“G_Sim” software providing simulations of human physiological responses to +/- Gz accelerations

Specialized software “G_Sim”, providing simulations of human physiological responses to dynamic Gz ac celerations, is created and tested. “G_Sim” is based on a previously developed and published quantitative mathematical model (QMM) that describes human hemodynamics under given Gz profiles without o...

Full description

Saved in:
Bibliographic Details
Date:2025
Main Authors: Grygoryan, R.D., Degoda, A.G., Progonnyi, M.V.
Format: Article
Language:English
Published: PROBLEMS IN PROGRAMMING 2025
Subjects:
Online Access:https://pp.isofts.kiev.ua/index.php/ojs1/article/view/761
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Problems in programming
Download file: Pdf

Institution

Problems in programming
id pp_isofts_kiev_ua-article-761
record_format ojs
resource_txt_mv ppisoftskievua/70/98497533e36aef593c1c4483f3ee0470.pdf
spelling pp_isofts_kiev_ua-article-7612025-09-02T15:46:41Z “G_Sim” software providing simulations of human physiological responses to +/- Gz accelerations Програмне забезпечення «G_Sim» для симуляції фізіологічних реакцій людини на прискорення Gz Grygoryan, R.D. Degoda, A.G. Progonnyi, M.V. fighter pilot; training; risk; catastrophe; information technology UDC 517.958:57 +519.711.3 + 612.51.001 пілот-винищувач; навчання; ризик; катастрофа; інформаційні технології Specialized software “G_Sim”, providing simulations of human physiological responses to dynamic Gz ac celerations, is created and tested. “G_Sim” is based on a previously developed and published quantitative mathematical model (QMM) that describes human hemodynamics under given Gz profiles without or with special protective tools and algorithms. “G_Sim” is a modern information technology realized as an auto nomic executive module in the Delphi Pascal environment. By default, the biological parameters of QMM are tuned for the mean man, who is 175 cm in height and has a 70 kg mass. “G_Sim” has an intuitive user in terface (UI) that provides the user with procedures necessary to actualize characteristics of QMM, realize a computer experiment (simulation), visualize its results in graph forms for analysis, and save the chosen data for further analysis. The actualization concerns biological data associated with human sex, anthropometrics, age, and non-biological characteristics including acceleration profiles, characteristics of the anti-G suit, breathing techniques, and muscle stressing mode. UI's special windows provide additional tunings of the basic QMM. “G_Sim” upgrades the traditional training techniques on centrifuges and test flights. The novel beneficial effect of “G_Sim” provides the future fighter pilot with realistic-like visual knowledge concerning the dynamics of physiological and protective events. Therefore, simulations will clearly show ways to opti mize the combination of artificial protections to prevent negative effects (loss of vision or consciousness). Such knowledge will shorten training and minimize the anthropogenic risk of serious injuries or catastro phes during the training. Test simulations presented in the paper mainly illustrate the potential of “G_Sim” as an assistant informational technology. Prombles in programming 2025; 1: 13-23 Створено та протестовано спеціалізоване програмне забезпечення «G_Sim», що забезпечує моделюван ня фізіологічних реакцій людини на динамічні прискорення Gz. «G_Sim» базується на раніше розроб лені та опубліковані кількісні математичні моделі (КMM), яки описують гемодинаміку людини за зада ними профілями Gz без або з використанням спеціальних захисних інструментів і алгоритмів. «G_Sim» —сучасна інформаційна технологія, реалізована у вигляді автономного виконавчого модуля в середо вищі Delphi Pascal. За замовчуванням біологічні параметри QMM налаштовані на середнього чоловіка, який має зріст 175 см і вагу 70 кг. «G_Sim» має інтуїтивно зрозумілий інтерфейс користувача (ІК), який надає користувачеві процедури, необхідні для актуалізації характеристик КMM, реалізації комп’ютерного експерименту (симуляції), візуалізації його результатів у вигляді графіків для аналізу та збереження вибраних даних для подальшого аналізу. Актуалізація стосується біологічних даних, пов’язаних зі статтю людини, антропометричними показниками, віком і небіологічними характеристи ками, включаючи профілі прискорення, характеристики анти-G костюма, техніки дихання та режим навантаження на м’язи. Спеціальні вікна ІК забезпечують додаткові налаштування основного КMM. «G_Sim» вдосконалює традиційні методи навчання на центрифугах і тестових польотах. Новий ко рисний ефект «G_Sim» є в тому, що симуляції надають майбутньому пілоту винищувача реалістичні візуальні уяви щодо динаміки фізіологічних і захисних подій. Таким чином, симуляції чітко покажуть шляхи оптимізації комбінації штучних засобів захисту для запобігання негативним ефектам (втрата зо ру чи свідомості). Такі знання скоротять навчання та мінімізують антропогенний ризик серйозних травм або катастроф під час навчання. Тестове моделювання, представлене в статті, в основному ілюструє потенціал «G_Sim» в якості допоміжної, інформаційної технології.Prombles in programming 2025; 1: 13-23 PROBLEMS IN PROGRAMMING ПРОБЛЕМЫ ПРОГРАММИРОВАНИЯ ПРОБЛЕМИ ПРОГРАМУВАННЯ 2025-08-27 Article Article application/pdf https://pp.isofts.kiev.ua/index.php/ojs1/article/view/761 10.15407/pp2025.01.013 PROBLEMS IN PROGRAMMING; No 1 (2025); 13-23 ПРОБЛЕМЫ ПРОГРАММИРОВАНИЯ; No 1 (2025); 13-23 ПРОБЛЕМИ ПРОГРАМУВАННЯ; No 1 (2025); 13-23 1727-4907 10.15407/pp2025.01 en https://pp.isofts.kiev.ua/index.php/ojs1/article/view/761/813 Copyright (c) 2025 PROBLEMS IN PROGRAMMING
institution Problems in programming
baseUrl_str https://pp.isofts.kiev.ua/index.php/ojs1/oai
datestamp_date 2025-09-02T15:46:41Z
collection OJS
language English
topic fighter pilot
training
risk
catastrophe
information technology
UDC 517.958:57 +519.711.3 + 612.51.001
spellingShingle fighter pilot
training
risk
catastrophe
information technology
UDC 517.958:57 +519.711.3 + 612.51.001
Grygoryan, R.D.
Degoda, A.G.
Progonnyi, M.V.
“G_Sim” software providing simulations of human physiological responses to +/- Gz accelerations
topic_facet fighter pilot
training
risk
catastrophe
information technology
UDC 517.958:57 +519.711.3 + 612.51.001
пілот-винищувач
навчання
ризик
катастрофа
інформаційні технології

format Article
author Grygoryan, R.D.
Degoda, A.G.
Progonnyi, M.V.
author_facet Grygoryan, R.D.
Degoda, A.G.
Progonnyi, M.V.
author_sort Grygoryan, R.D.
title “G_Sim” software providing simulations of human physiological responses to +/- Gz accelerations
title_short “G_Sim” software providing simulations of human physiological responses to +/- Gz accelerations
title_full “G_Sim” software providing simulations of human physiological responses to +/- Gz accelerations
title_fullStr “G_Sim” software providing simulations of human physiological responses to +/- Gz accelerations
title_full_unstemmed “G_Sim” software providing simulations of human physiological responses to +/- Gz accelerations
title_sort “g_sim” software providing simulations of human physiological responses to +/- gz accelerations
title_alt Програмне забезпечення «G_Sim» для симуляції фізіологічних реакцій людини на прискорення Gz
description Specialized software “G_Sim”, providing simulations of human physiological responses to dynamic Gz ac celerations, is created and tested. “G_Sim” is based on a previously developed and published quantitative mathematical model (QMM) that describes human hemodynamics under given Gz profiles without or with special protective tools and algorithms. “G_Sim” is a modern information technology realized as an auto nomic executive module in the Delphi Pascal environment. By default, the biological parameters of QMM are tuned for the mean man, who is 175 cm in height and has a 70 kg mass. “G_Sim” has an intuitive user in terface (UI) that provides the user with procedures necessary to actualize characteristics of QMM, realize a computer experiment (simulation), visualize its results in graph forms for analysis, and save the chosen data for further analysis. The actualization concerns biological data associated with human sex, anthropometrics, age, and non-biological characteristics including acceleration profiles, characteristics of the anti-G suit, breathing techniques, and muscle stressing mode. UI's special windows provide additional tunings of the basic QMM. “G_Sim” upgrades the traditional training techniques on centrifuges and test flights. The novel beneficial effect of “G_Sim” provides the future fighter pilot with realistic-like visual knowledge concerning the dynamics of physiological and protective events. Therefore, simulations will clearly show ways to opti mize the combination of artificial protections to prevent negative effects (loss of vision or consciousness). Such knowledge will shorten training and minimize the anthropogenic risk of serious injuries or catastro phes during the training. Test simulations presented in the paper mainly illustrate the potential of “G_Sim” as an assistant informational technology. Prombles in programming 2025; 1: 13-23
publisher PROBLEMS IN PROGRAMMING
publishDate 2025
url https://pp.isofts.kiev.ua/index.php/ojs1/article/view/761
work_keys_str_mv AT grygoryanrd gsimsoftwareprovidingsimulationsofhumanphysiologicalresponsestogzaccelerations
AT degodaag gsimsoftwareprovidingsimulationsofhumanphysiologicalresponsestogzaccelerations
AT progonnyimv gsimsoftwareprovidingsimulationsofhumanphysiologicalresponsestogzaccelerations
AT grygoryanrd programnezabezpečennâgsimdlâsimulâcíífízíologíčnihreakcíjlûdininapriskorennâgz
AT degodaag programnezabezpečennâgsimdlâsimulâcíífízíologíčnihreakcíjlûdininapriskorennâgz
AT progonnyimv programnezabezpečennâgsimdlâsimulâcíífízíologíčnihreakcíjlûdininapriskorennâgz
first_indexed 2025-07-17T10:09:00Z
last_indexed 2025-09-17T09:20:46Z
_version_ 1850411985075699712
fulltext Комп’ютерне моделювання 13 © R.D. Grygoryan, A.G. Degoda, M.V. Progonnyi, 2025 ISSN 1727-4907. Проблеми програмування. 2025. №1 УДК 517.958:57 +519.711.3 + 612.51.001 https://doi.org/10.15407/pp2025.01.013 R.D. Grygoryan, A.G. Degoda, M.V. Progonnyi “G_Sim” SOFTWARE PROVIDING SIMULATIONS OF HUMAN PHYSIOLOGICAL RESPONSES TO Gz ACCELERATIONS Specialized software “G_Sim”, providing simulations of human physiological responses to dynamic Gz ac- celerations, is created and tested. “G_Sim” is based on a previously developed and published quantitative mathematical model (QMM) that describes human hemodynamics under given Gz profiles without or with special protective tools and algorithms. “G_Sim” is a modern information technology realized as an auto- nomic executive module in the Delphi Pascal environment. By default, the biological parameters of QMM are tuned for the mean man, who is 175 cm in height and has a 70 kg mass. “G_Sim” has an intuitive user in- terface (UI) that provides the user with procedures necessary to actualize characteristics of QMM, realize a computer experiment (simulation), visualize its results in graph forms for analysis, and save the chosen data for further analysis. The actualization concerns biological data associated with human sex, anthropometrics, age, and non-biological characteristics including acceleration profiles, characteristics of the anti-G suit, breathing techniques, and muscle stressing mode. UI's special windows provide additional tunings of the basic QMM. “G_Sim” upgrades the traditional training techniques on centrifuges and test flights. The novel beneficial effect of “G_Sim” provides the future fighter pilot with realistic-like visual knowledge concerning the dynamics of physiological and protective events. Therefore, simulations will clearly show ways to opti- mize the combination of artificial protections to prevent negative effects (loss of vision or consciousness). Such knowledge will shorten training and minimize the anthropogenic risk of serious injuries or catastro- phes during the training. Test simulations presented in the paper mainly illustrate the potential of “G_Sim” as an assistant informational technology. Keywords: fighter pilot, training, risk, catastrophe, information technology. Р.Д. Григорян, А.Г. Дегода, М.В. Прогонний ПРОГРАМНЕ ЗАБЕЗПЕЧЕННЯ «G_Sim» ДЛЯ СИМУЛЯЦІЇ ФІЗІОЛОГІЧНИХ РЕАКЦІЙ ЛЮДИНИ НА Gz ПРИСКОРЕННЯ Створено та протестовано спеціалізоване програмне забезпечення «G_Sim», що забезпечує моделюван- ня фізіологічних реакцій людини на динамічні прискорення Gz. «G_Sim» базується на раніше розроб- лені та опубліковані кількісні математичні моделі (КMM), яки описують гемодинаміку людини за зада- ними профілями Gz без або з використанням спеціальних захисних інструментів і алгоритмів. «G_Sim» — сучасна інформаційна технологія, реалізована у вигляді автономного виконавчого модуля в середо- вищі Delphi Pascal. За замовчуванням біологічні параметри QMM налаштовані на середнього чоловіка, який має зріст 175 см і вагу 70 кг. «G_Sim» має інтуїтивно зрозумілий інтерфейс користувача (ІК), який надає користувачеві процедури, необхідні для актуалізації характеристик КMM, реалізації комп’ютерного експерименту (симуляції), візуалізації його результатів у вигляді графіків для аналізу та збереження вибраних даних для подальшого аналізу. Актуалізація стосується біологічних даних, пов’язаних зі статтю людини, антропометричними показниками, віком і небіологічними характеристи- ками, включаючи профілі прискорення, характеристики анти-G костюма, техніки дихання та режим навантаження на м’язи. Спеціальні вікна ІК забезпечують додаткові налаштування основного КMM. «G_Sim» вдосконалює традиційні методи навчання на центрифугах і тестових польотах. Новий ко- рисний ефект «G_Sim» є в тому, що симуляції надають майбутньому пілоту винищувача реалістичні візуальні уяви щодо динаміки фізіологічних і захисних подій. Таким чином, симуляції чітко покажуть шляхи оптимізації комбінації штучних засобів захисту для запобігання негативним ефектам (втрата зо- ру чи свідомості). Такі знання скоротять навчання та мінімізують антропогенний ризик серйозних травм або катастроф під час навчання. Тестове моделювання, представлене в статті, в основному ілюструє потенціал «G_Sim» в якості допоміжної, інформаційної технології. Ключові слова: пілот-винищувач, навчання, ризик, катастрофа, інформаційні технології. Комп’ютерне моделювання 14 Introduction Modern high maneuverable fighter air- craft is a source of rapid altering and often highly sustained extreme accelerations [1-3]. Both physiological [4-9] and biotechnical [10-12] problems that arose in parallel with an increase in military aircraft's maneuvera- bility have been properly investigated [4-18]. Human physiology evolutionarily adapted to the one g Earth environment, can- not provide adequate functioning of the brain and eyes of a sitting person. These organs, very sensitive to oxygen and glucose supply, suffer in parallel with the decreasing of their input blood pressure. Under accelerations, the hydrostatic pressure increases propor- tionally to the acceleration value. This addi- tional factor creates opposite effects in ves- sels located upper or lower the heart: in up- per arteries blood inflows become difficult while the flow toward body lower regions becomes easier. In veins, alterations are op- posite directions. The altered pressure gradi- ents redistribute blood volumes worsening the circulation at the cardiovascular scale. Accelerations also alter the ventilation- perfusion ratio in lungs [13,14]. Most critical are extreme value positive (+Gz) accelerations acting in the direction of head-legs, or negative (-Gz) accelerations acting in the opposite direction [4-6]. In ter- minal zones (brain, eyes), the lowered circu- lation causes oxygen lack and worsens the pilot’s vision and consciousness [9,12]. Un- der -Gz, the elevated local blood pressure in the eyes and brain causes rupture of micro- scopic vessels and hemorrhages. Both the value of Gz and the gradient of acceleration change play an essential role in these events. Under relatively slow (0.1-0.4 g/sec) lin- early increasing +Gz accelerations, a mean healthy person not using artificial protections is operable for approximately +4Gz accelera- tions [11]. Further elevation of the G-load causes the G-lock phenomenon usually dis- appearing after a break [2,6,8]. Modern fighter aircrafts can provide acceleration gradients exceeding 2 g/sec. This requires special protection algorithms and devices. Currently, typical protection algorithms in- clude the use of special pneumatic or water- augmented anti-G suits, muscle stress, as well as breathing with a positive pressure air [1,11,17]. The adaptive protection algorithms combining multiple methods depending on the dynamics of accelerations are the most effective. So, technologies helping to opti- mize the use of protective methods and tools are encouraged. Traditionally, empiric research on cen- trifuges is the main way for inventing more effective protections [1,5,6-8]. Mathematical models realized as special software [18-20] showed additional ways for maximizing the individual resistance of a pilot to the nega- tive effects of accelerations. The experience in the last area was taken into account during the development of an advanced version of basic models [21-23] necessary to create our current version of “G_Sim” software which is autonomic executive software oriented to PC. The goal of this article is to inform po- tential users of our simulator about its pur- pose and possibilities. The user interface of “G_Sim” Every interaction with “G_Sim” is pro- vided by the user interface (UI). Its general view presented in Fig.1. indicates that “G_Sim” is oriented to problems associated with dynamic accelerations that appear either when employing a professional centrifuge or during the piloting of military fighter air- craft. The mathematical model of cardiovascu- lar physiology of a healthy and physically well-trained human sitting in a standard avia- tion chair is the basis of our simulator [22,23]. Fig.1. also shows that standard pro- tection tools are also modeling subjects. In the upper left sector of Fig.1., one can see eight special icons that provide the user with all the procedures necessary to prepare and execute a single computer experiment (simulation). The icon containing a picture of a sited human and the abbreviation “SETS” is the main one clicking which the user opens a window shown in Fig.2. Комп’ютерне моделювання 15 Fig. 1. General view of the user interface of “G_Sim”. Fig. 2. The main window form to prepare a single simulation. This image shows the expanded con- tent of the operations that can be accessed by clicking on the menu bar “Protections”. Комп’ютерне моделювання 16 Fig. 3. The window form provides settings of parameters that determine the acceleration profile. Using the bottom-located form the user can construct an arbitrary acceleration profile imitating complex combat maneuvers. By clicking on the menu bar “Models” or “Interface Options”, the user can actualize the physiologi- cal model. A B Fig. 4. Special window forms provide settings of parameters that determine actual parameters of QMM: A) basic or personal model including the health level; B) activities of physiological mecha- nisms controlling the circulation. Комп’ютерне моделювання 17 The icon “GO” located in the central ar- ea of Fig. 1. starts the program’s calculation according to the actualized set of parameters. According to the algorithm, the calculation is over if special events (e.g., G-LOC) happen or the time limit is used. Then, “G-Sim” builds graphs presenting the dynamics of model characteristics. They include both physiological and technical data. The physio- logical data concern blood pressures, flows, and volumes in certain body parts. The tech- nical data concerns specific parameters of protection. Theoretically, the data set could provide advanced experts with additional ca- pabilities for investigating new algorithms for protection optimization. In this article, we illustrated only a part of the information. The main window to il- lustrate the most important information con- tains three sections. Each combines a special sub-set of variables (see Figures 5-9). Fig.5. represents the basic data concern- ing a relaxed healthy human sitting in an arm- chair but without using any protection. The bottom section presents the acceleration dy- namics. The middle section presents the dy- namics of the pressure PExt provided by a compressor and six specific pressures (in this simulation, pressures in three sections of the pneumatic anti-G suit are not presented but are calculated and can be illustrated using specific activators). PExtThr, PMuscle, and PBrLiq represent pressures in the thorax, body muscles, and liquor respectively. Hemo- dynamic variables are collected in the upper section. In this case, end-systolic (APs) and end-diastolic (APd) are not shown. MAP is the mean pressure in the aortic arch, CO is the cardiac output, SV is the stroke volume, HR is the heart rate, MCAP, PES, and CVP repre- sent mean pressures in the carotid sinus, eye arteries, and central vein respectively. Verti- cal dotted lines indicate time moments for acceleration start and maximal levels. In this simulation, neither G-LOC nor vision loss happened: the simulation scenario was real- ized totally. Fig. 5. The basic simulation illustrates the physiological responses of a relaxed healthy human to a slow altering (0,1 g/sec) linear profile acceleration. The person sitting in an armchair does not use protection. Before G-onset (marked with a first vertical dotted line) parameters indicate a practically steady-state mode. At the 46th second of a load (marked with a second vertical dotted line), at a value of G=4,35g, the program automatically activated break because of the G-LOC event. Комп’ютерне моделювання 18 Fig. 6. A simulation scenario with a trapezoidal G-profile using a standard pneumatic anti-G suit, natural breathing, and moderate muscle stress. Комп’ютерне моделювання 19 Fig. 7. A simulation of a “Push-Pull” scenario using standard pneumatic anti-G suit, natural breath- ing, and AGSM-technique with maximal muscle stress of 100 mm Hg accompanied with inspiration time of 2 sec and duration of AG-stress of 20 sec. As Fig. 7. illustrates, our “mean man” resisted up to 9g accelerations for a 20 sec plateau. Pay attention that end-systolic (APs) and end-diastolic (APd) pressures are also shown. Комп’ютерне моделювання 20 Fig. 8. A simulation of a trapezoidal acceleration scenario with a long-lasting plateau using a hy- draulic anti-G suit, natural breathing, and special technique of AGSM (sharp inspirations of 2 sec, maximal muscle stress of 100 mm Hg for 3 sec, and sharp expirations of 2 sec). Комп’ютерне моделювання 21 Discussion Not all the information concerning the capabilities of our “G-Sim”, in particular, describing functionalities of the icons of UI was presented in this article. In addition to the space limit, another reason is that the version of “G-Sim” used in this publication is not yet the final software. We continue to work on upgrading software to make it maximally use- ful and convenient in practice. Although the mean man model used in this “G-Sim” already provides the student- pilot with important visualized dynamics of physiological and technical data. Every pilot has specific anatomical, physiological, and psychological individualities that potentially can modify the pilot’s resistance to negative effects of accelerations. Therefore, we are working on algorithms that, being not very complex, could provide the individualizations of basic mathematical models. Principally, we hope to achieve acceptable results using rela- tively simple algorithms that correct initial parameters of BMM mainly using passport and anthropological data (namely, such data is reflected in the window form in Figure 4A). Another aspect of upgrading our “G- Sim” we see in imitating characteristic phe- nomena, caused by a deterioration of the eyes and brain oxygen supply. We already have created a model and program modules visual- ly imitating: 1) the narrowing of the field of peripheral vision including the loss of vision; 2) loss of consciousness as an extreme mani- festation (G-lock). Certainly, the main goal of our “G-Sim” is to facilitate the pilot’s acquiring the needed skills. In this context, an essential role does play the factor of dynamics. As physical events develop to speed, in-time counteracts are extremely important to provide effective resistance. “G-Sim” is the single technology using which the student-pilot can imitate eve- ry thinkable scenario and find the most effec- tive combination of algorithms for maximiz- ing the protective effect. An additional use of “G-Sim” is that it can be used to provide “post-factum” simula- tions for analysis and understanding non- trivial causes of failures. Fig. 9. The simulation scenario described in Fig.5. This case the dynamics of blood volumes in cer- tain body sections are illustrated. Conclusion Combat maneuvers of modern fighter aircraft originate extreme accelerations nega- tively influencing on pilot’s physiology and operability. Until recently, empirical investi- gations were the only way to develop and test Комп’ютерне моделювання 22 protective methods and tools providing fighter pilots functionality under combat maneuvers. The main tools used for acquiring student pilot initial skills necessary to resist the nega- tive effects of dynamic extreme accelerations were centrifuges. The skilling process of stu- dent pilots of modern fighter aircraft is not duly formalized yet. Our special computer simulator “G-Sim” provides the user with a user-friendly intuitive interface for construc- tion and execution of a computer experiment (a simulation) that visualizes additional dy- namic variables concerning characteristics of both human physiology and protections under arbitrarily formed acceleration profiles. By comparing human physiological responses under different simulated scenarios (without use of protections, with use of their different combinations), student-pilots and their in- structors can optimize the individually opti- mal tactics for maximizing the resistance and performance capability of the future fighter pilot. References 1. Burton, R.R.,Whinnery, J.E. Biodynamics: Sustained acceleration. In Fundamentals of Aerospace Medicine, 3rd ed.; DeHart, R.L., Davis, J.R., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2002; pp. 122–153. 2. Slungaard E., McLeod J., Green, N.D.C., Kiran A., Newham D.J., Harridge S.D.R. In- cidence of g-induced loss of consciousness and almost loss of consciousness in the Royal Air Force. Aerosp. Med. Hum. Per- form. 2017, 88, 550–555. 3. Newman D.G. The cardiovascular system at high Gz. In High G Flight: Physiological Ef- fects and Countermeasures, 1st ed.; Newman, D.G., Ed.; Ashgate: Farnham, UK, 2015; pp. 57–72. 4. Park M., Yoo S., Seol H., Kim C., Hong Y. Unpredictability of fighter pilots’ G duration by anthropometric and physiological charac- teristics. Aerosp. Med. Hum. Per- form. 2015, 86, 307–401. 5. Yun, C.; Oh, S.; Shin, Y.H. AGSM proficien- cy and depression are associated with success of high-G training in trainee pilots. Aerosp. Med. Hum. Perform. 2019, 90, 613–617. 6. Polock R.D., Hodkinson, P.D., Smith T.G. Oh G: The x,y and z of human physiological responses to acceleration. Experimental Phys- iology, 2021,106,2367–2384. https://doi.org/10.1113/EP089712 7. Albery W. B. Acceleration in other axes af- fects +Gz tolerance: Dynamic centrifuge sim- ulation of agile flight. Aviation, Space, and Environmental Medicine, 2004,75(1), 1–6. 8. Burton R., Whinnery J. Operational G- induced loss of consciousness: Something old; something new. Aviation, Space, and Environmental Medicine, 1985,56(8), 812– 817. 9. Cao X.-S., Wang Y.-C., Xu L., Yang C.-B., Wang B., Geng J., Gao Y., Wu Y. H., Wang X. Y., Zhang S., Sun X.-Q. Visual symptoms and G-induced loss of consciousness in 594 Chinese Air Force aircrew— A questionnaire survey. Military Medicine, 2012, 177(2), 163–168. https://doi. org/10.7205/milmed-d- 11-00003. 10. Chung K. Y. Cardiac arrhythmias in F-16 pilots during aerial combat maneuvers (ACMS): A descriptive study focused on G- level acceleration. Aviation, Space, and Envi- ronmental Medicine, 2001,72(6), 534– 538. 11. Eiken O., Bergsten, E., Grönkvist M. G- Protection mechanisms afforded by the anti-G suit abdominal bladder with and without pressure breathing. Aviation, Space, and En- vironmental Medicine, 2011. 82(10), 972– 977. https://doi.org/10.3357/ASEM.3058.2011 12. Eiken O., Keramidas M. E., Taylor N. A. S., Grönkvist M., Gronkvist M. Intraocular pres- sure and cerebral oxygenation during pro- longed headward acceleration. European Journal of Applied Physiology, 2017,117(1), 61–72. https://doi.org/10.1007/s00421-016- 3499-3 13. Grönkvist M., Bergsten E., Eiken O. Lung mechanics and transpulmonary pressures dur- ing unassisted pressure breathing at high Gz loads. Aviation, Space, and Environmental Medicine, 2008,79(11), 1041–1046. https://doi.org/10.3357/ASEM.2371.2008. 14. Henderson A. C., Sá R. C., Theilmann R. J., Buxton R. B., Prisk G. K., Hopkins S. R. The gravitational distribution of ventilation- perfusion ratio is more uniform in prone than supine posture in the normal human lung. Journal of Applied Physiology, 2013, 115(3), 313–324. https: //doi.org/10.1152/JAPPLPHYSIOL.01531.20 12 Комп’ютерне моделювання 23 15. MacDougall J. D., McKelvie R. S., Moroz D. E., Buick, F. The effects of variations in the anti-G straining maneuver on blood pressure at +Gz acceleration. Aviation, Space, and En- vironmental Medicine, 1993,64(2), 126–131. 16. Sundblad P., Kölegård R., Migeotte P. F., Delière Q., Eiken O. The arterial baroreflex and inherent G tolerance. EuropeanJournal of Applied Physiology, 2016,116(6), 1149– 1157. https://doi.org/10.1007/s00421-016-3375-1 17. Whiny J.E., Forster E. The +Gz-induced loss of consciousness curve. Extreme Physiology and Medicine, 2013,2(1),19. https://doi.org/10.1186/2046-7648-2-19 18. Grygoryan R.D., Kochetenko E.M., Informa- tional technology for modeling of fighters medical testing procedures by centrifuge ac- celerations. Selection &Training Advances in Aviation: AGARD Conference Proceedings 588; Prague, 1996. May 25-31, PP3,1-12. 19. Grygoryan R.D., High sustained G-tolerance model development.STCU#P-078 EOARD# 01-8001 Agreement: Final Report. 2002. 66p. 20. Grygoryan R.D. Problem-oriented computer simulators for solving of theoretical and ap- plied tasks of human physiology. Problems of programming. 2017, №3, 102-111. 21. Grygoryan R.D. Modeling of mechanisms providing the overall control of human circu- lation. Advances in Human Physiology Re- search, 2022,4, 5 – 21, https://doi.org/10.30564/ahpr.v4i1.4763. 22. Grygoryan R.D. Problems associated with creating special software for simulating of human physiological responses to dynamic Gz accelerations. Проблеми програму- вання, 2024; 1: 30-37, http://doi.org/10.15407/pp2024.01.30. 23. Grygoryan R.D., Degoda A.G. A mathemati- cal model of human hemodynamics for use in special software simulating pilots’ physiological responses to sustained Gz ac- celerations. 2024; 90: 4-15, DOI: 10.5281/zenodo.11357990. Отримано: 25.02.2025 Внутрішня рецензія отримана: 06.03.2025 Зовнішня рецензія отримана: 09.03.2025 About authors: Grygoryan Rafik, Department chief, PhD, D-r in biology http://orcid.org/0000-0001-8762-733X. Degoda Anna, Senior scientist, PhD. http://orcid.org/0000-0001-6364-5568. Progonnyi Mykola, Scientist https://orcid.org/0000-0002-8320-3465 Place of work: Institute of software systems of National Academy of Sciences of Ukraine, 03187, Кyїv, Acad. Glushkov avenue, 40, Е-mail: rgrygoryan@gmail.com, anna@silverlinecrm.com, progonny@gmail.com