to a
slow altering (0,1 g/sec) linear profile acceleration. The person sitting in an armchair does not use
protection. Before G-onset (marked with a first vertical dotted line) parameters indicate a practically
steady-state mode. At the 46th second of a load (marked with a second vertical dotted line), at a
value of G=4,35g, the program automatically activated break because of the G-LOC event.
Комп’ютерне моделювання
18
Fig. 6. A simulation scenario with a trapezoidal G-profile using a standard pneumatic anti-G suit,
natural breathing, and moderate muscle stress.
Комп’ютерне моделювання
19
Fig. 7. A simulation of a “Push-Pull” scenario using standard pneumatic anti-G suit, natural breath-
ing, and AGSM-technique with maximal muscle stress of 100 mm Hg accompanied with inspiration
time of 2 sec and duration of AG-stress of 20 sec.
As Fig. 7. illustrates, our “mean man” resisted up to 9g accelerations for a 20 sec plateau. Pay
attention that end-systolic (APs) and end-diastolic (APd) pressures are also shown.
Комп’ютерне моделювання
20
Fig. 8. A simulation of a trapezoidal acceleration scenario with a long-lasting plateau using a hy-
draulic anti-G suit, natural breathing, and special technique of AGSM (sharp inspirations of 2 sec,
maximal muscle stress of 100 mm Hg for 3 sec, and sharp expirations of 2 sec).
Комп’ютерне моделювання
21
Discussion
Not all the information concerning the
capabilities of our “G-Sim”, in particular,
describing functionalities of the icons of UI
was presented in this article. In addition to the
space limit, another reason is that the version
of “G-Sim” used in this publication is not yet
the final software. We continue to work on
upgrading software to make it maximally use-
ful and convenient in practice.
Although the mean man model used in
this “G-Sim” already provides the student-
pilot with important visualized dynamics of
physiological and technical data. Every pilot
has specific anatomical, physiological, and
psychological individualities that potentially
can modify the pilot’s resistance to negative
effects of accelerations. Therefore, we are
working on algorithms that, being not very
complex, could provide the individualizations
of basic mathematical models. Principally, we
hope to achieve acceptable results using rela-
tively simple algorithms that correct initial
parameters of BMM mainly using passport
and anthropological data (namely, such data is
reflected in the window form in Figure 4A).
Another aspect of upgrading our “G-
Sim” we see in imitating characteristic phe-
nomena, caused by a deterioration of the eyes
and brain oxygen supply. We already have
created a model and program modules visual-
ly imitating: 1) the narrowing of the field of
peripheral vision including the loss of vision;
2) loss of consciousness as an extreme mani-
festation (G-lock).
Certainly, the main goal of our “G-Sim”
is to facilitate the pilot’s acquiring the needed
skills. In this context, an essential role does
play the factor of dynamics. As physical
events develop to speed, in-time counteracts
are extremely important to provide effective
resistance. “G-Sim” is the single technology
using which the student-pilot can imitate eve-
ry thinkable scenario and find the most effec-
tive combination of algorithms for maximiz-
ing the protective effect.
An additional use of “G-Sim” is that it
can be used to provide “post-factum” simula-
tions for analysis and understanding non-
trivial causes of failures.
Fig. 9. The simulation scenario described in Fig.5. This case the dynamics of blood volumes in cer-
tain body sections are illustrated.
Conclusion
Combat maneuvers of modern fighter
aircraft originate extreme accelerations nega-
tively influencing on pilot’s physiology and
operability. Until recently, empirical investi-
gations were the only way to develop and test
Комп’ютерне моделювання
22
protective methods and tools providing fighter
pilots functionality under combat maneuvers.
The main tools used for acquiring student
pilot initial skills necessary to resist the nega-
tive effects of dynamic extreme accelerations
were centrifuges. The skilling process of stu-
dent pilots of modern fighter aircraft is not
duly formalized yet. Our special computer
simulator “G-Sim” provides the user with a
user-friendly intuitive interface for construc-
tion and execution of a computer experiment
(a simulation) that visualizes additional dy-
namic variables concerning characteristics of
both human physiology and protections under
arbitrarily formed acceleration profiles. By
comparing human physiological responses
under different simulated scenarios (without
use of protections, with use of their different
combinations), student-pilots and their in-
structors can optimize the individually opti-
mal tactics for maximizing the resistance and
performance capability of the future fighter
pilot.
References
1. Burton, R.R.,Whinnery, J.E. Biodynamics:
Sustained acceleration. In Fundamentals of
Aerospace Medicine, 3rd ed.; DeHart, R.L.,
Davis, J.R., Eds.; Lippincott Williams &
Wilkins: Philadelphia, PA, USA, 2002; pp.
122–153.
2. Slungaard E., McLeod J., Green, N.D.C.,
Kiran A., Newham D.J., Harridge S.D.R. In-
cidence of g-induced loss of consciousness
and almost loss of consciousness in the Royal
Air Force. Aerosp. Med. Hum. Per-
form. 2017, 88, 550–555.
3. Newman D.G. The cardiovascular system at
high Gz. In High G Flight: Physiological Ef-
fects and Countermeasures, 1st ed.; Newman,
D.G., Ed.; Ashgate: Farnham, UK, 2015; pp.
57–72.
4. Park M., Yoo S., Seol H., Kim C., Hong Y.
Unpredictability of fighter pilots’ G duration
by anthropometric and physiological charac-
teristics. Aerosp. Med. Hum. Per-
form. 2015, 86, 307–401.
5. Yun, C.; Oh, S.; Shin, Y.H. AGSM proficien-
cy and depression are associated with success
of high-G training in trainee pilots. Aerosp.
Med. Hum. Perform. 2019, 90, 613–617.
6. Polock R.D., Hodkinson, P.D., Smith T.G.
Oh G: The x,y and z of human physiological
responses to acceleration. Experimental Phys-
iology, 2021,106,2367–2384.
https://doi.org/10.1113/EP089712
7. Albery W. B. Acceleration in other axes af-
fects +Gz tolerance: Dynamic centrifuge sim-
ulation of agile flight. Aviation, Space, and
Environmental Medicine, 2004,75(1), 1–6.
8. Burton R., Whinnery J. Operational G-
induced loss of consciousness: Something
old; something new. Aviation, Space, and
Environmental Medicine, 1985,56(8), 812–
817.
9. Cao X.-S., Wang Y.-C., Xu L., Yang C.-B.,
Wang B., Geng J., Gao Y., Wu Y. H., Wang
X. Y., Zhang S., Sun X.-Q. Visual symptoms
and G-induced loss of consciousness in 594
Chinese Air Force aircrew— A questionnaire
survey. Military Medicine, 2012, 177(2),
163–168. https://doi. org/10.7205/milmed-d-
11-00003.
10. Chung K. Y. Cardiac arrhythmias in F-16
pilots during aerial combat maneuvers
(ACMS): A descriptive study focused on G-
level acceleration. Aviation, Space, and Envi-
ronmental Medicine, 2001,72(6), 534– 538.
11. Eiken O., Bergsten, E., Grönkvist M. G-
Protection mechanisms afforded by the anti-G
suit abdominal bladder with and without
pressure breathing. Aviation, Space, and En-
vironmental Medicine, 2011. 82(10), 972–
977.
https://doi.org/10.3357/ASEM.3058.2011
12. Eiken O., Keramidas M. E., Taylor N. A. S.,
Grönkvist M., Gronkvist M. Intraocular pres-
sure and cerebral oxygenation during pro-
longed headward acceleration. European
Journal of Applied Physiology, 2017,117(1),
61–72. https://doi.org/10.1007/s00421-016-
3499-3
13. Grönkvist M., Bergsten E., Eiken O. Lung
mechanics and transpulmonary pressures dur-
ing unassisted pressure breathing at high Gz
loads. Aviation, Space, and Environmental
Medicine, 2008,79(11), 1041–1046.
https://doi.org/10.3357/ASEM.2371.2008.
14. Henderson A. C., Sá R. C., Theilmann R. J.,
Buxton R. B., Prisk G. K., Hopkins S. R. The
gravitational distribution of ventilation-
perfusion ratio is more uniform in prone than
supine posture in the normal human lung.
Journal of Applied Physiology, 2013, 115(3),
313–324. https:
//doi.org/10.1152/JAPPLPHYSIOL.01531.20
12
Комп’ютерне моделювання
23
15. MacDougall J. D., McKelvie R. S., Moroz D.
E., Buick, F. The effects of variations in the
anti-G straining maneuver on blood pressure
at +Gz acceleration. Aviation, Space, and En-
vironmental Medicine, 1993,64(2), 126–131.
16. Sundblad P., Kölegård R., Migeotte P. F.,
Delière Q., Eiken O. The arterial baroreflex
and inherent G tolerance. EuropeanJournal of
Applied Physiology, 2016,116(6), 1149–
1157.
https://doi.org/10.1007/s00421-016-3375-1
17. Whiny J.E., Forster E. The +Gz-induced loss
of consciousness curve. Extreme Physiology
and Medicine, 2013,2(1),19.
https://doi.org/10.1186/2046-7648-2-19
18. Grygoryan R.D., Kochetenko E.M., Informa-
tional technology for modeling of fighters
medical testing procedures by centrifuge ac-
celerations. Selection &Training Advances in
Aviation: AGARD Conference Proceedings
588; Prague, 1996. May 25-31, PP3,1-12.
19. Grygoryan R.D., High sustained G-tolerance
model development.STCU#P-078 EOARD#
01-8001 Agreement: Final Report. 2002. 66p.
20. Grygoryan R.D. Problem-oriented computer
simulators for solving of theoretical and ap-
plied tasks of human physiology. Problems of
programming. 2017, №3, 102-111.
21. Grygoryan R.D. Modeling of mechanisms
providing the overall control of human circu-
lation. Advances in Human Physiology Re-
search, 2022,4, 5 – 21,
https://doi.org/10.30564/ahpr.v4i1.4763.
22. Grygoryan R.D. Problems associated with
creating special software for simulating of
human physiological responses to dynamic
Gz accelerations. Проблеми програму-
вання, 2024; 1: 30-37,
http://doi.org/10.15407/pp2024.01.30.
23. Grygoryan R.D., Degoda A.G. A mathemati-
cal model of human hemodynamics for
use in special software simulating pilots’
physiological responses to sustained Gz ac-
celerations. 2024; 90: 4-15,
DOI: 10.5281/zenodo.11357990.
Отримано: 25.02.2025
Внутрішня рецензія отримана: 06.03.2025
Зовнішня рецензія отримана: 09.03.2025
About authors:
Grygoryan Rafik,
Department chief, PhD,
D-r in biology
http://orcid.org/0000-0001-8762-733X.
Degoda Anna,
Senior scientist, PhD.
http://orcid.org/0000-0001-6364-5568.
Progonnyi Mykola,
Scientist
https://orcid.org/0000-0002-8320-3465
Place of work:
Institute of software systems of National
Academy of Sciences of Ukraine, 03187,
Кyїv, Acad. Glushkov avenue, 40,
Е-mail:
rgrygoryan@gmail.com,
anna@silverlinecrm.com,
progonny@gmail.com
|