HIGH-PRECISION MICROWAVE SPECTROMETER WITH SUB-DOPPLER SPECTRAL RESOLUTION
Results of improvement of the automated millimeter-wave spectrometerof the Institute of Radio Astronomy NAS–Ukraine aimed at reaching a sub-Doppler resolution on the basis of the Lamb-dip observation are presented. Some hardware solutions of the improvement and some results of investigation of the m...
Gespeichert in:
| Datum: | 2015 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Видавничий дім «Академперіодика»
2015
|
| Schlagworte: | |
| Online Zugang: | http://rpra-journal.org.ua/index.php/ra/article/view/1195 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Radio physics and radio astronomy |
Institution
Radio physics and radio astronomy| id |
rpra-journalorgua-article-1195 |
|---|---|
| record_format |
ojs |
| institution |
Radio physics and radio astronomy |
| baseUrl_str |
|
| datestamp_date |
2017-06-27T12:25:19Z |
| collection |
OJS |
| language |
Russian |
| topic |
radiospectrometer sub-Doppler spectral resolution Lamb dip direct digital synthesizer |
| spellingShingle |
radiospectrometer sub-Doppler spectral resolution Lamb dip direct digital synthesizer Alekseev, E. A. Ilyushin, V. V. Mescheryakov, A. A. HIGH-PRECISION MICROWAVE SPECTROMETER WITH SUB-DOPPLER SPECTRAL RESOLUTION |
| topic_facet |
radiospectrometer sub-Doppler spectral resolution Lamb dip direct digital synthesizer радиоспектрометр субдоплеровское спектральное разрешение провал Лэмба синтезатор прямого цифрового синтеза радіоспектрометр субдоплерівська роздільна здатність провал Лемба синтезатор прямого цифрового синтезу |
| format |
Article |
| author |
Alekseev, E. A. Ilyushin, V. V. Mescheryakov, A. A. |
| author_facet |
Alekseev, E. A. Ilyushin, V. V. Mescheryakov, A. A. |
| author_sort |
Alekseev, E. A. |
| title |
HIGH-PRECISION MICROWAVE SPECTROMETER WITH SUB-DOPPLER SPECTRAL RESOLUTION |
| title_short |
HIGH-PRECISION MICROWAVE SPECTROMETER WITH SUB-DOPPLER SPECTRAL RESOLUTION |
| title_full |
HIGH-PRECISION MICROWAVE SPECTROMETER WITH SUB-DOPPLER SPECTRAL RESOLUTION |
| title_fullStr |
HIGH-PRECISION MICROWAVE SPECTROMETER WITH SUB-DOPPLER SPECTRAL RESOLUTION |
| title_full_unstemmed |
HIGH-PRECISION MICROWAVE SPECTROMETER WITH SUB-DOPPLER SPECTRAL RESOLUTION |
| title_sort |
high-precision microwave spectrometer with sub-doppler spectral resolution |
| title_alt |
ВЫСОКОТОЧНЫЙ РАДИОСПЕКТРОМЕТР С СУБДОПЛЕРОВСКИМ СПЕКТРАЛЬНЫМ РАЗРЕШЕНИЕМ ВИСОКОТОЧНИЙ РАДІОСПЕКТРОМЕТР З СУБДОППЛЕРІВСЬКОЮ РОЗДІЛЬНОЮ ЗДАТНІСТЮ |
| description |
Results of improvement of the automated millimeter-wave spectrometerof the Institute of Radio Astronomy NAS–Ukraine aimed at reaching a sub-Doppler resolution on the basis of the Lamb-dip observation are presented. Some hardware solutions of the improvement and some results of investigation of the methanol CH3OH molecule rotational spectrum are discussed. Measured value of the Lamb-dip width of 10 kHz for J=1←0 transition of CO molecule agrees well with the broadening caused by collisions with cell walls. This value corresponds to improvement of spectral resolution by an order of magnitude. Results of investigation of the methanol spectrum confirm the anomalous hyperfine structure for a number of transitions.Key words: radiospectrometer, sub-Doppler spectral resolution, Lamb dip, direct digital synthesizerManuscript submitted 06.11.2014Radio phys. radio astron. 2014, 19(4): 364-374 REFERENCES1. BAGDONAITE, J., JANSEN, P., HENKEL, C., BETHLEM, H. L., MENTEN, K. M. and UBACHS, W., 2013. A Stringent Limit on a Drifitng Proton-to-Electron Mass Ratio from Alcohol in the Early Universe. Science. vol. 339, no. 6115, pp. 46–48. 2. KOZLOV, M. G., LAPINOV, A. V. and LEVSHAKOV, S.A., 2010. Sensitivity of microwave spectra of deuterated ammonia to the variation of the electron-to-proton mass. J. Phys. B: At. Mol. Opt. Phys. vol.43, no 7, id. 074003. DOI: https://doi.org/10.1088/0953-4075/43/7/074003 3. LEVSHAKOV, S. A., MOLARO, P., LAPINOV, A. V., REIMERS, D., HENKEL, C. and SAKAI, T., 2010. Searching for chameleon-like scalar fields with the ammonia method. Astron. Astrophys. vol. 512, no. 7, id. A44. DOI: https://doi.org/10.1051/0004-6361/200913007 4. JANSEN, P., XU, L.-H., KLEINER, I., UBACHS, W. and BETHLEM, H. L., 2011. Methanol as a Sensitive Probe for Spatial and Temporal Variations of the Proton-to-Electron Mass. Phys. Rev. Lett. vol. 106, Is. 10, id. 100801.DOI: https://doi.org/ 10.1103/PhysRevLett.106.100801 5. JANSEN, P., KLEINER, I., XU, L.-H. and BETHLEM, H. L. Sensitivity of transitions in internal rotor molecules to a possible variation of the proton-to-electron mass ratio. Phys. Rev. A. vol. 84, Is. 6, id. 062505. DOI: https://doi.org/10.1103/PhysRevA.84.062505 6. CAZZOLI, G., PUZZARINI, C. and LAPINOV, A.V., 2004. Precise laboratory frequencies for the J ← J–1 (J=1, 2, 3, 4) rotational transitions of 13CO. Astrophys. J. vol. 611, no. 2, pp. 615–620. DOI: https://doi.org/10.1086/421992 7. CAZZOLI G., PUZZARINI C., and LAPINOV A. V., 2003. Precise laboratory frequencies for the J=1–0 and J= 2–1 rotational transitions of C18O. Astrophys. J. Lett. vol. 592, no. 2,pp. L95–L98. DOI: https://doi.org/10.1086/377527 8. CASELLI, P. and DORE, L., 2005. Laboratory and space spectroscopyof DCO+. Astron. Astrophys. vol. 433, no. 3,pp. 1145–1152. DOI: https://doi.org/10.1051/0004-6361:20042118 9. LAPINOV, A.V., LEVSHAKOV, S. A., KOZLOV, M. G., GOLUBIATNIKOV, G. Yu., BELOV, S. P., ANDRIYANOV, A. F., SHKAEV A. P., AGAFONOVA, I. I., and ZINCHENKO, I. I., 2012. Study of fundamental properties of the Universe using precise molecular spectroscopy. Vestnik RFFI, vol. 1(73), no. 111–118. 10. GOLUBIATNIKOV, G. YU., LAPINOV, A. V., GUARNERI, A., andKNÖCHEL, R., 2005.Precise Lamb-dip measurements of millimeter and submillimeter wave rotational transitions of 16O12C32S. J. Mol. Spectrosc. vol. 234, no. 1, pp. 190–194. DOI: https://doi.org/10.1016/j.jms.2005.08.012 11. CAZZOLI, G. and PUZZARINI, C., 2008. Lamb-dip spectrum of methyl-acetylene and methyldiacetylene: precise rotational transition frequencies and parameters of the main isotopic species. Astron. Astrophys. vol. 487, no. 3,pp. 1197–1202. DOI:https://doi.org/10.1051/0004-6361:200809938 12. CAZZOLI, G., PUZZARINI, C., STOPKOWICZ, S., and GAUSS J., 2010. Hyperfine structure in the rotational spectra of trans-formic acid:Lamb-dip measurements and quantum-chemical calculations. Astron. Astrophys., vol. 520, id. A64. DOI: https://doi.org/10.1051/0004-6361/201014787 13. BELOV, S. P., BURENIN, A. V., GOLUBIATNIKOV, G. YU., and LAPINOV, A. V., 2013.What is the nature of the doublets in the E-methanol Lamb-dip spectra? In: Proc. 68th OSU International Symposium on Molecular Spectroscopy. Ohio, USA. pp. 340. Available from: http://molspect.chemistry.ohiostate.edu/molspect_conf_public/archive_2013/p072-ppt.tar.gz 14. ALEKSEEV, E. A., MOTIYENKO, R. A., and MARGULÈS L., 2011. Millimeter- and Submillimeter-Wave Spectrometers Based on the Direct Digital Synthesizers. Radio Phys. Radio Astron. vol. 16, no. 3, pp. 313–327 (in Russian). 15. ALEKSEEV, E. A. and ZAKHARENKO, V. V., 2007. Direct Digital Synthesizer at the Microwave Spectroscopy. Radio Phys. Radio Astron. vol. 12., no. 2, pp. 205–213 (in Russian). 16. MOTIYENKO, R. A., ALEKSEEV, E. A., DYUBKO, S. F., and LOVAS, F. J., 2006. Microwave Spectrum and Structure of Furfural. J. Mol. Spectrosc. vol. 240, no. 1, pp. 93–101. DOI: https://doi.org/10.1016/j.jms.2006.09.003 17. SNYDER, L. E., LOVAS, F. J., HOLLIS, J. M., FRIEDEL, D. N., JEWELL, P. R., REMIJAN, A., ILYUSHIN, V. V., ALEKSEEV, E. A., and DYUBKO, S. F., 2005. A rigorous attempt to verify interstellar glycine. Astrophys. J. vol. 619, no. 2, pp. 914–930. DOI: https://doi.org/10.1086/426677 18. ILYUSHIN, V. V., ALEKSEEV, E. A., DYUBKO, S. F., MOTIYENKO, R. A.,and LOVAS, F. J., 2005. Millimeter wave spectrum of glycine. J. Mol. Spectrosc. vol. 231, no. 1, pp. 15–22. DOI: https://doi.org/10.1016/j.jms.2004.12.003 19. KRYVDA, A. V., GERASIMOV, V. G., DYUBKO, S. F., ALEKSEEV, E. A.,and MOTIYENKO, R. A., 2009. New measurements of the microwave spectrum of formamide. J. Mol. Spectrosc. vol. 254, no. 1, pp. 28–32. DOI: https://doi.org/10.1016/j.jms.2008.12.001 20. REMIJAN, A. J., SNYDER, L. E., MCGUIRE, B. A., KUO, H.-L., LOONEY, L. W., FRIEDEL, D. N., GOLUBIATNIKOV, G. YU., LOVAS, F. J., ILYUSHIN, V. V., ALEKSEEV, E. A., DYUBKO S. F., McCALL, B. J., and HOLLISET, J. M. , 2014. Observational Results of a Multi-telescope Campaign in Search of Interstellar Urea[(NH2)2CO]. Astrophys. J. vol. 783, No. 2, id. 77. DOI: https://doi.org/10.1088/0004-637X/783/2/77 21. COSTAIN, C. C., 1969. The use of saturation dip absorption in microwave spectroscopy and in microwave frequency stabilization. Can. J. Phys. vol. 47, no. 21, pp. 2431–2433. DOI: https//doi.org/10.1139/p69-299 22. WINTON, R. S. and GORDY, W., 1970. High-precision millimeter-wave spectroscopy with the lamb dip. Phys. Lett. A. vol. 32, is. 4, pp. 219–220. DOI: https://doi.org/10.1016/0375-9601(70)90287-2 23. LETOHOV, V. S. and CHEBOTAREV, V. P., 1990. Nonlinear laser ultra high resolution spectroscopy. Moskow: Nauka Publ. (in Russian). 24. CAZZOLI, G., ESPOSTI, C. D., and FAVERO, P. G., 1980. Quadrupole coupling constant of deuterium in hydrocyanic acid-d1 (nitrogen-15) by Lamb dip microwave spectroscopy. J. Phys. Chem. vol. 84, is. 14, pp. 1756–1757. DOI: https://doi.org/10.1021/j100451a002 25. CAZZOLI, G. and DORE, L., 1990. Observation of crossing resonancesin the hyperfine structure of the J=1–0 transition of DC15N. J. Mol. Spectrosc. vol. 143, is. 2, pp. 231–236. DOI: https://doi.org/10.1016/0022-2852(91)90087-Q 26. DORE, L., DEGLI ESPOSTI, C., MAZZAVILLANI, A., and CAZZOLI, G., 1999. Pure rotational spectra of 32SD+3 and 34SD+3: Determination of the substitution structure of the sulfonium ion. Chem. Phys. Lett. vol. 300, is. 3, pp. 489–492. DOI: https://doi.org/10.1016/S0009-2614(98)01403-1 27. KRUPNOV, A. F., TRETYAKOV, M. YU., BELOV, S. P., GOLUBIATNIKOV, G. YU., PARSHIN, V. V., KOSHELEV, M. A., MAKAROV, D. S., and SEROV, E. A., 2012. Accurate broadband rotational BWO-based spectroscopy. J. Mol. Spectrosc., vol. 280, pp. 110–118. DOI: 0.1016/j.jms.2012.06.010 28. GOLUBYATNIKOV, G.YU., BELOV, S.P., LEONOV, I.I., ANDRIANOV, A.F., ZINCHENKO, I.I., LAPINOV, A.V., MARKOV, V.N., SHKAEV, A.P., 2013. Precision Subdoppler Millimeter and Submillimeter Lamb-Dip Spectrometer . Izvestiya vuzov. Radiofizika, vol. 56, no. 8/9, pp. 666–677 (in Russian). 29. Technical information [Analog devisec]. [online] Available from: http://www.analog.com/static/imported-files/data_sheets/AD9851.pdf 30. Technical information [Analog devisec]. [online] Available from: http://www.analog.com/static/imported-files/data_sheets/AD9834.pdf 31. Technical information [Analog devisec]. [online] Available from: http://www.analog.com/static/imported-files/data_sheets/ADUC834.pdf 32. ALEKSEEV, E. A., 2011.Direct Digital Synthesizers: Possibilities and Limitations for Microwave Spectroscopy. Radio Phys. Radio Astron., vol. 16, no. 2, pp. 209–219 (in Russian). 33. GORDY, W. and COOK, R. L., 1984. Microwave Molecular Spectra. New York: John Wiley & Sons, 1015 p. 34. WINNEWISSER, G., BELOV, S. P., KLAUS, TH., and SCHIEDER, R., 1997. Sub-Doppler measurements of the rotational transitions of carbon monoxide. J. Mol. Spectrosc., vol. 184, is. 2, pp. 468–472. DOI: https://doi.org/10.1006/jmsp.1997.7341 |
| publisher |
Видавничий дім «Академперіодика» |
| publishDate |
2015 |
| url |
http://rpra-journal.org.ua/index.php/ra/article/view/1195 |
| work_keys_str_mv |
AT alekseevea highprecisionmicrowavespectrometerwithsubdopplerspectralresolution AT ilyushinvv highprecisionmicrowavespectrometerwithsubdopplerspectralresolution AT mescheryakovaa highprecisionmicrowavespectrometerwithsubdopplerspectralresolution AT alekseevea vysokotočnyjradiospektrometrssubdoplerovskimspektralʹnymrazrešeniem AT ilyushinvv vysokotočnyjradiospektrometrssubdoplerovskimspektralʹnymrazrešeniem AT mescheryakovaa vysokotočnyjradiospektrometrssubdoplerovskimspektralʹnymrazrešeniem AT alekseevea visokotočnijradíospektrometrzsubdopplerívsʹkoûrozdílʹnoûzdatnístû AT ilyushinvv visokotočnijradíospektrometrzsubdopplerívsʹkoûrozdílʹnoûzdatnístû AT mescheryakovaa visokotočnijradíospektrometrzsubdopplerívsʹkoûrozdílʹnoûzdatnístû |
| first_indexed |
2025-12-02T15:34:52Z |
| last_indexed |
2025-12-02T15:34:52Z |
| _version_ |
1850763746623881216 |
| spelling |
rpra-journalorgua-article-11952017-06-27T12:25:19Z HIGH-PRECISION MICROWAVE SPECTROMETER WITH SUB-DOPPLER SPECTRAL RESOLUTION ВЫСОКОТОЧНЫЙ РАДИОСПЕКТРОМЕТР С СУБДОПЛЕРОВСКИМ СПЕКТРАЛЬНЫМ РАЗРЕШЕНИЕМ ВИСОКОТОЧНИЙ РАДІОСПЕКТРОМЕТР З СУБДОППЛЕРІВСЬКОЮ РОЗДІЛЬНОЮ ЗДАТНІСТЮ Alekseev, E. A. Ilyushin, V. V. Mescheryakov, A. A. radiospectrometer; sub-Doppler spectral resolution; Lamb dip; direct digital synthesizer радиоспектрометр; субдоплеровское спектральное разрешение; провал Лэмба; синтезатор прямого цифрового синтеза радіоспектрометр; субдоплерівська роздільна здатність; провал Лемба; синтезатор прямого цифрового синтезу Results of improvement of the automated millimeter-wave spectrometerof the Institute of Radio Astronomy NAS–Ukraine aimed at reaching a sub-Doppler resolution on the basis of the Lamb-dip observation are presented. Some hardware solutions of the improvement and some results of investigation of the methanol CH3OH molecule rotational spectrum are discussed. Measured value of the Lamb-dip width of 10 kHz for J=1←0 transition of CO molecule agrees well with the broadening caused by collisions with cell walls. This value corresponds to improvement of spectral resolution by an order of magnitude. Results of investigation of the methanol spectrum confirm the anomalous hyperfine structure for a number of transitions.Key words: radiospectrometer, sub-Doppler spectral resolution, Lamb dip, direct digital synthesizerManuscript submitted 06.11.2014Radio phys. radio astron. 2014, 19(4): 364-374 REFERENCES1. BAGDONAITE, J., JANSEN, P., HENKEL, C., BETHLEM, H. L., MENTEN, K. M. and UBACHS, W., 2013. A Stringent Limit on a Drifitng Proton-to-Electron Mass Ratio from Alcohol in the Early Universe. Science. vol. 339, no. 6115, pp. 46–48. 2. KOZLOV, M. G., LAPINOV, A. V. and LEVSHAKOV, S.A., 2010. Sensitivity of microwave spectra of deuterated ammonia to the variation of the electron-to-proton mass. J. Phys. B: At. Mol. Opt. Phys. vol.43, no 7, id. 074003. DOI: https://doi.org/10.1088/0953-4075/43/7/074003 3. LEVSHAKOV, S. A., MOLARO, P., LAPINOV, A. V., REIMERS, D., HENKEL, C. and SAKAI, T., 2010. Searching for chameleon-like scalar fields with the ammonia method. Astron. Astrophys. vol. 512, no. 7, id. A44. DOI: https://doi.org/10.1051/0004-6361/200913007 4. JANSEN, P., XU, L.-H., KLEINER, I., UBACHS, W. and BETHLEM, H. L., 2011. Methanol as a Sensitive Probe for Spatial and Temporal Variations of the Proton-to-Electron Mass. Phys. Rev. Lett. vol. 106, Is. 10, id. 100801.DOI: https://doi.org/ 10.1103/PhysRevLett.106.100801 5. JANSEN, P., KLEINER, I., XU, L.-H. and BETHLEM, H. L. Sensitivity of transitions in internal rotor molecules to a possible variation of the proton-to-electron mass ratio. Phys. Rev. A. vol. 84, Is. 6, id. 062505. DOI: https://doi.org/10.1103/PhysRevA.84.062505 6. CAZZOLI, G., PUZZARINI, C. and LAPINOV, A.V., 2004. Precise laboratory frequencies for the J ← J–1 (J=1, 2, 3, 4) rotational transitions of 13CO. Astrophys. J. vol. 611, no. 2, pp. 615–620. DOI: https://doi.org/10.1086/421992 7. CAZZOLI G., PUZZARINI C., and LAPINOV A. V., 2003. Precise laboratory frequencies for the J=1–0 and J= 2–1 rotational transitions of C18O. Astrophys. J. Lett. vol. 592, no. 2,pp. L95–L98. DOI: https://doi.org/10.1086/377527 8. CASELLI, P. and DORE, L., 2005. Laboratory and space spectroscopyof DCO+. Astron. Astrophys. vol. 433, no. 3,pp. 1145–1152. DOI: https://doi.org/10.1051/0004-6361:20042118 9. LAPINOV, A.V., LEVSHAKOV, S. A., KOZLOV, M. G., GOLUBIATNIKOV, G. Yu., BELOV, S. P., ANDRIYANOV, A. F., SHKAEV A. P., AGAFONOVA, I. I., and ZINCHENKO, I. I., 2012. Study of fundamental properties of the Universe using precise molecular spectroscopy. Vestnik RFFI, vol. 1(73), no. 111–118. 10. GOLUBIATNIKOV, G. YU., LAPINOV, A. V., GUARNERI, A., andKNÖCHEL, R., 2005.Precise Lamb-dip measurements of millimeter and submillimeter wave rotational transitions of 16O12C32S. J. Mol. Spectrosc. vol. 234, no. 1, pp. 190–194. DOI: https://doi.org/10.1016/j.jms.2005.08.012 11. CAZZOLI, G. and PUZZARINI, C., 2008. Lamb-dip spectrum of methyl-acetylene and methyldiacetylene: precise rotational transition frequencies and parameters of the main isotopic species. Astron. Astrophys. vol. 487, no. 3,pp. 1197–1202. DOI:https://doi.org/10.1051/0004-6361:200809938 12. CAZZOLI, G., PUZZARINI, C., STOPKOWICZ, S., and GAUSS J., 2010. Hyperfine structure in the rotational spectra of trans-formic acid:Lamb-dip measurements and quantum-chemical calculations. Astron. Astrophys., vol. 520, id. A64. DOI: https://doi.org/10.1051/0004-6361/201014787 13. BELOV, S. P., BURENIN, A. V., GOLUBIATNIKOV, G. YU., and LAPINOV, A. V., 2013.What is the nature of the doublets in the E-methanol Lamb-dip spectra? In: Proc. 68th OSU International Symposium on Molecular Spectroscopy. Ohio, USA. pp. 340. Available from: http://molspect.chemistry.ohiostate.edu/molspect_conf_public/archive_2013/p072-ppt.tar.gz 14. ALEKSEEV, E. A., MOTIYENKO, R. A., and MARGULÈS L., 2011. Millimeter- and Submillimeter-Wave Spectrometers Based on the Direct Digital Synthesizers. Radio Phys. Radio Astron. vol. 16, no. 3, pp. 313–327 (in Russian). 15. ALEKSEEV, E. A. and ZAKHARENKO, V. V., 2007. Direct Digital Synthesizer at the Microwave Spectroscopy. Radio Phys. Radio Astron. vol. 12., no. 2, pp. 205–213 (in Russian). 16. MOTIYENKO, R. A., ALEKSEEV, E. A., DYUBKO, S. F., and LOVAS, F. J., 2006. Microwave Spectrum and Structure of Furfural. J. Mol. Spectrosc. vol. 240, no. 1, pp. 93–101. DOI: https://doi.org/10.1016/j.jms.2006.09.003 17. SNYDER, L. E., LOVAS, F. J., HOLLIS, J. M., FRIEDEL, D. N., JEWELL, P. R., REMIJAN, A., ILYUSHIN, V. V., ALEKSEEV, E. A., and DYUBKO, S. F., 2005. A rigorous attempt to verify interstellar glycine. Astrophys. J. vol. 619, no. 2, pp. 914–930. DOI: https://doi.org/10.1086/426677 18. ILYUSHIN, V. V., ALEKSEEV, E. A., DYUBKO, S. F., MOTIYENKO, R. A.,and LOVAS, F. J., 2005. Millimeter wave spectrum of glycine. J. Mol. Spectrosc. vol. 231, no. 1, pp. 15–22. DOI: https://doi.org/10.1016/j.jms.2004.12.003 19. KRYVDA, A. V., GERASIMOV, V. G., DYUBKO, S. F., ALEKSEEV, E. A.,and MOTIYENKO, R. A., 2009. New measurements of the microwave spectrum of formamide. J. Mol. Spectrosc. vol. 254, no. 1, pp. 28–32. DOI: https://doi.org/10.1016/j.jms.2008.12.001 20. REMIJAN, A. J., SNYDER, L. E., MCGUIRE, B. A., KUO, H.-L., LOONEY, L. W., FRIEDEL, D. N., GOLUBIATNIKOV, G. YU., LOVAS, F. J., ILYUSHIN, V. V., ALEKSEEV, E. A., DYUBKO S. F., McCALL, B. J., and HOLLISET, J. M. , 2014. Observational Results of a Multi-telescope Campaign in Search of Interstellar Urea[(NH2)2CO]. Astrophys. J. vol. 783, No. 2, id. 77. DOI: https://doi.org/10.1088/0004-637X/783/2/77 21. COSTAIN, C. C., 1969. The use of saturation dip absorption in microwave spectroscopy and in microwave frequency stabilization. Can. J. Phys. vol. 47, no. 21, pp. 2431–2433. DOI: https//doi.org/10.1139/p69-299 22. WINTON, R. S. and GORDY, W., 1970. High-precision millimeter-wave spectroscopy with the lamb dip. Phys. Lett. A. vol. 32, is. 4, pp. 219–220. DOI: https://doi.org/10.1016/0375-9601(70)90287-2 23. LETOHOV, V. S. and CHEBOTAREV, V. P., 1990. Nonlinear laser ultra high resolution spectroscopy. Moskow: Nauka Publ. (in Russian). 24. CAZZOLI, G., ESPOSTI, C. D., and FAVERO, P. G., 1980. Quadrupole coupling constant of deuterium in hydrocyanic acid-d1 (nitrogen-15) by Lamb dip microwave spectroscopy. J. Phys. Chem. vol. 84, is. 14, pp. 1756–1757. DOI: https://doi.org/10.1021/j100451a002 25. CAZZOLI, G. and DORE, L., 1990. Observation of crossing resonancesin the hyperfine structure of the J=1–0 transition of DC15N. J. Mol. Spectrosc. vol. 143, is. 2, pp. 231–236. DOI: https://doi.org/10.1016/0022-2852(91)90087-Q 26. DORE, L., DEGLI ESPOSTI, C., MAZZAVILLANI, A., and CAZZOLI, G., 1999. Pure rotational spectra of 32SD+3 and 34SD+3: Determination of the substitution structure of the sulfonium ion. Chem. Phys. Lett. vol. 300, is. 3, pp. 489–492. DOI: https://doi.org/10.1016/S0009-2614(98)01403-1 27. KRUPNOV, A. F., TRETYAKOV, M. YU., BELOV, S. P., GOLUBIATNIKOV, G. YU., PARSHIN, V. V., KOSHELEV, M. A., MAKAROV, D. S., and SEROV, E. A., 2012. Accurate broadband rotational BWO-based spectroscopy. J. Mol. Spectrosc., vol. 280, pp. 110–118. DOI: 0.1016/j.jms.2012.06.010 28. GOLUBYATNIKOV, G.YU., BELOV, S.P., LEONOV, I.I., ANDRIANOV, A.F., ZINCHENKO, I.I., LAPINOV, A.V., MARKOV, V.N., SHKAEV, A.P., 2013. Precision Subdoppler Millimeter and Submillimeter Lamb-Dip Spectrometer . Izvestiya vuzov. Radiofizika, vol. 56, no. 8/9, pp. 666–677 (in Russian). 29. Technical information [Analog devisec]. [online] Available from: http://www.analog.com/static/imported-files/data_sheets/AD9851.pdf 30. Technical information [Analog devisec]. [online] Available from: http://www.analog.com/static/imported-files/data_sheets/AD9834.pdf 31. Technical information [Analog devisec]. [online] Available from: http://www.analog.com/static/imported-files/data_sheets/ADUC834.pdf 32. ALEKSEEV, E. A., 2011.Direct Digital Synthesizers: Possibilities and Limitations for Microwave Spectroscopy. Radio Phys. Radio Astron., vol. 16, no. 2, pp. 209–219 (in Russian). 33. GORDY, W. and COOK, R. L., 1984. Microwave Molecular Spectra. New York: John Wiley & Sons, 1015 p. 34. WINNEWISSER, G., BELOV, S. P., KLAUS, TH., and SCHIEDER, R., 1997. Sub-Doppler measurements of the rotational transitions of carbon monoxide. J. Mol. Spectrosc., vol. 184, is. 2, pp. 468–472. DOI: https://doi.org/10.1006/jmsp.1997.7341 УДК 539.1.078; 539.194 Представлены результаты модернизации автоматизированного спектрометра миллиметрового диапазона Радиоастрономического института НАН Украины, целью которой было достижение субдоплеровского спектрального разрешения на основе наблюдения провала Лэмба. Обсуждаются аппаратные решения, использованные при модернизации, а также некоторые результаты исследования вращательного спектра молекулы метанола CH3OH. Измеренное значение ширины провала Лэмба для перехода J = 1←0 молекулы СО, 10 кГц, хорошо согласуется с ограничением, налагаемым пролетным уширением в поглощающей ячейке, и соответствует повышению разрешающей способности спектрометра примерно на порядок. Результаты исследования спектра метанола подтверждают наличие аномальной сверхтонкой структуры у целого ряда переходов.Ключевые слова: радиоспектрометр, субдоплеровское спектральное разрешение, провал Лэмба, синтезатор прямого цифрового синтезаСтатья поступила в редакцию 06.11.2014Radio phys. radio astron. 2014, 19(4): 364374 СПИСОК ЛИТЕРАТУРЫ1. Bagdonaite J., Jansen P., Henkel C., Bethlem H. L., MentenK. M., and Ubachs W. A Stringent Limit on a DrifitngProton-to-Electron Mass Ratio from Alcohol in the EarlyUniverse // Science. – 2013. – Vol. 339, No. 6115. – P. 46–48.2. Kozlov M. G., Lapinov A. V., and Levshakov S. A. Sensitivityof microwave spectra of deuterated ammonia to thevariation of the electron-to-proton mass // J. Phys. B: At.Mol. Opt. Phys. – 2010. – Vol.43, No 7. – id. 074003.3. Levshakov S. A., Molaro P., Lapinov A. V., Reimers D.,Henkel C., and Sakai T. Searching for chameleon-like scalarfields with the ammonia method // Astron. Astrophys. –2010. – Vol. 512, No. 7. – id. A44.4. Jansen P., Xu L.-H., Kleiner I., Ubachs W., and Bethlem H. L.Methanol as a Sensitive Probe for Spatial and TemporalVariations of the Proton-to-Electron Mass // Phys. Rev.Lett. – 2011. – Vol. 106, Is. 10. – id. 100801.5. Jansen P., Kleiner I., Xu L.-H., and Bethlem H. L. Sensitivityof transitions in internal rotor molecules to a possiblevariation of the proton-to-electron mass ratio // Phys.Rev. A. – 2011. – Vol. 84, Is. 6. – id. 062505.6. Cazzoli G., Puzzarini C., and Lapinov A.V. Precise laboratoryfrequencies for the J – J–1 (J=1, 2, 3, 4) rotationaltransitions of 13CO // Astrophys. J. – 2004. – Vol. 611,No. 2. – P. 615–620.7. Cazzoli G., Puzzarini C., and Lapinov A. V. Precise laboratoryfrequencies for the J = 1–0 and J = 2–1 rotationaltransitions of C18O // Astrophys. J. Lett. – 2003. –Vol. 592, No. 2. – P. L95–L98.8. Caselli P. and Dore L. Laboratory and space spectroscopyof DCO+ // Astron. Astrophys. – 2005. – Vol. 433,No. 3. – P. 1145–1152.9. Лапинов А. В., Левшаков С. А., Козлов М. Г., Голубятников Г. Ю.,Белов С. П., Андриянов А. Ф., Шкаев А. П.,Агафонова И. И., Зинченко И. И. Исследование фундаментальных свойств вселенной на основе прецизионнойспектроскопии молекул // Вестник РФФИ. – 2012. –№1 (73). – С. 111–118.10. Golubiatnikov G. Yu., Lapinov A. V., Guarneri A., andKnöchel R. Precise Lamb-dip measurements of millimeterand submillimeter wave rotational transitions of 16O12C32S //J. Mol. Spectrosc. – 2005. – Vol. 234, No. 1. – P. 190–194.11. Cazzoli G. and Puzzarini C. Lamb-dip spectrum of methylacetyleneand methyldiacetylene: precise rotational transitionfrequencies and parameters of the main isotopic species //Astron. Astrophys. – 2008. – Vol. 487, No. 3. – P. 1197–1202.12. Cazzoli G., Puzzarini C., Stopkowicz S., and Gauss J. Hyperfinestructure in the rotational spectra of trans-formic acid:Lamb-dip measurements and quantum-chemical calculations// Astron. Astrophys. – 2010. – Vol. 520. – id. A64.13. Belov S. P., Burenin A. V., Golubiatnikov G. Yu., and LapinovA. V. What is the nature of the doublets in the E-methanolLamb-dip spectra? // Proc. 68th OSU International Symposiumon Molecular Spectroscopy. – Ohio (USA). – 2013. –P. 340. Available from: http://molspect.chemistry.ohiostate.edu/molspect_conf_public/archive_2013/p072-ppt.tar.gz14. Алексеев Е. А., Мотиенко Р. А., Маргулес Л. Спектрометры миллиметрового и субмиллиметрового диапазоновна основе синтезаторов прямого цифрового синтеза //Радиофизика и радиоастрономия. – 2011. – Т. 16, № 3. –С. 313–327.15. Алексеев Е. А., Захаренко В. В. Синтезатор прямогоцифрового синтеза в микроволновой спектроскопии //Радиофизика и радиоастрономия. – 2007. – Т. 12.№ 2. – С. 205–213.16. Motiyenko R. A., Alekseev E. A., Dyubko S. F., and LovasF. J. Microwave Spectrum and Structure of Furfural //J. Mol. Spectrosc. – 2006. – Vol. 240, No. 1. – P. 93–101.17. Snyder L. E., Lovas F. J., Hollis J. M., Friedel D. N., JewellP. R., Remijan A., Ilyushin V. V., Alekseev E. A., andDyubko S. F. A rigorous attempt to verify interstellar glycine// Astrophys. J. – 2005. – Vol. 619, No. 2. – P. 914–930.18. Ilyushin V. V., Alekseev E. A., Dyubko S. F., Motiyenko R. A.,and Lovas F. J. Millimeter wave spectrum of glycine //J. Mol. Spectrosc. – 2005. – Vol. 231, No. 1. – P. 15–22.19. Kryvda A. V., Gerasimov V. G., Dyubko S. F., Alekseev E. A.,and Motiyenko R. A. New measurements of the microwavespectrum of formamide // J. Mol. Spectrosc. – 2009. –Vol. 254, No. 1. – P. 28–32.20. Remijan A. J., Snyder L. E., McGuire B. A., Kuo H.-L.,Looney L. W., Friedel D. N., Golubiatnikov G. Yu., LovasF. J., Ilyushin V. V., Alekseev E. A., Dyubko S. F.,McCall B. J., and Holliset J. M. Observational Results of aMulti-telescope Campaign in Search of Interstellar Urea[(NH2)2CO] // Astrophys. J. – 2014. – Vol. 783, No. 2. –id. 77.21. Costain C. C. The use of saturation dip absorption inmicrowave spectroscopy and in microwave frequency stabilization// Can. J. Phys. – 1969. – Vol. 47, No. 21. –P. 2431–2433.22. Winton R. S. and Gordy W. High-precision millimeter-wavespectroscopy with the lamb dip // Phys. Lett. A. – 1970. –Vol. 32, Is. 4. – P. 219–220.23. Летохов В. С., Чеботаев В. П. Нелинейная лазернаяспектроскопия сверхвысокого разрешения. – М.:Наука, 1990. – 512 с.24. Cazzoli G., Esposti C. D., and Favero P. G. Quadrupolecoupling constant of deuterium in hydrocyanic acid-d1(nitrogen-15) by Lamb dip microwave spectroscopy //J. Phys. Chem. – 1980. – Vol. 84, Is. 14. – P. 1756–1757.25. Cazzoli G. and Dore L. Observation of crossing resonancesin the hyperfine structure of the J=1–0 transition ofDC15N // J. Mol. Spectrosc. – 1990. – Vol. 143, Is. 2. –P. 231–236.26. Dore L., Degli Esposti C., Mazzavillani A., and Cazzoli G.Pure rotational spectra of 32SD+3 and 34SD+3: Determinationof the substitution structure of the sulfonium ion // Chem.Phys. Lett. – 1999. – Vol. 300, Is. 3. – P. 489–492.27. Krupnov A. F., Tretyakov M. Yu., Belov S. P., GolubiatnikovG. Yu., Parshin V. V., Koshelev M. A., Makarov D. S.,and Serov E. A. Accurate broadband rotational BWO-basedspectroscopy // J. Mol. Spectrosc. – 2012. – Vol. 280. –P. 110–118.28. Голубятников Г. Ю., Белов С. П., Леонов И. И., Андриянов А. Ф., Зинченко И. И., Лапинов А. В., Марков В. Н.,Шкаев А. П., Гварнери А. Прецизионный субдоплеровский спектрометр миллиметрового и субмиллиметрового диапазонов длин волн на основе эффекта провалаЛэмба // Известия вузов. Радиофизика. – 2013. – Т. 56,№ 8/9. – С. 666–677.29. Техническая информация [Электронный ресурс]. – Режим доступа: http://www.analog.com/static/imported-files/data_sheets/AD9851.pdf30. Техническая информация [Электронный ресурс]. – Режим доступа: http://www.analog.com/static/imported-files/data_sheets/AD9834.pdf31. Техническая информация [Электронный ресурс]. – Режим доступа: http://www.analog.com/static/imported-files/data_sheets/ADUC834.pdf32. Алексеев Е. А. Синтезаторы прямого цифрового синтезачастоты: возможности и ограничения для микроволновой спектроскопии // Радиофизика и радиоастрономия. –2011. – Т.16, № 2. – С. 209–219.33. Gordy W. and Cook R. L. Microwave Molecular Spectra. –New York: John Wiley & Sons, 1984. – 1015 p.34. Winnewisser G., Belov S. P., Klaus Th., and Schieder R.Sub-Doppler measurements of the rotational transitions ofcarbon monoxide // J. Mol. Spectrosc. – 1997. – Vol. 184,Is. 2. – P. 468–472. УДК 539.1.078; 539.194 Надаються результати модернізації автоматизованого спектрометра міліметрового діапазону Радіоастрономічного інституту НАН України, метою якої було досягнення субдопплерівської роздільної здатності на основі спостереження провалу Лемба. Дискутуються апаратні розв’язки, застосовані при модернізації, а також деякі результати дослідження обертального спектра молекули метанолу CH3OH. Виміряне значення ширини провалу Лемба для переходу J = 1←0 молекули СО, 10 кГц, добре узгоджується з обмеженням, спричиненим пролітним розширенням у поглинальній комірці, та відповідає підвищенню роздільної здатності спектрометра приблизно на порядок. Результати дослідження спектра метанолу підтверджують наявність аномальної надтонкої структури у цілій низці переходів. Ключові слова: радіоспектрометр, субдоплерівська роздільна здатність, провал Лемба, синтезатор прямого цифрового синтезуСтаття надійшла до редакції 06.11. 2014 Radio phys. radio astron. 2014, 19(4): 364374 СПИСОК ЛІТЕРАТУРИ 1. Bagdonaite J., Jansen P., Henkel C., Bethlem H. L., MentenK. M., and Ubachs W. A Stringent Limit on a DrifitngProton-to-Electron Mass Ratio from Alcohol in the EarlyUniverse // Science. – 2013. – Vol. 339, No. 6115. – P. 46–48.2. Kozlov M. G., Lapinov A. V., and Levshakov S. A. Sensitivityof microwave spectra of deuterated ammonia to thevariation of the electron-to-proton mass // J. Phys. B: At.Mol. Opt. Phys. – 2010. – Vol.43, No 7. – id. 074003.3. Levshakov S. A., Molaro P., Lapinov A. V., Reimers D.,Henkel C., and Sakai T. Searching for chameleon-like scalarfields with the ammonia method // Astron. Astrophys. –2010. – Vol. 512, No. 7. – id. A44.4. Jansen P., Xu L.-H., Kleiner I., Ubachs W., and Bethlem H. L.Methanol as a Sensitive Probe for Spatial and TemporalVariations of the Proton-to-Electron Mass // Phys. Rev.Lett. – 2011. – Vol. 106, Is. 10. – id. 100801.5. Jansen P., Kleiner I., Xu L.-H., and Bethlem H. L. Sensitivityof transitions in internal rotor molecules to a possiblevariation of the proton-to-electron mass ratio // Phys.Rev. A. – 2011. – Vol. 84, Is. 6. – id. 062505.6. Cazzoli G., Puzzarini C., and Lapinov A.V. Precise laboratoryfrequencies for the J – J–1 (J=1, 2, 3, 4) rotationaltransitions of 13CO // Astrophys. J. – 2004. – Vol. 611,No. 2. – P. 615–620.7. Cazzoli G., Puzzarini C., and Lapinov A. V. Precise laboratoryfrequencies for the J = 1–0 and J = 2–1 rotationaltransitions of C18O // Astrophys. J. Lett. – 2003. –Vol. 592, No. 2. – P. L95–L98.8. Caselli P. and Dore L. Laboratory and space spectroscopyof DCO+ // Astron. Astrophys. – 2005. – Vol. 433,No. 3. – P. 1145–1152.9. Лапинов А. В., Левшаков С. А., Козлов М. Г., Голубятников Г. Ю.,Белов С. П., Андриянов А. Ф., Шкаев А. П.,Агафонова И. И., Зинченко И. И. Исследование фундаментальных свойств вселенной на основе прецизионнойспектроскопии молекул // Вестник РФФИ. – 2012. –№1 (73). – С. 111–118.10. Golubiatnikov G. Yu., Lapinov A. V., Guarneri A., andKnöchel R. Precise Lamb-dip measurements of millimeterand submillimeter wave rotational transitions of 16O12C32S //J. Mol. Spectrosc. – 2005. – Vol. 234, No. 1. – P. 190–194.11. Cazzoli G. and Puzzarini C. Lamb-dip spectrum of methylacetyleneand methyldiacetylene: precise rotational transitionfrequencies and parameters of the main isotopic species //Astron. Astrophys. – 2008. – Vol. 487, No. 3. – P. 1197–1202.12. Cazzoli G., Puzzarini C., Stopkowicz S., and Gauss J. Hyperfinestructure in the rotational spectra of trans-formic acid:Lamb-dip measurements and quantum-chemical calculations// Astron. Astrophys. – 2010. – Vol. 520. – id. A64.13. Belov S. P., Burenin A. V., Golubiatnikov G. Yu., and LapinovA. V. What is the nature of the doublets in the E-methanolLamb-dip spectra? // Proc. 68th OSU International Symposiumon Molecular Spectroscopy. – Ohio (USA). – 2013. –P. 340. Available from: http://molspect.chemistry.ohiostate.edu/molspect_conf_public/archive_2013/p072-ppt.tar.gz14. Алексеев Е. А., Мотиенко Р. А., Маргулес Л. Спектрометры миллиметрового и субмиллиметрового диапазоновна основе синтезаторов прямого цифрового синтеза //Радиофизика и радиоастрономия. – 2011. – Т. 16, № 3. –С. 313–327.15. Алексеев Е. А., Захаренко В. В. Синтезатор прямогоцифрового синтеза в микроволновой спектроскопии //Радиофизика и радиоастрономия. – 2007. – Т. 12.№ 2. – С. 205–213.16. Motiyenko R. A., Alekseev E. A., Dyubko S. F., and LovasF. J. Microwave Spectrum and Structure of Furfural //J. Mol. Spectrosc. – 2006. – Vol. 240, No. 1. – P. 93–101.17. Snyder L. E., Lovas F. J., Hollis J. M., Friedel D. N., JewellP. R., Remijan A., Ilyushin V. V., Alekseev E. A., andDyubko S. F. A rigorous attempt to verify interstellar glycine// Astrophys. J. – 2005. – Vol. 619, No. 2. – P. 914–930.18. Ilyushin V. V., Alekseev E. A., Dyubko S. F., Motiyenko R. A.,and Lovas F. J. Millimeter wave spectrum of glycine //J. Mol. Spectrosc. – 2005. – Vol. 231, No. 1. – P. 15–22.19. Kryvda A. V., Gerasimov V. G., Dyubko S. F., Alekseev E. A.,and Motiyenko R. A. New measurements of the microwavespectrum of formamide // J. Mol. Spectrosc. – 2009. –Vol. 254, No. 1. – P. 28–32.20. Remijan A. J., Snyder L. E., McGuire B. A., Kuo H.-L.,Looney L. W., Friedel D. N., Golubiatnikov G. Yu., LovasF. J., Ilyushin V. V., Alekseev E. A., Dyubko S. F.,McCall B. J., and Holliset J. M. Observational Results of aMulti-telescope Campaign in Search of Interstellar Urea[(NH2)2CO] // Astrophys. J. – 2014. – Vol. 783, No. 2. –id. 77.21. Costain C. C. The use of saturation dip absorption inmicrowave spectroscopy and in microwave frequency stabilization// Can. J. Phys. – 1969. – Vol. 47, No. 21. –P. 2431–2433.22. Winton R. S. and Gordy W. High-precision millimeter-wavespectroscopy with the lamb dip // Phys. Lett. A. – 1970. –Vol. 32, Is. 4. – P. 219–220.23. Летохов В. С., Чеботаев В. П. Нелинейная лазернаяспектроскопия сверхвысокого разрешения. – М.:Наука, 1990. – 512 с.24. Cazzoli G., Esposti C. D., and Favero P. G. Quadrupolecoupling constant of deuterium in hydrocyanic acid-d1(nitrogen-15) by Lamb dip microwave spectroscopy //J. Phys. Chem. – 1980. – Vol. 84, Is. 14. – P. 1756–1757.25. Cazzoli G. and Dore L. Observation of crossing resonancesin the hyperfine structure of the J=1–0 transition ofDC15N // J. Mol. Spectrosc. – 1990. – Vol. 143, Is. 2. –P. 231–236.26. Dore L., Degli Esposti C., Mazzavillani A., and Cazzoli G.Pure rotational spectra of 32SD+3 and 34SD+3: Determinationof the substitution structure of the sulfonium ion // Chem.Phys. Lett. – 1999. – Vol. 300, Is. 3. – P. 489–492.27. Krupnov A. F., Tretyakov M. Yu., Belov S. P., GolubiatnikovG. Yu., Parshin V. V., Koshelev M. A., Makarov D. S.,and Serov E. A. Accurate broadband rotational BWO-basedspectroscopy // J. Mol. Spectrosc. – 2012. – Vol. 280. –P. 110–118.28. Голубятников Г. Ю., Белов С. П., Леонов И. И., Андриянов А. Ф., Зинченко И. И., Лапинов А. В., Марков В. Н.,Шкаев А. П., Гварнери А. Прецизионный субдоплеровский спектрометр миллиметрового и субмиллиметрового диапазонов длин волн на основе эффекта провалаЛэмба // Известия вузов. Радиофизика. – 2013. – Т. 56,№ 8/9. – С. 666–677.29. Техническая информация [Электронный ресурс]. – Режим доступа: http://www.analog.com/static/imported-files/data_sheets/AD9851.pdf30. Техническая информация [Электронный ресурс]. – Режим доступа: http://www.analog.com/static/imported-files/data_sheets/AD9834.pdf31. Техническая информация [Электронный ресурс]. – Режим доступа: http://www.analog.com/static/imported-files/data_sheets/ADUC834.pdf32. Алексеев Е. А. Синтезаторы прямого цифрового синтезачастоты: возможности и ограничения для микроволновой спектроскопии // Радиофизика и радиоастрономия. –2011. – Т.16, № 2. – С. 209–219.33. Gordy W. and Cook R. L. Microwave Molecular Spectra. –New York: John Wiley & Sons, 1984. – 1015 p.34. Winnewisser G., Belov S. P., Klaus Th., and Schieder R.Sub-Doppler measurements of the rotational transitions ofcarbon monoxide // J. Mol. Spectrosc. – 1997. – Vol. 184,Is. 2. – P. 468–472. Видавничий дім «Академперіодика» 2015-01-13 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1195 10.15407/rpra19.04.364 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 19, No 4 (2014); 364 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 19, No 4 (2014); 364 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 19, No 4 (2014); 364 2415-7007 1027-9636 10.15407/rpra19.04 ru http://rpra-journal.org.ua/index.php/ra/article/view/1195/831 Copyright (c) 2014 RADIO PHYSICS AND RADIO ASTRONOMY |