CLOUD DISTRIBUTION IN OBSCURING TORI OF ACTIVE GALACTIC NUCLEI

In the framework of N-body simulations, we have investigated the influence of initial conditions on the evolution of self-gravitating torus being in the active galactic nuclei (AGN), as well as evolution of distribution of particles (clouds) by their orbital elements analysed. The results of simulat...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автор: Bannikova, E. Yu.
Формат: Стаття
Мова:Russian
Опубліковано: Видавничий дім «Академперіодика» 2015
Теми:
Онлайн доступ:http://rpra-journal.org.ua/index.php/ra/article/view/1215
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Radio physics and radio astronomy

Репозитарії

Radio physics and radio astronomy
id rpra-journalorgua-article-1215
record_format ojs
institution Radio physics and radio astronomy
baseUrl_str
datestamp_date 2017-05-12T13:51:26Z
collection OJS
language Russian
topic active galactic nuclei
unified scheme
obscuring torus
spellingShingle active galactic nuclei
unified scheme
obscuring torus
Bannikova, E. Yu.
CLOUD DISTRIBUTION IN OBSCURING TORI OF ACTIVE GALACTIC NUCLEI
topic_facet active galactic nuclei
unified scheme
obscuring torus
активные ядра галактик
унифицированная схема
затеняющий тор
активні ядра галактик
уніфікована схема
затінюючий тор
format Article
author Bannikova, E. Yu.
author_facet Bannikova, E. Yu.
author_sort Bannikova, E. Yu.
title CLOUD DISTRIBUTION IN OBSCURING TORI OF ACTIVE GALACTIC NUCLEI
title_short CLOUD DISTRIBUTION IN OBSCURING TORI OF ACTIVE GALACTIC NUCLEI
title_full CLOUD DISTRIBUTION IN OBSCURING TORI OF ACTIVE GALACTIC NUCLEI
title_fullStr CLOUD DISTRIBUTION IN OBSCURING TORI OF ACTIVE GALACTIC NUCLEI
title_full_unstemmed CLOUD DISTRIBUTION IN OBSCURING TORI OF ACTIVE GALACTIC NUCLEI
title_sort cloud distribution in obscuring tori of active galactic nuclei
title_alt РАСПРЕДЕЛЕНИЕ ОБЛАКОВ В ЗАТЕНЯЮЩЕМ ТОРЕ АКТИВНЫХ ЯДЕР ГАЛАКТИК
РОЗПОДІЛ ХМАР В ЗАТІНЮЮЧОМУ ТОРІ АКТИВНИХ ЯДЕР ГАЛАКТИК
description In the framework of N-body simulations, we have investigated the influence of initial conditions on the evolution of self-gravitating torus being in the active galactic nuclei (AGN), as well as evolution of distribution of particles (clouds) by their orbital elements analysed. The results of simulations show that stability of a geometrically thick torus in AGN can be explained by the motion of clouds in the torus by inclined and eccentric orbits. The scenario of torus formation being related to the beginning of the AGN’s stage is suggested.Key words: active galactic nuclei, unified scheme, obscuring torusManuscript submitted 28.05.2015Radio phys. radio astron. 2015, 20(3): 191-204REFERENCES1. BIANCHI, S., MAIOLINO, R. and RISALITI, G., 2012. AGN Obscuration and the Unified Model. Adv. Astron., id. 782030. 2. NETZER, H., 2013. The physics and evolution of active galactic nuclei. New York: Cambridge university press. DOI: https://doi.org/10.1017/CBO9781139109291 3. NETZER, H., 2015. Revisiting the Unified Model of Active Galactic Nuclei. Ann. Rev. Astron. Astrophys., vol. 53 (astro-ph/1505.00811). 4. ANTONUCCI, R., 1993. Unified models for active galactic nuclei and quasars. Ann. Rev. Astron. Astrophys., vol. 31, pp. 473–521. DOI: https://doi.org/10.1146/annurev.aa.31.090193.002353 5. ANTONUCCI, R. R. J. and MILLER, J. S., 1985. Spectropolarimetry and the nature of NGC 1068. Astrophys. J., vol. 297, pp. 621–632. DOI:https://doi.org/10.1086/163559 6. TRAN, H. D., 2003. The Unified Model and Evolution of Active Galaxies: Implications from a Spectropolarimetric Study. Astrophys. J., vol. 583, no. 2, pp. 632–648. DOI: https://doi.org/10.1086/345473 7. URRY, C. M. and PADOVANI, P., 1995. Unified Schemes for Radio-Loud Active Galactic Nuclei. Publ. Astron. Soc. Pac., vol. 107, pp. 803–845. DOI: https://doi.org/10.1086/133630 8. SCHMITT, H. R., ANTONUCCI, R. R. J., ULVESTAD, J. S.,KINNEY, A. L., CLARKE, C. J. and PRINGLE, J. E., 2001. Testing the Unified Model with an Infrared-selected Sample of Seyfert Galaxies. Astrophys. J., vol. 555, no. 2, pp. 663–672. DOI: https://doi.org/10.1086/321505 9. JAFFE, W., MEISENHEIMER, K., RÖTTGERING, H. J. A., LEINERT, CH., RICHICHI, A., CHESNEAU, O., FRAIXBURNET, D., GLAZENBORG-KLUTTIG, A., GRANATO, G.-L., GRASER, U., HEIJLIGERS, B., KÖHLER, R., MALBET, F., MILEY, G. K., PARESCE, F., PEL, J.-W., PERRIN, G., PRZYGODDA, F., SCHOELLER, M., SOL, H., WATERS, L. B. F. M., WEIGELT, G., WOILLEZ, J. and DE ZEEUW, P. T., 2004. The central dusty torus in the active nucleus of NGC 1068. Nature, vol. 429, no. 6987, pp. 47–49. DOI: https://doi.org/10.1038/nature02531 10. RABAN, D., JAFFE, W., RÖTTGERING, H. J. A., MEISENHEIMER, K. and TRISTRAM, K. R. W., 2009. Resolving the obscuring torus in NGC 1068 with the power of infrared interferometry: revealing the inner funnel of dust. Mon. Not. R. Astron. Soc., vol. 394, no. 3, pp. 1325–1337. DOI:https://doi.org/10.1111/j.1365-2966.2009.14439.x 11. SCHARTMANN, M., MEISENHEIMER, K., CAMENZIND, M., WOLF, S. and HENNING, TH., 2005. Towards a physical model of dust tori in Active Galactic Nuclei. Astron. Astrophys. vol. 437, no. 3, pp. 861–881. DOI:https://doi.org/10.1051/0004-6361:20042363 12. DULLEMOND, C. P. and VAN BEMMEL, I. M., 2005. Clumpy tori around active galactic nuclei. Astron. Astrophys., vol. 436, no. 1, pp. 47–56. DOI:https://doi.org/10.1051/0004-6361:20041763 13. TRISTRAM, K. R. W., MEISENHEIMER, K., JAFFE, W., SCHARTMANN, M., RIX, H.-W., LEINERT, CH., MOREL, S., WITTKOWSKI, M., RÖTTGERING, H., PERRIN, G., LOPEZ, B., RABAN, D., COTTON, W. D., GRASER, U., PARESCE, F. and HENNING, TH., 2007. Resolving the complex structure of the dust torus in the active nucleus of the Circinus galaxy. Astron. Astrophys., vol. 474, no. 3, pp. 837–850. DOI:https://doi.org/10.1051/0004-6361:20078369 14. KROLIK, J. H. and BEGELMAN, M. C., 1988. Molecular tori in Seyfert galaxies – Feeding the monster and hiding it. Astrophys. J., vol. 329, pp. 702–711. DOI: https://doi.org/10.1086/166414 15. GREENHILL, L. J., GWINN, C. R., ANTONUCCI, R. and BARVAINIS, R., 1996. VLBI Imaging of Water Maser Emission from the Nuclear Torus of NGC 1068. Astrophys. J. Lett., vol. 472, pp. L21–L25. DOI: https://doi.org/10.1086/310346 16. LO, K. Y., 2005. Mega- Masers and Galaxies. Ann. Rev. Astron. Astrophys., vol. 43, no. 1, pp. 625–676. DOI: https://doi.org/10.1146/annurev.astro.41.011802.094927 17. MAIOLINO, R., 2008. Prospects for AGN studies with ALMA. New Astron. Rev., vol. 52, no. 6, pp. 339–357. DOI: https://doi.org/10.1016/j.newar.2008.06.012 18. NENKOVA, M., SIROCKY, M. M., IVEZIC, Z. and ELITZUR, M., 2008. AGN Dusty Tori. I. Handling of Clumpy Media; II. Observational Implications of Clumpiness. Astrophys. J., vol. 685, no. 2, pp. 147–180. 19. HÖNIG, S. F., BECKERT, T., OHNAKA, K. and WEIGELT, G.,2006. Radiative transfer modeling of three-dimensional clumpy AGN tori and its application to NGC 1068. Astron. Astrophys., vol. 452, no. 2, pp. 459–471. DOI: https://doi.org/10.1051/0004-6361:20054622 20. KROLIK, J. H., 2007. AGN Obscuring Tori Supported by Infrared Radiation Pressure. Astrophys. J., vol. 661, no. 1, pp. 52–59. DOI: https://doi.org/10.1086/515432 21. SCHARTMANN, M., BURKERT, A., KRAUSE, M., CAMENZIND, M., MEISENHEIMER, K. and DAVIES, R. I., 2010. Gas dynamics of the central few parsec region of NGC 1068 fuelled by the evolving nuclear star luster. Mon. Not. R. Astron. Soc., vol. 403, no. 4, pp. 1801–1811. DOI: https://doi.org/10.1111/j.1365-2966.2010.16250.x 22. WADA, K., PAPADOPOULOS, P. P. and SPAANS, M., 2009. Molecular Gas Disk Structures Around Active Galactic Nuclei. Astrophys. J., vol. 702, no. 1, pp. 63–74. DOI: https://doi.org/10.1088/0004-637X/702/1/63 23. ELVIS, M. A., 2000. Structure for Quasars. Astrophys. J., vol. 545, no. 1, pp. 63–76. DOI: https://doi.org/10.1086/317778 24. ELITZUR, M. and SHLOSMAN, I., 2006. The AGNobscuring Torus: The End of the "Doughnut" Paradigm? Astrophys. J., vol. 648, no. 2, pp. L101–L104. DOI: https://doi.org/10.1086/508158 25. DORODNITSYN, A., KALLMAN, T. and BISNOVATYIKOGAN,G. S., 2012. AGN Obscuration through Dusty, Infrared-dominated Flows. Astrophys. J., vol. 747, no. 1, pp. 8–19. DOI: https://doi.org/10.1088/0004-637X/747/1/8 26. BANNIKOVA, E. YU. and KONTOROVICH, V. M., 2007. Adipolar vortex model for the obscuring tori in active galactic nuclei. Astron. Rep., vol. 51, no. 4, pp. 264–273.https://doi.org/10.1134/S1063772907040026 27. Bannikova, E. YU., Vakulik, V. G. and Sergeev, A. V., 2012. N-body simulation of a clumpy torus: application to active galactic nuclei. Mon. Not. R. Astron. Soc., vol. 424, no. 2, pp. 820–829. DOI: https://doi.org/10.1111/j.1365-2966.2012.21186.x 28. ELVIS, M., 2012. Slicing the Torus: Obscuring Structures in Quasars. J. Phys., vol. 372, id. 012032(astro-ph/1201.5101). 29. DUBOSHIN, G. N., 1968. Celestian Mechanics. Moscow: Nauka (in Russian). 30. PLUMMER, H. C., 1911. On the problem of distribution in globular star clusters. Mon. Not. R. Astron. Soc., vol. 71, pp. 460–470. DOI:https://doi.org/10.1093/mnras/71.5.460 31. AARSETH, S. J., 1963. Dynamical evolution of clusters of galaxies. Mon. Not. R. Astron. Soc., vol. 126, pp. 223–255. DOI: https://doi.org/10.1093/mnras/126.3.223 32. AARSETH, S. J., 2003. Gravitational N-Body Simulation: Tools and Algorithms. Cambridge: Cambridge university press. DOI: https://doi.org/10.1017/CBO9780511535246 33. BELLEMAN, R. G., BEDORF, J. and PORTEGIES ZWART, S., 2008. High performance direct gravitational N-body simulations on graphics processing units II: An implementation in CUDA. New Astron., vol. 13, no. 2, pp. 103–112. DOI: https://doi.org/10.1016/j.newast.2007.07.004 34. HARFST, S., GUALANDRIS, A., MERRITT, D., SPURZEM, R., ZWART, S. P. and BERCZIK, P.,2007. Performance analysis of direct N-body algorithms on special-purpose supercomputers. New Astron., vol. 12, no. 5, pp. 357–377. DOI: https://doi.org/10.1016/j.newast.2006.11.003 35. BANNIKOVA, E. YU., VAKULIK, V. G. and SHULGA, V. M., 2011. Gravitational potential of a homogeneous circular torus: a new approach. Mon. Not. R. Astron. Soc., vol. 411, no. 1, pp. 557–564. DOI:https://doi.org/10.1111/j.1365-2966.2010.17700.x 36. SALES, D. A., ROBINSON, A., AXON, D. J., GALLIMORE, J., KHARB, P., CURRAN, R. L., O’DEA, C., BAUM, S., ELITZUR, M. and MITTAL, R., 2015. An Embedded Active Nucleus in the OH Megamaser Galaxy IRAS16399-0937. Astrophys. J., vol. 799, no. 1, id. 25. 37. KONTOROVICH, V. M., 1994. The connection between the interaction of galaxies and their activity. Astron. Astrophys. Trans., vol. 5, pp. 259–278. DOI: https://doi.org/10.1080/10556799408245878 38. ZHU, L., ZHANG, S.-N. and TANG, S.-M., 2009. Evidence for an Intermediate Line Region in Active Galactic Nuclei's Inner Torus Region and its Evolution from Narrow to Broad Line Seyfert I Galaxies. Astrophys. J., vol. 700, no. 2, pp. 1173–1189. DOI: https://doi.org/10.1088/0004-637X/700/2/1173 39. LIU, Y. and ZHANG, N., 2011. Dusty Torus Formation by Anisotropic Radiative Pressure Feedback of Active Galactic Nuclei. Astrophys. J., vol. 728, no. 2, pp. L44–L49. DOI: https://doi.org/10.1088/2041-8205/728/2/L44 40. BLANDFORD, R. D. and PAYN, D. G., 1982. Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. R. Astron. Soc., vol. 199, pp. 883–903. DOI: https://doi.org/10.1093/mnras/199.4.883 41. PROGA, D., 2006. Theory of Winds in AGNs. In: The Central Engine of Active Galactic Nuclei, ASP Conference Series, vol. 373, pp. 267–276 (astro-ph/0701100). 42. REYNOLDS, C. S., 2012. Constraints on Comptonthick Winds from Black Hole Accretion Disks: Can We See the Inner Disk? Astrophys. J. Lett., vol. 759, no. 1, pp. L15–L20. DOI: https://doi.org/10.1088/2041-8205/759/1/L15
publisher Видавничий дім «Академперіодика»
publishDate 2015
url http://rpra-journal.org.ua/index.php/ra/article/view/1215
work_keys_str_mv AT bannikovaeyu clouddistributioninobscuringtoriofactivegalacticnuclei
AT bannikovaeyu raspredelenieoblakovvzatenâûŝemtoreaktivnyhâdergalaktik
AT bannikovaeyu rozpodílhmarvzatínûûčomutoríaktivnihâdergalaktik
first_indexed 2025-12-02T15:35:45Z
last_indexed 2025-12-02T15:35:45Z
_version_ 1850763749484396544
spelling rpra-journalorgua-article-12152017-05-12T13:51:26Z CLOUD DISTRIBUTION IN OBSCURING TORI OF ACTIVE GALACTIC NUCLEI РАСПРЕДЕЛЕНИЕ ОБЛАКОВ В ЗАТЕНЯЮЩЕМ ТОРЕ АКТИВНЫХ ЯДЕР ГАЛАКТИК РОЗПОДІЛ ХМАР В ЗАТІНЮЮЧОМУ ТОРІ АКТИВНИХ ЯДЕР ГАЛАКТИК Bannikova, E. Yu. active galactic nuclei; unified scheme; obscuring torus активные ядра галактик; унифицированная схема; затеняющий тор активні ядра галактик; уніфікована схема; затінюючий тор In the framework of N-body simulations, we have investigated the influence of initial conditions on the evolution of self-gravitating torus being in the active galactic nuclei (AGN), as well as evolution of distribution of particles (clouds) by their orbital elements analysed. The results of simulations show that stability of a geometrically thick torus in AGN can be explained by the motion of clouds in the torus by inclined and eccentric orbits. The scenario of torus formation being related to the beginning of the AGN’s stage is suggested.Key words: active galactic nuclei, unified scheme, obscuring torusManuscript submitted 28.05.2015Radio phys. radio astron. 2015, 20(3): 191-204REFERENCES1. BIANCHI, S., MAIOLINO, R. and RISALITI, G., 2012. AGN Obscuration and the Unified Model. Adv. Astron., id. 782030. 2. NETZER, H., 2013. The physics and evolution of active galactic nuclei. New York: Cambridge university press. DOI: https://doi.org/10.1017/CBO9781139109291 3. NETZER, H., 2015. Revisiting the Unified Model of Active Galactic Nuclei. Ann. Rev. Astron. Astrophys., vol. 53 (astro-ph/1505.00811). 4. ANTONUCCI, R., 1993. Unified models for active galactic nuclei and quasars. Ann. Rev. Astron. Astrophys., vol. 31, pp. 473–521. DOI: https://doi.org/10.1146/annurev.aa.31.090193.002353 5. ANTONUCCI, R. R. J. and MILLER, J. S., 1985. Spectropolarimetry and the nature of NGC 1068. Astrophys. J., vol. 297, pp. 621–632. DOI:https://doi.org/10.1086/163559 6. TRAN, H. D., 2003. The Unified Model and Evolution of Active Galaxies: Implications from a Spectropolarimetric Study. Astrophys. J., vol. 583, no. 2, pp. 632–648. DOI: https://doi.org/10.1086/345473 7. URRY, C. M. and PADOVANI, P., 1995. Unified Schemes for Radio-Loud Active Galactic Nuclei. Publ. Astron. Soc. Pac., vol. 107, pp. 803–845. DOI: https://doi.org/10.1086/133630 8. SCHMITT, H. R., ANTONUCCI, R. R. J., ULVESTAD, J. S.,KINNEY, A. L., CLARKE, C. J. and PRINGLE, J. E., 2001. Testing the Unified Model with an Infrared-selected Sample of Seyfert Galaxies. Astrophys. J., vol. 555, no. 2, pp. 663–672. DOI: https://doi.org/10.1086/321505 9. JAFFE, W., MEISENHEIMER, K., RÖTTGERING, H. J. A., LEINERT, CH., RICHICHI, A., CHESNEAU, O., FRAIXBURNET, D., GLAZENBORG-KLUTTIG, A., GRANATO, G.-L., GRASER, U., HEIJLIGERS, B., KÖHLER, R., MALBET, F., MILEY, G. K., PARESCE, F., PEL, J.-W., PERRIN, G., PRZYGODDA, F., SCHOELLER, M., SOL, H., WATERS, L. B. F. M., WEIGELT, G., WOILLEZ, J. and DE ZEEUW, P. T., 2004. The central dusty torus in the active nucleus of NGC 1068. Nature, vol. 429, no. 6987, pp. 47–49. DOI: https://doi.org/10.1038/nature02531 10. RABAN, D., JAFFE, W., RÖTTGERING, H. J. A., MEISENHEIMER, K. and TRISTRAM, K. R. W., 2009. Resolving the obscuring torus in NGC 1068 with the power of infrared interferometry: revealing the inner funnel of dust. Mon. Not. R. Astron. Soc., vol. 394, no. 3, pp. 1325–1337. DOI:https://doi.org/10.1111/j.1365-2966.2009.14439.x 11. SCHARTMANN, M., MEISENHEIMER, K., CAMENZIND, M., WOLF, S. and HENNING, TH., 2005. Towards a physical model of dust tori in Active Galactic Nuclei. Astron. Astrophys. vol. 437, no. 3, pp. 861–881. DOI:https://doi.org/10.1051/0004-6361:20042363 12. DULLEMOND, C. P. and VAN BEMMEL, I. M., 2005. Clumpy tori around active galactic nuclei. Astron. Astrophys., vol. 436, no. 1, pp. 47–56. DOI:https://doi.org/10.1051/0004-6361:20041763 13. TRISTRAM, K. R. W., MEISENHEIMER, K., JAFFE, W., SCHARTMANN, M., RIX, H.-W., LEINERT, CH., MOREL, S., WITTKOWSKI, M., RÖTTGERING, H., PERRIN, G., LOPEZ, B., RABAN, D., COTTON, W. D., GRASER, U., PARESCE, F. and HENNING, TH., 2007. Resolving the complex structure of the dust torus in the active nucleus of the Circinus galaxy. Astron. Astrophys., vol. 474, no. 3, pp. 837–850. DOI:https://doi.org/10.1051/0004-6361:20078369 14. KROLIK, J. H. and BEGELMAN, M. C., 1988. Molecular tori in Seyfert galaxies – Feeding the monster and hiding it. Astrophys. J., vol. 329, pp. 702–711. DOI: https://doi.org/10.1086/166414 15. GREENHILL, L. J., GWINN, C. R., ANTONUCCI, R. and BARVAINIS, R., 1996. VLBI Imaging of Water Maser Emission from the Nuclear Torus of NGC 1068. Astrophys. J. Lett., vol. 472, pp. L21–L25. DOI: https://doi.org/10.1086/310346 16. LO, K. Y., 2005. Mega- Masers and Galaxies. Ann. Rev. Astron. Astrophys., vol. 43, no. 1, pp. 625–676. DOI: https://doi.org/10.1146/annurev.astro.41.011802.094927 17. MAIOLINO, R., 2008. Prospects for AGN studies with ALMA. New Astron. Rev., vol. 52, no. 6, pp. 339–357. DOI: https://doi.org/10.1016/j.newar.2008.06.012 18. NENKOVA, M., SIROCKY, M. M., IVEZIC, Z. and ELITZUR, M., 2008. AGN Dusty Tori. I. Handling of Clumpy Media; II. Observational Implications of Clumpiness. Astrophys. J., vol. 685, no. 2, pp. 147–180. 19. HÖNIG, S. F., BECKERT, T., OHNAKA, K. and WEIGELT, G.,2006. Radiative transfer modeling of three-dimensional clumpy AGN tori and its application to NGC 1068. Astron. Astrophys., vol. 452, no. 2, pp. 459–471. DOI: https://doi.org/10.1051/0004-6361:20054622 20. KROLIK, J. H., 2007. AGN Obscuring Tori Supported by Infrared Radiation Pressure. Astrophys. J., vol. 661, no. 1, pp. 52–59. DOI: https://doi.org/10.1086/515432 21. SCHARTMANN, M., BURKERT, A., KRAUSE, M., CAMENZIND, M., MEISENHEIMER, K. and DAVIES, R. I., 2010. Gas dynamics of the central few parsec region of NGC 1068 fuelled by the evolving nuclear star luster. Mon. Not. R. Astron. Soc., vol. 403, no. 4, pp. 1801–1811. DOI: https://doi.org/10.1111/j.1365-2966.2010.16250.x 22. WADA, K., PAPADOPOULOS, P. P. and SPAANS, M., 2009. Molecular Gas Disk Structures Around Active Galactic Nuclei. Astrophys. J., vol. 702, no. 1, pp. 63–74. DOI: https://doi.org/10.1088/0004-637X/702/1/63 23. ELVIS, M. A., 2000. Structure for Quasars. Astrophys. J., vol. 545, no. 1, pp. 63–76. DOI: https://doi.org/10.1086/317778 24. ELITZUR, M. and SHLOSMAN, I., 2006. The AGNobscuring Torus: The End of the "Doughnut" Paradigm? Astrophys. J., vol. 648, no. 2, pp. L101–L104. DOI: https://doi.org/10.1086/508158 25. DORODNITSYN, A., KALLMAN, T. and BISNOVATYIKOGAN,G. S., 2012. AGN Obscuration through Dusty, Infrared-dominated Flows. Astrophys. J., vol. 747, no. 1, pp. 8–19. DOI: https://doi.org/10.1088/0004-637X/747/1/8 26. BANNIKOVA, E. YU. and KONTOROVICH, V. M., 2007. Adipolar vortex model for the obscuring tori in active galactic nuclei. Astron. Rep., vol. 51, no. 4, pp. 264–273.https://doi.org/10.1134/S1063772907040026 27. Bannikova, E. YU., Vakulik, V. G. and Sergeev, A. V., 2012. N-body simulation of a clumpy torus: application to active galactic nuclei. Mon. Not. R. Astron. Soc., vol. 424, no. 2, pp. 820–829. DOI: https://doi.org/10.1111/j.1365-2966.2012.21186.x 28. ELVIS, M., 2012. Slicing the Torus: Obscuring Structures in Quasars. J. Phys., vol. 372, id. 012032(astro-ph/1201.5101). 29. DUBOSHIN, G. N., 1968. Celestian Mechanics. Moscow: Nauka (in Russian). 30. PLUMMER, H. C., 1911. On the problem of distribution in globular star clusters. Mon. Not. R. Astron. Soc., vol. 71, pp. 460–470. DOI:https://doi.org/10.1093/mnras/71.5.460 31. AARSETH, S. J., 1963. Dynamical evolution of clusters of galaxies. Mon. Not. R. Astron. Soc., vol. 126, pp. 223–255. DOI: https://doi.org/10.1093/mnras/126.3.223 32. AARSETH, S. J., 2003. Gravitational N-Body Simulation: Tools and Algorithms. Cambridge: Cambridge university press. DOI: https://doi.org/10.1017/CBO9780511535246 33. BELLEMAN, R. G., BEDORF, J. and PORTEGIES ZWART, S., 2008. High performance direct gravitational N-body simulations on graphics processing units II: An implementation in CUDA. New Astron., vol. 13, no. 2, pp. 103–112. DOI: https://doi.org/10.1016/j.newast.2007.07.004 34. HARFST, S., GUALANDRIS, A., MERRITT, D., SPURZEM, R., ZWART, S. P. and BERCZIK, P.,2007. Performance analysis of direct N-body algorithms on special-purpose supercomputers. New Astron., vol. 12, no. 5, pp. 357–377. DOI: https://doi.org/10.1016/j.newast.2006.11.003 35. BANNIKOVA, E. YU., VAKULIK, V. G. and SHULGA, V. M., 2011. Gravitational potential of a homogeneous circular torus: a new approach. Mon. Not. R. Astron. Soc., vol. 411, no. 1, pp. 557–564. DOI:https://doi.org/10.1111/j.1365-2966.2010.17700.x 36. SALES, D. A., ROBINSON, A., AXON, D. J., GALLIMORE, J., KHARB, P., CURRAN, R. L., O’DEA, C., BAUM, S., ELITZUR, M. and MITTAL, R., 2015. An Embedded Active Nucleus in the OH Megamaser Galaxy IRAS16399-0937. Astrophys. J., vol. 799, no. 1, id. 25. 37. KONTOROVICH, V. M., 1994. The connection between the interaction of galaxies and their activity. Astron. Astrophys. Trans., vol. 5, pp. 259–278. DOI: https://doi.org/10.1080/10556799408245878 38. ZHU, L., ZHANG, S.-N. and TANG, S.-M., 2009. Evidence for an Intermediate Line Region in Active Galactic Nuclei's Inner Torus Region and its Evolution from Narrow to Broad Line Seyfert I Galaxies. Astrophys. J., vol. 700, no. 2, pp. 1173–1189. DOI: https://doi.org/10.1088/0004-637X/700/2/1173 39. LIU, Y. and ZHANG, N., 2011. Dusty Torus Formation by Anisotropic Radiative Pressure Feedback of Active Galactic Nuclei. Astrophys. J., vol. 728, no. 2, pp. L44–L49. DOI: https://doi.org/10.1088/2041-8205/728/2/L44 40. BLANDFORD, R. D. and PAYN, D. G., 1982. Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. R. Astron. Soc., vol. 199, pp. 883–903. DOI: https://doi.org/10.1093/mnras/199.4.883 41. PROGA, D., 2006. Theory of Winds in AGNs. In: The Central Engine of Active Galactic Nuclei, ASP Conference Series, vol. 373, pp. 267–276 (astro-ph/0701100). 42. REYNOLDS, C. S., 2012. Constraints on Comptonthick Winds from Black Hole Accretion Disks: Can We See the Inner Disk? Astrophys. J. Lett., vol. 759, no. 1, pp. L15–L20. DOI: https://doi.org/10.1088/2041-8205/759/1/L15 УДК 524.7В рамках задачи N-тел исследовано влияние начальных условий на эволюцию самогравитирующего тора, находящегося в поле центральной массы. Проведен анализ распределения частиц по элементам орбит на разных этапах его эволюции. Результаты моделирования показывают, что стабильность геометрически толстого тора в активных ядрах галактик может быть объяснена движением облаков в нем по наклоненным и эксцентричным орбитам, а его формирование связано с началом стадии активности в ядрах галактик.Ключевые слова: активные ядра галактик, унифицированная схема, затеняющий торСтатья поступила в редакцию 28.05.2015Radio phys. radio astron. 2015, 20(3): 191-204 СПИСОК ЛИТЕРАТУРЫ1. Bianchi S., Maiolino R., and Risaliti G. AGN Obscuration and the Unified Model // Adv. Astron. – 2012. – Vol. 2012. –   id. 782030.2. Netzer H. The physics and evolution of active galactic nuclei. – New York: Cambridge university press, 2013. – 378 p.3. Netzer H.  Revisiting the Unified Model of Active Galactic Nuclei // Adv. Rev. Astron. Astrophys. – 2015. – Vol. 53 (astro-ph/1505.00811).4.  Antonucci R. Unified models for active galactic nuclei and quasars // Adv. Rev. Astron. Astrophys. – 1993. – Vol. 31. –  P. 473–521.5. Antonucci R. R J. and Miller J. S. Spectropolarimetry and the nature of NGC 1068 // Astrophys. J. – 1985. – Vol. 297. – P. 621–632.6.  Tran H. D. The Unified Model and Evolution of Active Galaxies: Implications from a Spectropolarimetric Study // Astrophys. J. – 2003. – Vol. 583, Is. 2. – P. 632–648.7. Urry C. M. and Padovani P. Unified Schemes for Radio-Loud Active Galactic Nuclei // Publ. Astron. Soc. Pac. – 1995. – Vol. 107. – P. 803–845.8. Schmitt H. R., Antonucci R. R. J., Ulvestad J. S., Kinney A. L., Clarke C. J., and Pringle J. E. Testing the Unified Model with an Infrared-selected Sample of Seyfert Galaxies // Astrophys. J. – 2001. – Vol. 555, Is. 2. – P. 663–672.9. Jaffe W., Meisenheimer, K., Röttgering H. J. A., Leinert Ch., Richichi A., Chesneau O., Fraix-Burnet D., Glazenborg-Kluttig A., Granato G.-L., Graser U., Heijligers B., Köhler R., Malbet F., Miley G. K., Paresce F., Pel J.-W., Perrin G., Przygodda F., Schoeller M., Sol H., Waters L. B. F. M., Weigelt G., Woillez J., and  de Zeeuw P. T. The central dusty torus in the active nucleus of NGC 1068 // Nature. – 2004. – Vol. 429, Is. 6987. – P. 47–49.10. Raban D., Jaffe W., Röttgering H. J. A., Meisenheimer K., and Tristram K. R. W. Resolving the obscuring torus in NGC 1068 with the power of infrared interferometry: revealing the inner funnel of dust // Mon. Not. R. Astron. Soc. – 2009. – Vol. 394, Is. 3. – P. 1325–1337.11. Schartmann M., Meisenheimer K., Camenzind M., Wolf S., and Henning Th. Towards a physical model of dust tori in Active Galactic Nuclei // Astron. Astrophys. – 2005. –Vol. 437, Is. 3. – P. 861–881.12. Dullemond C. P. and van Bemmel I. M. Clumpy tori around active galactic nuclei // Astron. Astrophys. – 2005. – Vol. 436, Is. 1. – P. 47 –56.13. Tristram K. R. W., Meisenheimer K., Jaffe W., Schartmann M., Rix H.-W., Leinert Ch., Morel S., Wittkowski M., Röttgering H., Perrin G., Lopez B., Raban D., Cotton W. D., Graser U., Paresce F., and Henning Th. Resolving the complex structure of the dust torus in the active nucleus of the Circinus galaxy // Astron. Astrophys. – 2007. – Vol. 474, Is. 3. – P. 837–850.14. Krolik J. H. and Begelman M. C. Molecular tori in Seyfert galaxies - Feeding the monster and hiding it // Astrophys. J. – 1988. –Vol. 329. – P. 702–711.15. Greenhill L. J., Gwinn C. R., Antonucci R., and Barvainis R. VLBI Imaging of Water Maser Emission from the Nuclear Torus of NGC 1068 // Astrophys. J. Lett. – 1996. –Vol. 472. – P. L21–L25.16. Lo K. Y. Mega- Masers and Galaxies // Adv. Rev. Astron. Astrophys. – 2005. –Vol. 43, Is. 1. – P. 625–676.17. Maiolino R. Prospects for AGN studies withALMA // New Astron. Rev. – 2008. – Vol. 52, Is. 6. – P. 339–357.18. Nenkova M., Sirocky M. M., Ivezic Z., and Elitzur M. AGN Dusty Tori. I. Handling of Clumpy Media; II. Observational Implications of Clumpiness // Astrophys. J. – 2008. – Vol. 685, Is. 2. – P. 147–180.19. Hönig S. F., Beckert T., Ohnaka K., and Weigelt G. Radiative transfer modeling of three-dimensional clumpy AGN tori and its application to NGC 1068 // Astron. Astrophys. – 2006. – Vol. 452, Is. 2. – P. 459–471.20. Krolik J. H. AGN Obscuring Tori Supported by Infrared Radiation Pressure // Astrophys. J. –2007. – Vol. 661, Is. 1. – P. 52–59.21. Schartmann M., Burkert A., Krause M., Camenzind M., Meisenheimer K., and Davies R. I.  Gas dynamics of the central few parsec region of NGC 1068 fuelled by the evolving nuclear star cluster // Mon. Not. R. Astron. Soc. – 2010. – Vol. 403, Is. 4. – P. 1801–1811.22. Wada K., Papadopoulos P. P., and Spaans M. Molecular Gas Disk Structures Around Active Galactic Nuclei // Astrophys. J. – 2009. – Vol. 702, Is. 1. – P. 63–74.23. Elvis M. A Structure for Quasars // Astrophys. J. – 2000. – Vol. 545, Is. 1. – P. 63–76.24. Elitzur M. and Shlosman I. The AGN-obscuring Torus: The End of the “Doughnut” Paradigm? // Astrophys. J. – 2006. – Vol. 648, Is. 2. – P. L101–L104.25. Dorodnitsyn A., Kallman T., and Bisnovatyi-Kogan G. S. AGN Obscuration through Dusty, Infrared-dominated Flows // Astrophys. J. – 2012. – Vol. 747, Is. 1. – P. 8–19.26. Bannikova E. Yu. and Kontorovich V. M. A dipolar vortex model for the obscuring tori in active galactic nuclei // Astron. Rep. – 2007. – Vol. 51, Is. 4. – P. 264–273.27. Bannikova E. Yu., Vakulik V. G., and Sergeev A .V. N-body simulation of a clumpy torus: application to active galactic nuclei // Mon. Not. R. Astron. Soc. – 2012. – Vol. 424, Is. 2. – P. 820–829.28. Elvis M. Slicing the Torus: Obscuring Structures in Quasars // J. Phys. – 2012. – Vol. 372. – id. 012032 (astro-ph/1201.5101).29. Дубошин Г. Н. Небесная механика. – М.: Мир, 1968. – 799 с.30. Plummer H. C. On the problem of distribution in globular star clusters // Mon. Not. R. Astron. Soc. – 1911. – Vol. 71. – P. 460–470.31. Aarseth S. J. Dynamical evolution of clusters of galaxies // Mon. Not. R. Astron. Soc. – 1963. – Vol. 126. – P. 223–255.32. Aarseth S. J. Gravitational N-Body Simulation: Tools and Algorithms. –Cambridge:Cambridge university press, 2003. – 408 р.33. Belleman R. G., Bedorf  J., and Portegies Zwart S. F. High performance direct gravitational N-body simulations on graphics processing units II: An implementation in CUDA // New Astron. – 2008. – Vol. 13, Is. 2. – P. 103–112.34. Harfst S., Gualandris A., Merritt D., Spurzem R., Portegies Zwart S., and Berczik P. Performance analysis of direct N-body algorithms on special-purpose supercomputers // New Astron. – 2007. – Vol. 12, Is. 5. –P. 357–377.35. Bannikova E. Yu., Vakulik V. G., and Shulga V. M.  Gravitational potential of a homogeneous circular torus: a new approach  // Mon. Not. R. Astron. Soc. – 2011. – Vol. 411, Is. 1. – P. 557–564.36. Sales D. A., Robinson A., Axon D. J., Gallimore J., Kharb P., Curran R. L., O'Dea C., Baum S., Elitzur M., and Mittal R. An Embedded Active Nucleus in the OH Megamaser Galaxy IRAS16399-0937 // Astrophys. J. – 2015. –Vol. 799, Is. 1. – id. 25.37. Kontorovich V. M. The connection between the interaction of galaxies and their activity // Astron. Astrophys. Trans. – 1994. – Vol. 5. – P. 259–278.38. Zhu L., Zhang S.-N, and Tang S.-M. Evidence for an Intermediate Line Region in Active Galactic Nuclei's Inner Torus Region and its Evolution from Narrow to Broad Line Seyfert I Galaxies // Astrophys. J. – 2009. – Vol. 700, Is. 2. – P. 1173–1189.39. Liu Y. and Zhang N. Dusty Torus Formation by Anisotropic Radiative Pressure Feedback of Active Galactic Nuclei // Astrophys. J. – 2011. – Vol. 728, Is. 2. – P. L44–L49.40. Blandford R. D. and Payn D. G. Hydromagnetic flows from accretion discs and the production of radio jets // Mon. Not. R. Astron. Soc. – 1982. –Vol. 199. – P. 883–903.41. Proga D. Theory of Winds in AGNs // The Central Engine of Active Galactic Nuclei, ASP Conference Series, 2006. – Vol. 373. – P. 267–276 (astro-ph/0701100).42. Reynolds C. S. Constraints on Compton-thick Winds from Black Hole Accretion Disks: Can We See the Inner Disk? // Astrophys. J. Lett. – 2012. – Vol. 759, Is. 1. – P. L15–L20. УДК 524.7В межах задачі N-тіл досліджено вплив початкових умов на еволюцію самогравітуючого тора, що знаходиться в полі центральної маси. Виконано аналіз розподілу частинок (хмар) за елементами орбіт на різних етапах його еволюції. Результати моделювання показують, що стабільність геометрично товстого тора в активних ядрах галактик може бути пояснена рухом хмар у ньому за нахиленими та ексцентричними орбітами, а його формування пов’язане із початком стадії активності в ядрах галактик.Ключові слова: активні ядра галактик, уніфікована схема, затінюючий торСтаття надійшла до редакції 28.05.2015Radio phys. radio astron. 2015, 20(3): 191-204СПИСОК ЛІТЕРАТУРИ1. Bianchi S., Maiolino R., and Risaliti G. AGN Obscuration and the Unified Model // Adv. Astron. – 2012. – Vol. 2012. –   id. 782030.2. Netzer H. The physics and evolution of active galactic nuclei. – New York: Cambridge university press, 2013. – 378 p.3. Netzer H.  Revisiting the Unified Model of Active Galactic Nuclei // Adv. Rev. Astron. Astrophys. – 2015. – Vol. 53 (astro-ph/1505.00811).4.  Antonucci R. Unified models for active galactic nuclei and quasars // Adv. Rev. Astron. Astrophys. – 1993. – Vol. 31. –  P. 473–521.5. Antonucci R. R J. and Miller J. S. Spectropolarimetry and the nature of NGC 1068 // Astrophys. J. – 1985. – Vol. 297. – P. 621–632.6.  Tran H. D. The Unified Model and Evolution of Active Galaxies: Implications from a Spectropolarimetric Study // Astrophys. J. – 2003. – Vol. 583, Is. 2. – P. 632–648.7. Urry C. M. and Padovani P. Unified Schemes for Radio-Loud Active Galactic Nuclei // Publ. Astron. Soc. Pac. – 1995. – Vol. 107. – P. 803–845.8. Schmitt H. R., Antonucci R. R. J., Ulvestad J. S., Kinney A. L., Clarke C. J., and Pringle J. E. Testing the Unified Model with an Infrared-selected Sample of Seyfert Galaxies // Astrophys. J. – 2001. – Vol. 555, Is. 2. – P. 663–672.9. Jaffe W., Meisenheimer, K., Röttgering H. J. A., Leinert Ch., Richichi A., Chesneau O., Fraix-Burnet D., Glazenborg-Kluttig A., Granato G.-L., Graser U., Heijligers B., Köhler R., Malbet F., Miley G. K., Paresce F., Pel J.-W., Perrin G., Przygodda F., Schoeller M., Sol H., Waters L. B. F. M., Weigelt G., Woillez J., and  de Zeeuw P. T. The central dusty torus in the active nucleus of NGC 1068 // Nature. – 2004. – Vol. 429, Is. 6987. – P. 47–49.10. Raban D., Jaffe W., Röttgering H. J. A., Meisenheimer K., and Tristram K. R. W. Resolving the obscuring torus in NGC 1068 with the power of infrared interferometry: revealing the inner funnel of dust // Mon. Not. R. Astron. Soc. – 2009. – Vol. 394, Is. 3. – P. 1325–1337.11. Schartmann M., Meisenheimer K., Camenzind M., Wolf S., and Henning Th. Towards a physical model of dust tori in Active Galactic Nuclei // Astron. Astrophys. – 2005. –Vol. 437, Is. 3. – P. 861–881.12. Dullemond C. P. and van Bemmel I. M. Clumpy tori around active galactic nuclei // Astron. Astrophys. – 2005. – Vol. 436, Is. 1. – P. 47 –56.13. Tristram K. R. W., Meisenheimer K., Jaffe W., Schartmann M., Rix H.-W., Leinert Ch., Morel S., Wittkowski M., Röttgering H., Perrin G., Lopez B., Raban D., Cotton W. D., Graser U., Paresce F., and Henning Th. Resolving the complex structure of the dust torus in the active nucleus of the Circinus galaxy // Astron. Astrophys. – 2007. – Vol. 474, Is. 3. – P. 837–850.14. Krolik J. H. and Begelman M. C. Molecular tori in Seyfert galaxies - Feeding the monster and hiding it // Astrophys. J. – 1988. –Vol. 329. – P. 702–711.15. Greenhill L. J., Gwinn C. R., Antonucci R., and Barvainis R. VLBI Imaging of Water Maser Emission from the Nuclear Torus of NGC 1068 // Astrophys. J. Lett. – 1996. –Vol. 472. – P. L21–L25.16. Lo K. Y. Mega- Masers and Galaxies // Adv. Rev. Astron. Astrophys. – 2005. –Vol. 43, Is. 1. – P. 625–676.17. Maiolino R. Prospects for AGN studies withALMA // New Astron. Rev. – 2008. – Vol. 52, Is. 6. – P. 339–357.18. Nenkova M., Sirocky M. M., Ivezic Z., and Elitzur M. AGN Dusty Tori. I. Handling of Clumpy Media; II. Observational Implications of Clumpiness // Astrophys. J. – 2008. – Vol. 685, Is. 2. – P. 147–180.19. Hönig S. F., Beckert T., Ohnaka K., and Weigelt G. Radiative transfer modeling of three-dimensional clumpy AGN tori and its application to NGC 1068 // Astron. Astrophys. – 2006. – Vol. 452, Is. 2. – P. 459–471.20. Krolik J. H. AGN Obscuring Tori Supported by Infrared Radiation Pressure // Astrophys. J. –2007. – Vol. 661, Is. 1. – P. 52–59.21. Schartmann M., Burkert A., Krause M., Camenzind M., Meisenheimer K., and Davies R. I.  Gas dynamics of the central few parsec region of NGC 1068 fuelled by the evolving nuclear star cluster // Mon. Not. R. Astron. Soc. – 2010. – Vol. 403, Is. 4. – P. 1801–1811.22. Wada K., Papadopoulos P. P., and Spaans M. Molecular Gas Disk Structures Around Active Galactic Nuclei // Astrophys. J. – 2009. – Vol. 702, Is. 1. – P. 63–74.23. Elvis M. A Structure for Quasars // Astrophys. J. – 2000. – Vol. 545, Is. 1. – P. 63–76.24. Elitzur M. and Shlosman I. The AGN-obscuring Torus: The End of the “Doughnut” Paradigm? // Astrophys. J. – 2006. – Vol. 648, Is. 2. – P. L101–L104.25. Dorodnitsyn A., Kallman T., and Bisnovatyi-Kogan G. S. AGN Obscuration through Dusty, Infrared-dominated Flows // Astrophys. J. – 2012. – Vol. 747, Is. 1. – P. 8–19.26. Bannikova E. Yu. and Kontorovich V. M. A dipolar vortex model for the obscuring tori in active galactic nuclei // Astron. Rep. – 2007. – Vol. 51, Is. 4. – P. 264–273.27. Bannikova E. Yu., Vakulik V. G., and Sergeev A .V. N-body simulation of a clumpy torus: application to active galactic nuclei // Mon. Not. R. Astron. Soc. – 2012. – Vol. 424, Is. 2. – P. 820–829.28. Elvis M. Slicing the Torus: Obscuring Structures in Quasars // J. Phys. – 2012. – Vol. 372. – id. 012032 (astro-ph/1201.5101).29. Дубошин Г. Н. Небесная механика. – М.: Мир, 1968. – 799 с.30. Plummer H. C. On the problem of distribution in globular star clusters // Mon. Not. R. Astron. Soc. – 1911. – Vol. 71. – P. 460–470.31. Aarseth S. J. Dynamical evolution of clusters of galaxies // Mon. Not. R. Astron. Soc. – 1963. – Vol. 126. – P. 223–255.32. Aarseth S. J. Gravitational N-Body Simulation: Tools and Algorithms. –Cambridge:Cambridge university press, 2003. – 408 р.33. Belleman R. G., Bedorf  J., and Portegies Zwart S. F. High performance direct gravitational N-body simulations on graphics processing units II: An implementation in CUDA // New Astron. – 2008. – Vol. 13, Is. 2. – P. 103–112.34. Harfst S., Gualandris A., Merritt D., Spurzem R., Portegies Zwart S., and Berczik P. Performance analysis of direct N-body algorithms on special-purpose supercomputers // New Astron. – 2007. – Vol. 12, Is. 5. –P. 357–377.35. Bannikova E. Yu., Vakulik V. G., and Shulga V. M.  Gravitational potential of a homogeneous circular torus: a new approach  // Mon. Not. R. Astron. Soc. – 2011. – Vol. 411, Is. 1. – P. 557–564.36. Sales D. A., Robinson A., Axon D. J., Gallimore J., Kharb P., Curran R. L., O'Dea C., Baum S., Elitzur M., and Mittal R. An Embedded Active Nucleus in the OH Megamaser Galaxy IRAS16399-0937 // Astrophys. J. – 2015. –Vol. 799, Is. 1. – id. 25.37. Kontorovich V. M. The connection between the interaction of galaxies and their activity // Astron. Astrophys. Trans. – 1994. – Vol. 5. – P. 259–278.38. Zhu L., Zhang S.-N, and Tang S.-M. Evidence for an Intermediate Line Region in Active Galactic Nuclei's Inner Torus Region and its Evolution from Narrow to Broad Line Seyfert I Galaxies // Astrophys. J. – 2009. – Vol. 700, Is. 2. – P. 1173–1189.39. Liu Y. and Zhang N. Dusty Torus Formation by Anisotropic Radiative Pressure Feedback of Active Galactic Nuclei // Astrophys. J. – 2011. – Vol. 728, Is. 2. – P. L44–L49.40. Blandford R. D. and Payn D. G. Hydromagnetic flows from accretion discs and the production of radio jets // Mon. Not. R. Astron. Soc. – 1982. –Vol. 199. – P. 883–903.41. Proga D. Theory of Winds in AGNs // The Central Engine of Active Galactic Nuclei, ASP Conference Series, 2006. – Vol. 373. – P. 267–276 (astro-ph/0701100).42. Reynolds C. S. Constraints on Compton-thick Winds from Black Hole Accretion Disks: Can We See the Inner Disk? // Astrophys. J. Lett. – 2012. – Vol. 759, Is. 1. – P. L15–L20. Видавничий дім «Академперіодика» 2015-12-23 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1215 10.15407/rpra20.03.191 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 20, No 3 (2015); 191 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 20, No 3 (2015); 191 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 20, No 3 (2015); 191 2415-7007 1027-9636 10.15407/rpra20.03 ru http://rpra-journal.org.ua/index.php/ra/article/view/1215/850 Copyright (c) 2015 RADIO PHYSICS AND RADIO ASTRONOMY